高考数学总复习讲义简单线性规划
- 格式:doc
- 大小:464.00 KB
- 文档页数:8
简单的线性规划问题高三复习讲义一:画出不等式组表示的平面区域1. 已知点(,)P a b 与点(1,0)Q 在直线2310x y +-=的两侧,且0, 0a b >>,则1-a b 的取值范围是 .2.已知点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则点(),N a b a b +-所在平面区域的面积是( )A.4B.2C.1D.83.不等式组⎩⎨⎧≤≤≥+-+300)5)((x y x y x ,表示的平面区域是一个( )A .三角形B .直角三角形C .梯形D .矩形4.若点),(y x M 满足{mx y x <≥-022,区域内整点不少于18个,则m 的取值范围为( )2.≥m A2.>m B3.>m C3.≥m D5.已知集合A={(x,y)|⎩⎪⎨⎪⎧x ≥1,x ≤y ,2x -y ≤1},集合B={(x,y)|3x+2y-m=0},若A ∩B ≠∅,则实数m的最小值等于__________.6. 设关于,x y 的不等式组2100y x a y a -+≥⎧⎪≤⎨⎪+≥⎩,,x 表示的平面区域为D .若在平面区域D 内存在点),(00y x P ,满足00345x y -=,则实数a 的取值范围是 ____________.7.已知直线01)1()2(=++++y m x m 上存在点),(y x 满足⎪⎩⎪⎨⎧≥≤--≤-+103203x y x y x ,则m 的取值范围为( )A .),35[∞+-B .]35,(--∞ C .]21,1[- D .]21,41[-8.[2014·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2, p 2:∃(x ,y )∈D ,x +2y ≥2,p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( )A .p 2,p 3B .p 1,p 2C .p 1,p 4D .p 1,p 39.若函数2xy =图像上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为A .12B .1C .32D .2二:简单的线性规划问题10.[14·广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .811.[2014·新课标全国卷Ⅱ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为A .10B . 8C . 3D .212.满足约束条件22x y +≤的目标函数z y x =-的最小值是 .13.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨1.2万元0.55万元韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( ) A .50,0 B .30.0C .20,30D .0,5014.[2014·四川卷] 执行如图1-1所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( C)图1-1A .0B .1C .2D .315.若点(x , y )位于曲线|1|y x =-与y =2所围成的封闭区域, 则2x -y 的最小值为________.16.[2014·陕西卷] 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.17.已知(,)P x y 是不等式组10300x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域内的一点,A 点坐标为(1,2),且O为坐标原点,则OA OP ⋅的最大值为( )A .2B .3C . 5D . 618.已知正实数,x y 满足20350x y x y -≤⎧⎨-+≥⎩,则1142x yz ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭的最小值为______.19.抛物线y =x 2在x =1处的切线与两坐标轴围成的三角形区域为D (包含三角形内部与边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是________.20.设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为___________.21. 给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈,是z x y=+在D 上取得最大值或最小值的点},则T 中的点共确定______条不同的直线.22.