七年级数学准确数和近似数2
- 格式:doc
- 大小:31.00 KB
- 文档页数:4
教材分析“准确数和近似数〞是义务教育课程标准实验教科书,浙教版七年册第二章的内容。
教材通过一那么科技报道引入准确数和近似数的概念,在学生已有的运算能力的根底上,给出近似数的精确度的两种表示方式,及近似值的取法。
准确数和近似数是运用有理数进行实际计算所必需的,本节课也培养了学生用所学的数学知识解决,生活中的数学问题的能力,让学生体验到生活中无处不存在准确数和近似数。
学生分析学生往往存在着一些生活经验,这些生活经验是学生学习的根底,但其中也有一些是错误的,必须让学生在正确区分准确数和近似数的根底上,明确近似数的角度有两种表示方式以及学会近似值的取法。
教学中要及时了解学生的认知程度,以便调整教学。
教学目标1.通过实例经历近似数和准确数概念的产生过程。
2.了解近似数的精确度的两种表示方式。
3.能说出由四舍五入得到的有理数的精确位数和有效数字。
4.会根据预定精确度取近似值。
教学重点近似数的两种表示方式及近似值的取法教学难点近似数所表示范围及有效数字如何表示近似数的精确度教辅工具投影仪、卷尺、“神舟五号飞船〞图片、投影片6张教学设计思路本节课首先从学生熟悉的生活情境出发引入数学概念。
通过近似数在生活中的应用,激发学生主动学习的欲望,然后通过老师讲解、学生练习,使学生学会近似数的两种表示方式及近似值的取法,最后再配以练习稳固,让学生很自然地接受这一局部知识。
一、实践操作,引入课题问:我想知道我们教室里有多少张课桌黑板长为多少2000年我国人口总数为多少你们能帮老师解答吗〔学生分小组进行合作操作、讨论〕[设计说明:通过学生亲自操作,引起学生的兴趣]问:上面所出现的数据中,哪些跟实际完全符合,哪些跟实际是接近的〔学生答复〕板书:像这样与实际完全符合的数称为准确数像这样与实际接近的数称为近似数通过测量或估计得到的都是近似数板书课题:准确数和近似数[设计说明:通过实例使学生充分体验准确数和近似数的概念的产生是由于人们生活和生产实践的需要]二、导入新知师:21世纪进入太空是很多人的梦想,同学们有想过吗〔学生开心的各抒己见〕展示:“神舟五号飞船〞图片投影片A:“神舟五号飞船总长9.2米,总质量为7790千克,装有52台发动机,在太空中,该飞船大约每90分绕地球一圈,其间要经受180℃的温差考验。
浙教版数学七年级上册2.7《准确数和近似数》教学设计一. 教材分析《准确数和近似数》是浙教版数学七年级上册第2.7节的内容。
本节主要让学生理解准确数和近似数的概念,掌握求近似数的方法,以及了解近似数在实际生活中的应用。
教材通过实例引入近似数的概念,接着讲解求近似数的方法,最后通过练习让学生巩固所学知识。
二. 学情分析七年级的学生已经学习了实数、分数、小数等基础知识,对于数的认识已经有了一定的基础。
但是,学生对于准确数和近似数的概念以及求近似数的方法可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.理解准确数和近似数的概念,知道近似数是通过四舍五入法得到的。
2.掌握求近似数的方法,并能运用到实际问题中。
3.培养学生的数感,提高学生解决实际问题的能力。
四. 教学重难点1.准确数和近似数的概念。
2.求近似数的方法。
五. 教学方法1.采用实例引入,让学生通过观察和思考,理解准确数和近似数的概念。
2.通过讲解和练习,让学生掌握求近似数的方法。
3.利用生活中的实际问题,让学生学会将所学知识运用到实际中。
六. 教学准备1.准备相关的实例和练习题。
2.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过一个实例引入准确数和近似数的概念。
例如,讲解身高时,身高1.75米是一个近似数,而1.7500米是一个准确数。
让学生思考:准确数和近似数有什么区别?2.呈现(10分钟)讲解准确数和近似数的概念,以及求近似数的方法。
引导学生通过观察和思考,理解准确数和近似数的含义。
3.操练(10分钟)让学生运用所学知识,进行一些近似数的计算。
例如,将1.75米四舍五入到整数,或将3.1415926四舍五入到小数点后两位。
4.巩固(10分钟)通过一些练习题,让学生巩固对准确数和近似数的理解。
例如,判断一些数是准确数还是近似数,或将一些数四舍五入到指定的小数位数。
5.拓展(5分钟)讲解近似数在实际生活中的应用。
2.7准确数和近似数
柳市三中李欣欣
教材分析
“准确数和近似数”是义务教育课程标准实验教科书,浙教版七年册第二章的内容。
教材通过一则科技报道引入准确数和近似数的概念,在学生已有的运算能力的基础上,给出近似数的精确度的两种表示方式,及近似值的取法。
准确数和近似数是运用有理数进行实际计算所必需的,本节课也培养了学生用所学的数学知识解决,生活中的数学问题的能力,让学生体验到生活中无处不存在准确数和近似数。
学生分析
学生往往存在着一些生活经验,这些生活经验是学生学习的基础,但其中也有一些是错误的,必须让学生在正确区分准确数和近似数的基础上,明确近似数的角度有两种表示方式以及学会近似值的取法。
教学中要及时了解学生的认知程度,以便调整教学。
教学目标
1.通过实例经历近似数和准确数概念的产生过程。
2.了解近似数的精确度的两种表示方式。
3.能说出由四舍五入得到的有理数的精确位数和有效数字。
4.会根据预定精确度取近似值。
教学重点
近似数的两种表示方式及近似值的取法
教学难点
近似数所表示范围及有效数字如何表示近似数的精确度
教辅工具
投影仪、卷尺、“神舟五号飞船”图片、投影片6张
教学设计思路
本节课首先从学生熟悉的生活情境出发引入数学概念。
通过近似数在生活中的应用,激发学生主动学习的欲望,然后通过老师讲解、学生练习,使学生学会近似数的两种表示方式及近似值的取法,最后再配以练习巩固,让学生很自然地接受这一部分知识。
教学流程
一、实践操作,引入课题
问:我想知道我们教室里有多少张课桌?黑板长为多少?
