八年级数学一元一次不等式(单元检测)
- 格式:doc
- 大小:162.00 KB
- 文档页数:4
北师大版八年级下册数学第二章测试题评卷人得分一、单选题1.下列是一元一次不等式的有()x >0,1x <-1,2x <-2+x ,x +y >-3,x =-1,x 2>3≥0.A .1个B .2个C .3个D .4个2.不等式3(2)4x x -≤+的非负整数解有()个A .4B .6C .5D .无数3.已知a <3,则不等式(a ﹣3)x <a ﹣3的解集是()A .x >1B .x <1C .x >﹣1D .x <﹣14.下列说法正确的是()A .不等式组3,5x x >⎧⎨>⎩的解集是5<x<3B .2,3x x >-⎧⎨<-⎩的解集是-3<x<-2C .2,2x x ≥⎧⎨≤⎩的解集是x=2D .3,3x x <-⎧⎨>-⎩的解集是x≠35.下列变形中不正确的是()A .由a b >得b a <B .由a b ->-得b a>C .若a>b,则ac 2>bc 2(c 为有理数)D .由12x y -<得2x y>-6.x 与3的和的一半是负数,用不等式表示为()A .12x +3>0B .12x +3<0C .12(x +3)<0D .12(x +3)>07.不等式x <-2的解集在数轴上表示为()A .B .C .D .8.贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A .18<t <27B .18≤t <27C .18<t≤27D .18≤t≤279.如果点P (3﹣m ,1)在第二象限,那么关于x 的不等式(2﹣m )x +2>m 的解集是()A .x >﹣1B .x <﹣1C .x >1D .x <110.已知关于x 的不等式x >32a -表示在数轴上如图所示,则a 的值为()A .1B .2C .-1D .-2评卷人得分二、填空题11.若m <n ,则不等式组x m x n <⎧⎨<⎩的解集是__.12.某饮料瓶上有这样的字样:Eatable D ate 18months .如果用x (单位:月)表示Eatable D ate (保质期),那么该饮料的保质期可以用不等式表示为__.13.不等式组-2≤x +1<1的解集是__________________.14.x 的23与6的差不小于-4的相反数,那么x 的最小整数解是______________.15.下列结论正确的有__________(填序号).①如果a b >,c d <;那么a c b d ->-②如果a b >;那么1a b >③如果a b >,那么11a b <;④如果22a b c c <,那么a b <.16.三角形三边长分别为4,a ,7,则a 的取值范围是______________17.不等式组23010x x -+≥⎧⎨->⎩的解集是_____.18.在方程组2122x y m x y +=-⎧⎨+=⎩中,若未知数x 、y 满足x+y >0,则m 的取值范围是_______.19.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190”为一次操作.如果操作只进行一次就停止,则x的取值范围是_________.20.若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有_____间。
一、选择题1.不等式组()()303129x x x -≥⎧⎨->+⎩的解集为( ) A .3x <- B .3x >- C .3x ≥ D .3x ≤ 2.若0m n <<,则下列结论中错误的是( )A .99m n -<-B .m n ->-C .11n m > D .1m n> 3.如果a <b ,那么下列不等式中一定成立的是( )A .a 2<abB .ab <b 2C .a 2<b 2D .a ﹣2b <﹣b4.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有四个整数解,则实数a 的取值范围是( ) A .67a <≤B .1821a <≤C .1821a ≤<D .1821a ≤≤ 5.不等式2﹣3x≥2x ﹣8的非负整数解有( ) A .1个B .2个C .3个D .4个 6.若a b <,则下列各式中不一定成立的是( ) A .11a b -<- B .33a b < C .a b ->- D .ac bc < 7.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤ 8.直线1y x =+与2y x a =-+的交点在第一象限,则a 的取值可以是( )A .1-B .3C .1D .0 9.某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A .22厘米B .23厘米C .24厘米D .25厘米 10.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种 11.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+12.若a b <,则下列结论不正确的是( )A .44a b +<+B .33a b -<-C .22a b ->-D .1122a b > 二、填空题13.