设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________.23.已知约束条件⎩⎨⎧x -3y +4≥0x +2y -1≥03x +y -8≤0,若目标函数z =x +ay (a >0)恰好在点(2,2)处取得最大值,则a 的取值范围为( )A .0<a <13B .a ≥13C .a >13D .0<a <1224.[2014·安徽卷] x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯..一.,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-125.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-20062x y x y x ,若目标函数y mx z +-=的最大值为102+-m ,最小值为22--m ,则实数m 的取值范围是( )A .[2,3]B .[2,1]-C .[1,2]-D .[1,3]-26.[2014·浙江卷] 当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.27.[2014·北京卷] 若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( D )A .2B . -2 C.12 D .-1228.设z =x +y ,其中x ,y 满足⎩⎨⎧x +2y ≥0,x -y ≤0,0≤y ≤k .若z 的最大值为6,则z 的最小值为( )A .-3B .3C .2D .-229.[2014·山东卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( )A. 5B. 4C. 5D. 2≥≥30.设1>m ,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数my x z +=的最大值小于2,则m 的取值范围为A .(1,1+2)B .),21(+∞+C .(1,3)D .),3(+∞线性规划问题的拓展应用31.已知实数,x y 满足:210210x y x x y -+ ⎧⎪<⎨⎪+- ⎩,221z x y =--,则z 的取值范围是 ( )A .5[,5]3B .[]0,5C .[)0,5D .5[,5)332.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx ,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.33.当实数x 满足约束条件020x y x x y k >⎧⎪≥⎨++≤⎪⎩(其中k 为小于零的常数)时,x y 1+的最小值为2,则实数k 的值是 .34.设实数,x y 满足约束条件202502x y x y y --≤⎧⎪+-≥⎨⎪≤⎩,则22x y u x y +=+的取值范围是( )A .39,1010⎡⎤⎢⎥⎣⎦B .14,55⎡⎤⎢⎥⎣⎦C .47,55⎡⎤⎢⎥⎣⎦D .17,55⎡⎤⎢⎥⎣⎦35.已知z 、y 满足 203010y x x y -≤⎧⎪+≥⎨⎪--≤⎩,则264x yx +--的最大值是________.36.若点P 在平面区域2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩上,则()2x y u xy +=的取值范围为37. 已知O 是坐标原点,点A (1,0),若点M (,)x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则||OA OM +的最小值是 .38. 已知实数,x y 满足条件001x y x y x -≥⎧⎪+≥⎨⎪≤⎩,则1()2y x -的最大值为__12_____.40.已知,x y 满足230490ln x y x y y x+-≥⎧⎪--≤⎨⎪≤⎩,则12z x y =-的最小值是41.若实数x ,y 满足:,则x +2y 的最大值是( )A . 3B .C .5D .42.已知,x y 满足不等式组40x y e x y ⎧≥⎨-≥⎩,则2y xx +的取值范围是A.[1,4]B.[21,9]e +C.[3,21]e +D.[1,]e。