2000年我国人口总数为多少?你们能帮老师解答吗?
(学生分小组进行合作操作、讨论)
[设计说明:通过学生亲自操作,引起学生的兴趣]
问:上面所出现的数据中,哪些跟实际完全符合,哪些跟实际是接近的?
(学生回答)
板书:像这样与实际完全符合的数称为准确数
像这样与实际接近的数称为近似数
通过测量或估计得到的都是近似数
板书课题:准确数和近似数
[设计说明:通过实例使学生充分体验准确数和近似数的概念的产生是由于人们生活和生产实践的需要]
二、导入新知
师:21世纪进入太空是很多人的梦想,同学们有想过吗?
(学生开心的各抒己见)
展示:“神舟五号飞船”图片
投影片A:“神舟五号飞船总长9.2米,总质量为7790千克,装有52台发动机,在太空中,该飞船大约每90分绕地球一圈,其间要经受180℃的温差考验。
[设计说明:跟时尚接轨活跃课堂气氛,加深对概念的理解]
问:上面叙术中的各数,哪些是准确数?哪些是近似数?并说明你的理由。
(只要学生根据准确数和近似数的概念和自身的经验说出理由,均可以认为正确)
投影片B:(快速口答)下列叙述中的各数,哪些是准确数?哪些是近似数?
(1)月球与地球之间的平均距离大约是38万公里
(2)某本书的定价是4.50元
(3)小明身高为1.57米
(4)美国一家猫粮制作公司称:“在美国共有8500万只猫,22%的猫主人都选择猫爱看的频道”。
[设计说明:通过练习,加以巩固]
师:生活中用到近似数的情况很多,有时是因为客观条件无法或难以得到精确数据,如:“2000年我国人口总数约为12.9533亿”,有时是实际问题无需得到精确数据,如“校长在会上说,这次学校包场看电影,买票大约需2500元”
三、展开过程,师生互动
对近似数,我们常需知道它的精确度,一个近似数的精确度通常有两种表示方式:
板书:1、一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位如:身高1.57米是千分位数字四舍五入到百分位的结果,它精确到百分位(或精确到0.01 )
近似数38万是千位数字四舍五入到万位的结果,它精确到万位
问:身高1.57米表示小明实际身高在什么范围内呢?
(学生思考、讨论,教师给予指导)
近似数38万表示的范围为?
(学生举手回答,教师鼓励,每位同学都发表自己的见解,最后指出正确答案)
投影片C:例1、下列由四舍五入法得到的近似数各精确到哪一位?
(1)11亿(2)36.8 (3)1.2万(4)1.20万
(学生起立回答,教师和其余学生一起进行评判)
[设计说明:让学生学会辨认一个由四舍五入得到的近似数的精确位数]
注:①以百、千、万、十万、百万等做单位的近似数的精确位数
②小数点后面的零
板书:2、用有效数字的个数来表述一个近似数的精确度,由四舍五入得到的近似数从左边第一个不是零的数字起,到末位数字为止的所有数字,都叫做这
个数的有效数字。
如:1.57有3个有效数字:1、5、7
38万有2个有效数字:3、8
0.03070 有4个有效数字:3、0、7、0
注:近似数中越在左边的数字就越重要,有效数字越多,精确度越大
投影片D:例2、(口答)例1中各数有几个有效数字?分别是什么?
(1)11亿(2)36.8 (3)1.2万(4)1.20万
[设计说明:让学生学会辨认一个由四舍五入得到的近似数的有效数字及个数]
四、知识应用
投影片E:例3、用四舍五入法,按括号内的要求对下列各数取近似值
(1)0.33448(精确到千分位)
(2)64.8(精确到个位)
(3)1.5952(精确到0.01)
(4)0.05069(保留2个有效数字)
(5)84960(保留3个有效数字)
(学生练习上独立完成,教师巡视进行辅导对于(5)教师不急于指出,先让学生思考,发现问题提出来,如没有学生提出,教师可直接指出)[设计说明:让学生学会如何根据预定精确度取近似值]
注:按预定要求取近似值时,不要遗漏小数点后面的零,对较大数取近似值最好用科学记数法表示
投影片F:例4、(1)计算:-22×11÷7(结果保留4个有效数字)
(2)一根木棒长4.4米,均匀截成6段,每段长多少米?(精确到0.01米)[设计说明:这里安排练习,使学生体会到数学知识来源于实际,又应用于实际问题中]
五、小结:引导学生进行总结
六、作业:
教材P57课内练习、P58作业题A组、B组、C组。