关于x 的不等式组3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩有且只有4个整数解,则常数m 的取值范围是_____.14.如图,函数y x =和4y ax =+的图象交于点()2,2,A 则不等式4x ax <+的解集为_____________________.15.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 16.己知不等式组1x x a ≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______. 17.关于x 、y 的二元一次方程组313x y m x y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.18.若关于x 的不等式3m ﹣2x <5的解集是x >3,则实数m 的值为_____.19.已知244x x x y m -+--=-且-1<y≤2则m 的取值范围是________.20.若方程组3133x y a x y +=+⎧⎨+=⎩的解x 、y 满足 3y x -<,则a 的取值范围为_________. 三、解答题21.某校七年级(6)班对半学期考试成绩优秀的学生进行奖励,颁发奖品,班主任安排生活委员到某文具店购买甲、乙两种奖品,若买甲种奖品20个,乙种奖品10个,共用110元,买甲种奖品30个比买乙种奖品20个少花10元.(1)求甲、乙两种奖品的单价各是多少元;(2)因奖品数量的需要和班费的限制,现要求本次购买甲种奖品的数量是乙种奖品的数量的2倍还少10个,而且购买这两种奖品的总金额不低于280元且不超过320元,请问有哪几种购买方案?哪种方案最省钱?22.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11500元,84消毒液和酒精的进价和售价如下:6100元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,该药房打算再次采购一批84消毒液和酒精,第二次采购仍以原价购进84消毒液和酒精,购进84消毒液的数量不变,而购进酒精的数量是第一次采购数量的2倍,84消毒液按原价出售,而酒精打折让利出售.若该药房将84消毒液和酒精全部销售完,要使第二次的销售获利不少于4900元,则每瓶酒精最多打几折?23.解下面一元一次不等式组,并写出它的所有非负整数解.515264253(5)x x x x -+⎧+>⎪⎨⎪+≤-⎩. 24.已知:直线1y kx k =+和()23y k x k =+-(0k ≠且3k ≠-)交于点A . (1)若点A 的横坐标为2,求k 的值.(2)若直线1y kx k =+经过第四象限,求直线()23y k x k =+-所经过的象限. (3)点()1,P m y 在直线1y kx k =+上,点()2,Q m y 在直线()23y k x k =+-上,当1m >-时,始终有21y y >,求k 的取值范围.25.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W 元,求W 与x 之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?26.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(2)哪种方案更省钱?并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先解每一个不等式,再求不等式组的解集.【详解】解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 解不等式①得,x ≤3,解不等式②得,x <-3,∴不等式组的解集为x <-3,故选A【点睛】本题考查了解一元一次不等式组,先解每一个不等式,再求它们解集的公共部分即可求出不等式组的解集.2.C解析:C【分析】分析各个选项是由m <n<0如何变化得到的,根据不等式的性质即可进行判断.【详解】A 、由m <n ,根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立.两边减去9,得到:m-9<n-9;成立;B 、两边同时乘以不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时乘以-1得到-m >-n ;成立;C 、m <n <0,若设m=-2 n=-1验证11n m>不成立. D 、由m <n ,根据两边同时乘以不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时除以负数n 得到1m n >,成立; 故选:C .【点睛】利用特殊值法验证一些式子错误是有效的方法.不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3.D解析:D【分析】利用不等式的基本性质逐一进行分析即可.