2022年新高考数学总复习:简单的线性规划Ax+By+C__=0__上,另两类分居直线Ax+By+C=0的两侧,其中一侧半平面的点的坐标满足Ax+By+C__>0__,另一侧半平面的点的坐标满足Ax+By+C__<0__.(2)二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的平面区域且不含边界,作图时边界直线画成__虚线__,当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包知识点一二元一次不等式表示的平面区域(1)在平面直角坐标系中,直线Ax+By+C=0将平面内的所有点分成三类:一类在直线括边界直线,此时边界直线画成__实线__.知识点二二元一次不等式(组)表示的平面区域的确定确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.(1)直线定界,即若不等式不含__等号__,则应把直线画成虚线;若不等式含有__等号__,把直线画成实线.(2)特殊点定域,由于在直线Ax+By+C=0同侧的点,实数Ax+By+C的值的符号都__相同__,故为确定Ax+By+C的值的符号,可采用__特殊点法__,如取(0,0)、(0,1)、(1,0)等点.由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的__公共部分__.知识点三线性规划中的基本概念名称意义约束条件由变量x,y组成的__不等式(组)__线性约束条件由x,y的__一次__不等式(或方程)组成的不等式(组)目标函数关于x,y的函数__解析式__,如z=2x+3y等线性目标函数关于x,y的__一次__解析式可行解满足约束条件的解__(x,y)__可行域所有可行解组成的__集合__最优解使目标函数取得__最大值__或__最小值__的可行解线性规划问题在线性约束条件下求线性目标函数的__最大值__或__最小值__问题归纳拓展1.判断二元一次不等式表示的平面区域的常用结论把Ax+By+C>0或Ax+By+C<0化为y>kx+b或y<kx+b的形式.(1)若y>kx+b,则区域为直线Ax+By+C=0上方.(2)若y<kx+b,则区域为直线Ax+By+C=0下方.2.最优解与可行解的关系最优解必定是可行解,但可行解不一定是最优解,最优解不一定存在,存在时不一定唯一.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.(√)(2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)(3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.(√)(4)第二、四象限表示的平面区域可以用不等式xy <0表示.(√)(5)最优解指的是使目标函数取得最大值或最小值的可行解.(√)(6)目标函数z =ax +by (a ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.(×)题组二走进教材2.(必修5P 86T3改编)-3y +6<0,-y +2≥0表示的平面区域是(C)[解析]x -3y +6<0表示直线x -3y +6=0左上方部分,x -y +2≥0表示直线x -y +2=0及其右下方部分.故不等式组表示的平面区域为选项C 所示部分.3.(必修5P 91练习T1(1)改编)已知x ,y ≤x ,+y ≤1,≥-1,则z =2x +y +1的最大值、最小值分别是(C)A .3,-3B .2,-4C .4,-2D .4,-4[解析]作出可行域如图中阴影部分所示.A (2,-1),B (-1,-1),显然当直线l :z =2x +y +1经过A 时z 取得最大值,且z max =4,当直线l 过点B 时,z 取得最小值,且z min =-2,故选C .题组三走向高考4.(2020·浙江,3,4分)若实数x ,y x -3y +1≤0,x +y -3≥0,则z =x +2y 的取值范围是(B)A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)[解析]由约束条件画出可行域如图.易知z =x +2y 在点A (2,1)处取得最小值4,无最大值,所以z =x +2y 的取值范围是[4,+∞).故选B .5.(2019·北京)若x ,y x ≤2,y ≥-1,4x -3y +1≥0,则y -x 的最小值为__-3__,最大值为__1__.[解析]由线性约束条件画出可行域,为图中的△ABC 及其内部.易知A (-1,-1),B (2,-1),C (2,3).设z =y -x ,平移直线y -x =0,当直线过点C 时,z max =3-2=1,当直线过点B 时,z min =-1-2=-3.考点突破·互动探究考点一二元一次不等式(组)表示的平面区域——自主练透例1(1)(2021·郑州模拟)在平面直角坐标系xOy ||≤|y |,||<1的点(x ,y )的集合用阴影表示为下列图中的(C)(2)(2021·四川江油中学月考)已知实数x ,y x +y -3≤0x -2y -3≤0,0≤x ≤4则其表示的平面区域的面积为(D)A .94B .272C .9D .274(3)x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是(D)A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43[解析](1)|x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域;|x |<1表示x =±1所夹含y 轴的区域.故选C .(2)线性约束条件所表示的平面区域如图中阴影部分所示,其中A (0,3)B0,-32,C (3,0),∴S =12|AB |·|OC |=12×92×3=274,故选D .(3)x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分(含边界)所示.且作l 1:x +y =0,l 2:x +y =1,l 3:x +y =43.由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1,l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3).即a 的取值范围是0<a ≤1或a ≥43.名师点拨(1)画平面区域的步骤:①画线:画出不等式所对应的方程表示的直线.②定侧:将某个区域内的特殊点的坐标代入不等式,根据“同侧同号、异侧异号”的规律确定不等式所表示的平面区域在直线的哪一侧,常用的特殊点为(0,0),(±1,0),(0,±1).③求“交”:如果平面区域是由不等式组决定的,则在确定了各个不等式所表示的区域后,再求这些区域的公共部分,这个公共部分就是不等式组所表示的平面区域,这种方法俗称“直线定界,特殊点定域”.(2)计算平面区域的面积时,通常是先画出不等式组所对应的平面区域,然后观察区域的形状,求出有关的交点坐标、线段长度,最后根据相关图形的面积公式进行计算,如果是不规则图形,则可通过割补法计算面积.(3)判断不等式表示的平面区域和一般采用“代点验证法”.考点二简单的线性规划问题——多维探究角度1求线性目标函数的最值例2(2018·课标全国Ⅰ,13)若x ,y -2y -2≤0,-y +1≥0,≤0.则z =3x +2y 的最大值为__6__.[解析]本题主要考查线性规划.由x ,y 满足的约束条件画出对应的可行域(如图中阴影部分所示).由图知当直线3x +2y -z =0经过点A (2,0)时,z 取得最大值,z max =2×3=6.[引申1]本例条件下z =3x +2y 的最小值为__-18__.[解析]由例2-y +1=0-2y -2=0,∴B (-4,-3),当直线y =-32x +12z ,过点B 时,z最小,即z min =-18.[引申2]本例条件下,z =3x -2y 的范围为__[-6,6]__.[解析]z =3x -2y 变形为y =32x -12z ,由本例可行域知直线y =32x -12z ,过A 点时截距取得最小值,而z 恰好取得最大值,即z =6.过B 点时截距取得最大值而z 恰好取得最小值,即z =-6,∴z =3x -2y 的范围为[-6,6].[引申3]本例条件下,z =|3x -2y +1|的最大值为__7__,此时的最优解为__(2,0)__.[解析]由引申2得-6≤3x -2y ≤6,∴-5≤3x -2y +1≤7,∴0≤z ≤7,z 最大值为7,此时最优解为(2,0).名师点拨利用线性规划求目标函数最值的方法:方法1:①作图——画出线性约束条件所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l .(注意表示目标函数的直线l 的斜率与可行域边界所在直线的斜率的大小关系).②平移——将l 平行移动,以确定最优解所对应的点的位置.③求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.方法2:解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.角度2由目标函数的最值求参数例3(1)(2021·东北三省三校模拟)已知实数x,y x-y-1≤0,-x+2y-2≤0,2x+y-2≥0,若目标函数z=ax+y(a>0)最大值为5,取到最大值时的最优解是唯一的,则a的取值是(C)A.14B.13C.12D.1(2)变量x,y x+y≥0,x-2y+2≥0,mx-y≤0,若z=2x-y的最大值为2,则实数m等于(C)A.-2B.-1 C.1D.2[解析](1)x-y-1≤0,x-2y+2≥0,2x+y-2≥0,作可行域如图所示.目标函数z=ax+y可化为y=-ax+z,因为y=-ax+z表示斜率为-a的直线,且-a<0,由图形可知当y=-ax+z经过点C时,z取到最大值,这时点C坐标满足x-2y+2=0,x-y-1=0,解得x=4,y=3,C点坐标为(4,3),代入z=ax+y得到a=12.故选C.