【详解】A 、a <b 两边同时乘以a ,应说明a >0才得a 2<ab ,故此选项错误;B 、a <b 两边同时乘以b ,应说明b >0才得ab <b 2,故此选项错误;C 、a <b 两边同时乘以相同的数,故此选项错误;D 、a <b 两边同时减2b ,不等号的方向不变可得a−2b <−b ,故此选项正确;故选D .【点睛】此题主要考查了不等式的基本性质,关键是要注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.B解析:B【分析】此题可先根据一元一次不等式组解出x 的取值,再根据不等式组只有四个整数解,求出实数a 的取值范围.【详解】 解:6234x x a x x +<+⎧⎪⎨+>⎪⎩①② 解①得x >2,解②得x <13a , ∴2<x <13a , ∵不等式组有且只有四个整数解,即3,4,5,6;∴6<13a≤7,即18<a≤21.故选:B .【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了5.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.6.D解析:D【分析】根据不等式的性质进行解答.【详解】A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以-1,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c ≤时,不等式ac bc <不一定成立,故本选项符合题意.故选:D .【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.7.D解析:D【分析】根据运行程序,第一次运算结果小于等于75,第二次运算结果大于75列出不等式组,然后求解即可.【详解】由题意得,()2175221175x x +≤⎧⎪⎨++>⎪⎩①②,解不等式①得:37x≤,解不等式②得:18x>,∴1837x<≤,故选:D.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.8.B解析:B【分析】联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【详解】联立12y xy x a=+⎧⎨=-+⎩,解得:1323axay-⎧=⎪⎪⎨+⎪=⎪⎩,∵交点在第一象限,∴1323aa-⎧>⎪⎪⎨+⎪>⎪⎩,解得:1a>.只有3a=符合要求.故选:B.【点睛】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.9.D解析:D【分析】设导火线的长为xcm,根据题意可得跑开时间要小于或等于爆炸的时间,由此列出不等式,解不等式即可求解.【详解】设导火线的长为xcm,由题意得:1500815.x ≥ 解得x≥24.3cm , ∴导火线的长至少为25厘米.故选D .【点睛】本题考查了一元一次不等式的应用,根据题意列出不等式是解决问题的关键. 10.C解析:C【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤, 因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.11.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.D解析:D【分析】根据不等式的基本性质对各选项分析判断后利用排除法.【详解】A 、∵a <b ,∴44a b +<+,故本选项正确;B 、∵a <b ,∴a-3<b-3,故本选项正确;C 、∵a <b ,∴-2a >-2b ,故本选项正确;D 、∵a <b ,∴1122a b <,故本选项错误. 故选D .【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一定要注意不等号的方向的处理,也是容易出错的地方. 二、填空题13.【分析】首先利用不等式的基本性质解不等式组再从不等式的解集中找出适合条件的整数解再确定字母的取值范围即可【详解】解:解①得:解②得:∴不等式组的解集为:∵不等式组只有4个整数解即不等式组只有4个整数 解析:423m -<≤- 【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,再确定字母的取值范围即可.【详解】 解:3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩①② 解①得:1x ≥-,解②得:3102m x +<,∴不等式组的解集为:31012m x +-≤<, ∵不等式组只有4个整数解, 即不等式组只有4个整数解为﹣1、0、1、2, 则有310232m +<≤, 解得:423m -<≤-, 故答案为:423m -<≤-【点睛】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.【分析】先利用A 点坐标然后观察函数图得到当x <2时y=x 的图象都在直线的下方由此得到不等式x <ax+4的解集【详解】解:A (23)观察函数图得到:当x <2时y=x 的图象都在直线的下方不等式x <ax+解析:2x <【分析】先利用A 点坐标,然后观察函数图得到当x <2 时,y=x 的图象都在直线4y ax =+的下方,由此得到不等式x <ax+4的解集.