(2)解法一:当m≤0时,可行域(示意图m<-1)如图中阴影部分所示,z=2x-y⇔y=2x-z,显然直线的纵截距不存在最小值,从而z不存在最大值,不合题意,当m>0时,可行域(示意图)如图中阴影部分所示.若m ≥2,则当直线z =2x -y 过原点时,z 最大,此时z =0,不合题意(故选C .)若0<m <2,则当直线z =2x -y 过点A 时z 取最大值2,mx -y =0,x -2y +2=0,x =22m -1,y =2m2m -1,即22m -1,2m2m -1.∴42m -1-2m 2m -1=2,解得m =1.故选C .解法二:画出约束条件x +y ≥0,x -2y +2≥0的可行域,如图,作直线2x -y =2,与直线x -2y +2=0交于可行域内一点A (2,2),由题知直线mx -y =0必过点A (2,2),即2m -2=0,得m =1.故选C .[引申]在本例(1)的条件下,若z =ax +y 的最大值为4a +3,则a 的取值范围是-12,+∞__.名师点拨求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.也可以直接求出线性目标函数经过各顶点时对应参数的值,然后进行检验,找出符合题意的参数值.角度3线性规划中无穷多个最优解问题例4x ,y x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值一定为(C)A .1B .12C .-1或2D .2或12[分析]利用目标函数取得最大值的最优解有无数个,即目标函数对应的直线与可行域的边界重合.[解析]作出可行域(如图),为△ABC 内部(含边界).由题设z =y -ax 取得最大值的最优解不唯一可知:线性目标函数对应直线与可行域某一边界重合.由k AB =-1,k AC =2,k BC =12可得a =-1或a =2或a =12,验证:a =-1或a =2时,成立;a =12时,不成立.故选C .[引申]若z =y -ax 取得最小值的最优解不唯一,则实数a 的值为__12__.〔变式训练1〕(1)(角度1)(2020·课标Ⅰ,5分)若x ,y 2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为__1__.(2)(角度2)(2021·福建莆田模拟)若实数x ,y y ≥02x -y -1≥0x +y -m ≤0,且目标函数z =x -y 的最大值为2,则实数m =__2__.(3)(角度3)已知实数x ,y x -y +1≥0x +2y -8≤0x ≤3,若使得ax -y 取得最小值的可行解有无数个,则实数a 的值为__1或-12__.[解析](1)作出可行域如图,由z =x +7y 得y =-x 7+z 7,易知当直线y =-x 7+z7经过点A (1,0)时,z 取得最大值,z max =1+7×0=1.(2)由线性约束条件画出可行域(如图所示),∵目标函数z =x -y 的最大值为2,由图形知z =x -y 经过平面区域的A 时目标函数取得最大值2,-y =2=0,解得A (2,0),∴2-m =0,则m =2,故答案为2.(3)作出可行域如图中阴影部分所示,记z =ax -y ⇒y =ax -z .当直线y =ax -z 纵截距最大时,z 最小,此时a =1或-12.考点三线性规划的实际应用——师生共研例5(2020·试题调研)某研究所计划利用“神舟十一号”飞船进行新产品搭载试验,计划搭载若干件新产品A ,B ,要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查,搭载每件产品有关数据如表:因素产品A 产品B 备注研制成本、搭载试验费用之和(万元)2030计划最大投资金额300万元产品重量(千克)105最大搭载质量110千克预计收益(万元)8060——则使总预计收益达到最大时,A ,B 两种产品的搭载件数分别为(A )A .9,4B .8,5C .9,5D .8,4[解析]设“神舟十一号”飞船搭载新产品A ,B 的件数分别为x ,y ,最大收益为z 万元,则目标函数为z =80x+60y .根据题意可知,约束条件为x +30y ≤300,x +5y ≤110,≥0,≥0,,y ∈N ,x +3y ≤30,x +y ≤22,≥0,≥0,,y ∈N ,不等式组所表示的可行域为图中阴影部分(包含边界)内的整数点,作出目标函数对应直线l ,显然直线l 过点M 时,z 取得最大值.x +3y =30,x +y =22,=9,=4,故M (9,4).所以目标函数的最大值为z max =80×9+60×4=960,此时搭载产品A 有9件,产品B 有4件.故选A .名师点拨利用线性规划解决实际问题的一般步骤(1)审题:仔细阅读,明确题意,借助表格或图形理清变量之间的关系.(2)设元:设问题中要求其最值的量为z ,起关键作用的(或关联较多的)量为未知量x ,y ,并列出约束条件,写出目标函数.(3)作图:准确作出可行域,确定最优解.(4)求解:代入目标函数求解(最大值或最小值).(5)检验:根据结果,检验反馈.〔变式训练2〕(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为__216000__元.[解析]设生产产品A x件,产品B y≥0,y≥0,x+0.5y≤150,+0.3y≤90,x+3y≤600,设生产产品A,产品B的利润之和为z元,则z=2100x+900y.画出可行域(如图),易知=60,=100,则z max=216000.名师讲坛·素养提升非线性目标函数的最值问题例6(1)(2016·江苏高考)已知实数x,y-2y+4≥0,x+y-2≥0,x-y-3≤0,则x2+y2的取值范围是__45,13__.(2)(2021·河南中原名校质量考评)若方程x2+ax+2b=0的一个根在区间(0,1)内,另一根在区间(1,2)内,则b-3a-2的取值范围是(D)A.25,1B.1,52CD[分析](1)本题中x2+y2的几何意义是点(x,y)到原点的距离的平方,不能遗漏平方.(2)b-3a-2表示点(a,b)与(2,3)连线的斜率k,根据题意列出a、b应满足的约束条件,在此约束条件下求k的取值范围即可.[解析](1)不等式组所表示的平面区域是以点(0,2),(1,0),(2,3)为顶点的三角形及其内部,如图所示.因为原点到直线2x +y -2=0的距离为25,所以(x 2+y 2)min =45,又当(x ,y )取点(2,3)时,x 2+y 2取得最大值13,故x 2+y 2的取值范围是45,13.(2)记f (x )=x 2+ax +2b ,0)>0,1)<0,2)>0.>0,+2b +1<0,+b +2>0.作出可行域如图中阴影部分所示.+2b +1=0+b +2=0=-3=1,∴C (-3,1),显然A (-1,0),B (-2,0)b -3a -2表示点(a ,b )与点(2,3)连线的斜率,由图可知当(a ,b )取(-1,0)时,b -3a -2=1;当(a ,b )取(-3,1)时,b -3a -2=25,∴b -3a -2的取值范围是D .[引申]在本例(1)条件下:①x 2+(y +1)2的最小值为__2__;②y +1x +1的取值范围是__12,3__;③x +2y +1x +3的取值范围是__12,95__.[解析]①由图可知当(x ,y )取点(1,0)时,x 2+(y +1)2取最小值2;②y +1x +1表示点(x ,y )与点(-1,-1)连线的斜率.由图可知当(x ,y )取点(1,0)时,y +1x +1取最小值12,当(x ,y )取点(0,2)时,y +1x +1取最大值3,∴y +1x +1的取值范围是12,3.③x +2y +1x +3=1+2·y -1x +3,y -1x +3表示(x ,y )与点(-3,1)连线的斜率,-2y +4=0,x -y -3=0,得=2,=3,∴B (2,3).由图可知(x ,y )取(1,0)时y -1x +3,取最小值-14,(x ,y )取点(2,3)时,y -1x +3取最大值25.∴x +2y +1x +3的取值范围是12,95.名师点拨非线性目标函数最值的求解(1)对形如z =(x -a )2+(y -b )2型的目标函数均可化为可行域内的点(x ,y )与点(a ,b )间距离的平方的最值问题.(2)对形如z =ay +bcx +d(ac ≠0)型的目标函数,可先变形为z =ac ·x为求可行域内的点(x,y)-dc,-连线的斜率的ac倍的取值范围、最值等.(3)对形如z=|Ax+By+C|型的目标函数,可先求z1=Ax+By的取值范围,进而确定z=|Ax+By+C|的取值范围,也可变形为z=A2+B2·|Ax+By+C|A2+B2的形式,将问题化为求可行域内的点(x,y)到直线Ax+By+C=0的距离的A2+B2倍的最值,或先求z1=Ax+Bx+C的取值范围,进而确定z=|Ax+By+C|的取值范围.〔变式训练3〕(1)(2021·百校联盟尖子生联考)已知x,y +y≤2≤2x+2,≥0则(x-2)2+(y-1)2的取值范围为__12,10__.(2)(2021·河南省八市重点高中联考)若x,y满足2y≤x≤y-1,则y-2x的取值范围是(B)A∪32,+∞B,32C-∞,12∪32,+∞D.12,32[解析](1)可行域如图阴影部分,M=(x-2)2+(y-1)2的几何意义是点(2,1)与可行域中点的距离,最小值为点(2,1)到x+y-2=0的距离|2+1-2|2=22,最大值为点(2,1)与点(-1,0)的距离10,所求M2的取值范围是12,10.(2)由x,y满足2y≤x≤y-1,作可行域如图,2y =x x =y -1,解得A (-2,-1).∵y -2x 的几何意义为可行域内的动点与Q (0,2),连线的斜率,∴动点位于A 时,y -2x max =32,直线2y =x 的斜率为12,则y -2x的取值范围12,32.故选B .。