【详解】 解: A (2,3),观察函数图得到:当x <2 时,y=x 的图象都在直线4y ax =+的下方,∴ 不等式x <ax+4的解集x <2.故答案为:2x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.理解好上面原理是解题的关键.15.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.16.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a 的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解解析:a≥1【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围.【详解】解:∵一元一次不等式组1x x a≤⎧⎨≤⎩的解集为1x ≤, ∴a≥1,故答案为:a≥1.【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围. 17.【分析】先解关于关于xy 的二元一次方程组的解集其解集由a 表示;然后将其代入再来解关于a 的不等式即可【详解】由①+②得4x+2y=4+∴由得解得故答案为【点睛】考查解一元一次不等式解二元一次方程组熟练解析:2m <-【分析】先解关于关于x ,y 的二元一次方程组313x y m x y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可.【详解】31 3,x y m x y +=+⎧⎨+=⎩①② 由①+②得4x +2y =4+m ,422m x y ++=, ∴由21x y +<,得 41,2m +<, 解得,2m <-.故答案为2m <-.【点睛】考查解一元一次不等式, 解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键. 18.【解析】试题分析:根据解不等式可得不等式3m ﹣2x <5的解集根据不等式的解集可得关于m 的方程根据解方程可得m= 解析:113【解析】 试题分析:根据解不等式,可得不等式3m ﹣2x <5的解集532m x -->,根据不等式的解集,可得关于m 的方程5332m -=-,根据解方程,可得m=113. 19.0≤m<3【分析】根据题意得然后由非负性可列式求解【详解】解:由得即解得;故答案为【点睛】本题主要考查绝对值的非负性及一元一次不等式组关键是根据非负性得到关系式然后进行求解即可解析:0≤m<3【分析】根据题意得()220x x y m -+--=,然后由非负性可列式求解.【详解】 解:由244x x x y m -+--=-得()220x x y m -+--=, ∴2=00x x y m ---=,即=2=2x y m -,,12y -<≤,∴122m -<-≤,解得03m ≤<;故答案为03m ≤<.【点睛】本题主要考查绝对值的非负性及一元一次不等式组,关键是根据非负性得到关系式,然后进行求解即可.20.a >-4【分析】先把两式相减求出y−x 的值再代入中得到关于a 的不等式进而求出a 的取值范围即可【详解】由②-①得:2y−2x =2−a ∵则∴2−a <6∴a >-4故答案是:a >-4【点睛】本题考查的是解二解析:a >-4【分析】先把两式相减求出y−x 的值,再代入 3y x -<中得到关于a 的不等式,进而求出a 的取值范围,即可.【详解】3133x y a x y +=+⎧⎨+=⎩①②, 由②-①得:2y−2x =2−a ,∵ 3y x -<,则2 26y x -<,∴2−a <6,∴a >-4,故答案是:a >-4.【点睛】本题考查的是解二元一次方程组及一元一次不等式,解答此题的关键是把a 当作常数表示出y−x 的值,再得到关于a 的不等式.三、解答题21.(1)甲种奖品的单价为3元,乙种奖品的单价是5元;(2)方案①购买乙种奖品29个,购买甲种奖品48个最省钱.【分析】(1)设甲种奖品的单价是x 元,一种奖品的单价是y 元,然后依据买甲种奖品20个,乙种奖品10个,共用110元,买甲种奖品30个比买乙种奖品20个少花10元列方程组求解即可;(2)设购买乙种奖品的数量为a 个,则购买甲种奖品的数量为(2a-10)个,然后依据总费用在280元到320元之间列不等式组求解即可.【详解】解:(1)设甲种奖品的单价是x 元,一种奖品的单价是y 元.根据题意得:2010110302010x y x y +=⎧⎨-=-⎩, 解得:x=3,y=5.答:甲种奖品的单价为3元,乙种奖品的单价是5元.(2)设购买乙种奖品的数量为a 个,则购买甲种奖品的数量为(2a -10)个. 根据题意得3(210)52803(210)5320a a a a -+≥⎧⎨-+≤⎩解得:2928311111a ≤≤. ∵a 只能取正整数,∴a =29,30,31.∴有3中购买方案. 方案①:购买乙种奖品29个,购买甲种奖品48个;方案②:购买乙种奖品30个,购买甲种奖品50个;方案③:购买乙种奖品31个,购买甲种奖品52个.方案①最省钱.∵3×48+5×29=289元;3×50+5×30=3009元;3×52+5×31=311元,∴方案①最省钱.