简单的线性规划【考纲要求】1.了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。
2.会从实际情境中抽象出一元二次不等式模型。
3.会从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;4.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
5.熟练应用不等式性质解决目标函数的最优解问题。
【知识网络】【考点梳理】【高清课堂:不等式与不等关系394841 知识要点】考点一:用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)要点诠释:画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域。
简称:“直线定界,特殊点定域”方法。
考点二:二元一次不等式表示哪个平面区域的判断方法因为对在直线Ax+By+c=0同一侧的所有点(x ,y),实数Ax+By+c 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便).把它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.要点诠释:判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号简单的线性规划二元一次不等式(组)表示的区域 简单应用不等式(组)的应用背景即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.考点三:线性规划的有关概念:①线性约束条件:在一个问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z=ax+by (a ,b ∈R)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 要点诠释:在应用线性规划的方法时,一般具备下列条件:①一定要能够将目标表述为最大化(极大)或最小化(极小)的要求。
②一定要有达到目标的不同方法,即必须要有不同的选择的可能性存在; ③所求的目标函数是有约束(限制)条件的;④必须将约束条件用代数语言表示成为线性等式或线性不等式(组),并将目标函数表示成为线性函数。
考点四:解线性规划问题总体步骤: 设变量→找约束条件,找目标函数作图,找出可行域−−−→−运动变化求出最优解 要点诠释:线性规划的理论和方法主要在两类问题中得到应用:①在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;②给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 【典型例题】类型一:二元一次不等式(组)表示的平面区域 例1.画出3x+y-3<0所表示的平面区域. 【解析】举一反三:【变式1】下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02), B.(20)-, C.(02)-, D.(20), 【答案】C【变式2】(21)(4)0x y x y ++-+≤表示的平面区域为( )A B C D【答案】B ;原不等式可转化为⎩⎨⎧≤+-≥++04012y x y x 或⎩⎨⎧≥+-≤++04012y x y x【变式3】画出不等式240x y +->表示的平面区域。
【解析】先画直线240x y +-=(画成虚线).取原点(0,0)代入24x y +-得200440⨯+-=-<, ∴原点不在240x y +->表示的平面区域内, 不等式240x y +->表示的区域如图:例2.画出下列不等式组表示的平面区域。
(1)3232626x y x x y y x <⎧⎪≥⎪⎨+≥⎪⎪<+⎩; (2)22300x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩; (3)232400x y x y x y ≤+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩.【解析】(1) (2) (3)举一反三:【变式1】用平面区域表示不等式(1)(40x y x y +--+≥)【解析】【变式2】求不等式组3220,440,260x y x y x y -->⎧⎪++>⎨⎪+-<⎩的整数解。
【解析】如图所示,作直线1:3220l x y --=,2:440l x y ++=,3:260l x y +-=,在直角坐标平面内画出满足不等式组的区域,此三角形区域内的整点(2,1),(1,0),(2,0),(1,-1),(2,-1),(3,-1)即为原不等式组的整数解。
类型二:图解法解决简单的线性规划问题.【高清课堂:不等式与不等关系394841 基础练习一】例3.设变量,x y 满足约束条件311x y x y y +≤⎧⎪-≥-⎨⎪≥⎩,则目标函数42z x y =+的最大值为( )A .12B .10C .8D .2【解析】由约束条件311x y x y y +≤⎧⎪-≥-⎨⎪≥⎩可知可行域如图:平移2y x =-知在(2,1)A 处取得最大值10z = 答案:B 举一反三:【变式1】已知⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求;(1) 42-+=y x z 的最大值; (2)112++=x y z 的范围. 【解析】作出可行域如图,并求出顶点坐标)9,7(),1,3(),3,1(C B A .(1) 将)9,7(C 代入z 得最大值21;(2) )1()21(2----⋅=x y z 表示可行域内一点到定点)21,1(--Q 的斜率的2倍, 因为83,47==QB QA k k , z 的范围是]27,43[.例4.已知x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,求下列各式的最大值和最小值.(1)2z x y =+; (2)z x y =+.【解析】(1)不等式组表示的平面区域如图所示:求出交点(2,1)A -,(1,1)C --,(0.5,0.5)B ,作过点(0,0)的直线0l :20x y +=,平移直线0l ,得到一组与0l 平行的直线l :2z x y =+,z R ∈. 可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中, 当l 经过点(2,1)A -时的直线l 所对应的z 最大,所以max 2213z =⨯-=; 当l 经过点(1,1)C --时的直线l 所对应的z 最小,所以min 2(1)13z =⨯--=-. (2)不等式组表示的平面区域如图所示:xyx-y+2=0x+y -4=02x-y-5=0ABC作过点(0,0)的直线0l :0x y +=,平移直线0l ,得到一组与0l 平行的直线l :z x y =+,z R ∈. 可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,当l 经过线段AB 上的所有点时的直线l 所对应的z 最大,所以max 211z =-=; 当l 经过点(1,1)C --时的直线l 所对应的z 最小,所以min (1)12z =--=-. 举一反三:【变式1】求35z x y =+的最大值和最小值,使式中的x 、y 满足约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩.【解析】不等式组所表示的平面区域如图所示:从图示可知,直线35z x y =+在经过不等式组所表示的公共区域内的点时, 以经过点(2,1)B --的直线所对应的z 最小, 以经过点35(,)22A 的直线所对应的z 最大. 所以min 3(2)5(1)11z =⨯-+⨯-=-,max 35351722z =⨯+⨯=.类型三:实际应用问题中的线性规划问题.例5.家具公司制作木质的书桌和椅子,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8000个工作时;漆工平均两小时漆一把椅子、一小时漆一张书桌,该公司每星期漆工最多有1300个工作时,又已知制作一把椅子和一张书桌的利润分别是15元和20元,试根据以上条件,问怎样安排生产能获得最大利润?【解析】设制作x 把椅子,y 张桌子约束条件:⎪⎩⎪⎨⎧∈∈≤+≤+Ny ,N x 1300y x 28000y 8x 4,目标函数:z=15x+20y.如图:目标函数经过A 点时,z 取得最大值⎩⎨⎧=+=+1300y x 28000y 8x 4 ⎩⎨⎧==⇒900y 200x 即A(200, 900) ∴ 当x=200, y=900时,z max =15×200+20×900=21000(元)答:安排生产200把椅子,900张桌子时,利润最大为21000元。
举一反三:【变式1】某企业生产A 、B 两种产品,生产每一吨产品所需的劳动力和煤、电耗如下表:产品品种 劳动力(个)煤(吨)电(千瓦)A 产品 3 9 4B 产品1045已知生产每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A 、B 两种产品各多少吨,才能获得最大利润?【解析】设生产A 、B 两种产品各x 、y 吨,利润为z 万元则31030094360452000,0x y x y x y x y +≤⎧⎪+≤⎨+≤⎪≥≥⎩,目标函数712z x y =+作出可行域,如图所示,作出在一组平行直线7x+12y=t (t 为参数)中经过可行域内的点和原点距离最远的直线, 此直线经过点M (20,24)故z 的最优解为(20,24),z 的最大值为7×20+12×24=428(万元)。