【点睛】本题主要考查的是二元一次方程组和一元一次不等式组的应用,根据列出方程组和不等式组是解题的关键.22.(1)销售84消毒液300瓶,酒精200瓶;(2)每瓶酒精最多打7.5折.【分析】(1)设84消毒液和酒精各销售了x ,y 瓶,根据“销售完这批84消毒液和酒精后共获利6100元”列出二元一次方程组,即可求解;(2)设酒精打m 折,根据第二次的销售获利不少于4900元,列出不等式,即可得到答案.【详解】解:(1)设84消毒液和酒精各销售了x ,y 瓶,根据题意得:252011500(4025)(2820)6100x y x y +=⎧⎨-+-=⎩,解得:300200x y =⎧⎨=⎩, 答:销售84消毒液300瓶,酒精200瓶;(2)设酒精打m 折, 由题意得:3004020022830025200220490010m ⨯+⨯⨯⨯-⨯-⨯⨯≥, 解得:m≥7.5,答:每瓶酒精最多打7.5折.【点睛】本题主要考查二元一次方程组及一元一次不等式的实际应用,根据数量关系,列出方程组和不等式,是解题的关键.23.不等式组的解集为﹣1<x≤2;所有非负整数解为:0,1,2【分析】求出不等式组的解集,根据不等式组的解集求出即可.【详解】解:()5152642535x x x x -+⎧+>⎪⎨⎪+≤-⎩①②,解不等式①得x >﹣1;解不等式②得x≤ 2;∴原不等式组的解集为﹣1<x≤ 2,∴原不等式组的所有非负整数解为0,1,2.【点睛】本题考查了解一元一次不等式的整数解,关键是求出不等式组的解集.24.(1)3k =;(2)当3k <-时,直线()23y k x k =+-经过第一、二、四象限;当30k -<<时,直线()23y k x k =+-经过第一、二、三象限;(3)32k ≤-且3k ≠- 【分析】(1)把点A 的横分别代入1y kx k =+和()23y k x k =+-(0k ≠且3k ≠-),即可得解;(2)先根据1y kx k =+经过第四象限,求出k 的范围,再分两种情况讨论即可; (3)根据2132y y m k -=-,而1m >-时,始终有21y y >,可得出320k --≥,进而得出结果.【详解】解:(1)∵两条直线交于点A ,且点A 的横坐标为2,∴()223k k k k +=+-,得3k =.(2)∵直线1y kx k =+经过第四象限,∴0k <.∴当3k <-时,直线()23y k x k =+-经过第一、二、四象限;当30k -<<时,直线()23y k x k =+-经过第一、二、三象限.(3)由题意,得:1y km k =+,()23y k m k =+-,∴()()21332y y k m k km k m k -=+--+=-.∵1m >-时,总有210y y ->,∴320k --≥,得32k ≤-, ∴32k ≤-且3k ≠-. 【点睛】 本题考查了一次函数与一元一次不等式,一次函数的性质,灵活运用一次函数的性质解决问题是本题的关键.25.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W ∴随x 的增大而减小,∴当9x =时,W 最小,220044000220094400024200W x =-+=-⨯+=(元)4044,207x x y ∴-=--=答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.(1)有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备;第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)购买3台A 型污水处理设备,7台B 型污水处理设备更省钱【分析】(1)设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,由不等量关系购买A 型号的费用+购买B 型号的费用≤136;A 型号每月处理的污水总量+B 型号每月处理的污水总量≥2150,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.【详解】设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,根据题意,得1512(10)136250200(10)2150x x x x +-≤⎧⎨+-≥⎩, 解这个不等式组,得:1353x ≤≤.∵x 是整数,∴x=3或x=4或x=5.当x=3时,10﹣x=7;当x=4时,10﹣x=6;当x=5时,10-x=5.答:有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备; 第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)当x=3时,购买资金为15×3+12×7=129(万元),当x=4时,购买资金为15×4+12×6=132(万元),当x=5时,购买资金为15×5+12×5=135(万元).因为135>132>129,所以应购污水处理设备A 型号3台,B 型号7台.答:购买3台A 型污水处理设备,7台B 型污水处理设备更省钱.【点睛】此题考查方案类不等式组的实际应用,有理数的混合运算,正确理解题意,根据题意列得不等式组是解题的关键.。
单元检测卷:一元一次不等式与一元一次不等式组(基础卷)一、选择题(每小题3分,共30分)1.不等式2x>﹣3的解是()A.x<32-B.x>﹣32-C.x<﹣23D.x>﹣23【答案】B【解析】不等式两边除以2变形即可求出x>﹣32,故选B2.已知a>b,下列不等式中正确的是()A.a+3<b+3 B.C.﹣a>﹣b D.a﹣1<b﹣1【答案】B3.已知x>y,则下列不等式1)x-5<y-5,2)3x>3y,3)-3x>-3y,4)-x<-y,其中一定成立的有()A、1个B、2个C、3个D、4个【答案】B.【解析】由不等式的加法和乘法性质可得,(2)(4)正确,(1)(3)错误,所以总共只有两个成立,故选:B 4.下列不等式中,正确的是()A.m与4的差是负数,可表示为m﹣4<0B.x不大于3可表示为x<3C.a是负数可表示为a>0D.x与2的和是非负数可表示为x+2>0【答案】A5.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥3【答案】C.【解析】一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选C.6.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【答案】D【解析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.7.如果不等式组无解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤5【答案】B8.不等式组24,241x xx x+⎧⎨+<-⎩≤的正整数解的个数有( )A.1个B.2个C.3个D.4个【答案】C【解析】解不等式①可得:x≤4,解不等式②可得:x>1,则不等式组的解为1<x≤4,则整数解为x=2、3、4共3个.9.将不等式组的解集在数轴上表示出来,应是()A .B .C .D .【答案】A10.根据下图所示,对a、b、c三种物体的质量判断正确的是()A.a<c B.a<b C.a>c D.b<c【答案】C二、填空题(每小题3分,共30分)11.写出一个解集为x>1的一元一次不等式_________.【答案】答案不唯一,如:2x ﹣2>0.【解析】答案不唯一,如:2x ﹣2>0的解集为x >1.故答案为2x ﹣2>0.12.绝对值大于1而小于4的整数有 个.【答案】413.不等式3x+1<-2的解集是________.【答案】x <-1.【解析】3x+1<-2,3x <-3,x <-1.故答案为x <-1.14.足球比赛中,每队上场队员人数n 不超过11,这个数量关系用不等式表示: .【答案】n ≤11.【解析】根据题意,可得:n ≤11.15.由x <y 得到ax >ay ,则a 的取值范围是 .【答案】a <0.【解析】∵x <y ,ax >ay ,∴a <0.故答案为:a <0.16.当x 时,式子523--x 的值是非正数。
八年级数学一元一次不等式(单元检测)单元检测(一元一次不等式和一元一次不等式组)班级姓名一.判断题(每题1分,共6分)1.a>b,得a+m>b+m( )2.由a>3,得a>( )3._ = 2是不等式_+3>4的解( )4.由->-1,得->-a( )5.如果a>b,c<0,则ac2>bc2( )6.如果a<b<0,则<1( )二.填空题(每题2分,共34分)1.若a<b,用〝>〞号或〝<〞号填空:a-5 b-5;--;-1+2a -1+2b;6-a 6-b;2._与3的和不小于-6,用不等式表示为;3.当_时,代数式2_-3的值是正数;4.代数式+2_的不大于8-的值,那么_的正整数解是;5.如果_-7<-5,则_;如果->0,那么_;6.不等式a_>b的解集是_<,则a的取值范围是;7.不等式组的解集是;不等式组的解集是;不等式组的解集是;不等式组的解集是;8.一个长方形的长为_米,宽为50米,如果它的周长不小于280米,那么_应满足的不等式为;9.点A(-5,y1).B(-2,y2)都在直线y = -2_上,则y1与y2的关系是;10.如果一次函数y =(2-m)_+m的图象经过第一.二.四象限,那么m的取值范围是;三.选择题(每题3分,共18分)1.下列用〝>〞或〝<〞号表示的不等关系正确的是( )A.-3>-2B.<C.<D.-<-2.如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是( )A.大于2千克B.小于3千克C.大于2千克且小于3千克D.大于2千克或小于3千克3.在下列各题中,结论正确的是( )A.若a>0,b<0,则>0B.若a>b,则a-b>0C.若a<0,b<0,则ab<0D.若a>b,a<0,则<04.如果0<_<1,则下列不等式成立的是( )A._2>>_B.>_2>_C._>>_2D.>_>_25.若直线y=_+k与直线y=-_+2的交点在y轴右侧,则k的取值范围是( )A.-2<k<2B.-2<k<0C.k>2D.k<26.若不等式组的解集为_>3,则a的取值范围是( )A.a≥3B.a>3C.a≤3D.a<3四.解下列不等式或不等式组,并把解集在数轴上表示出来(每题5分,共20分)(1)5(_-2)>4(2_-1)(2)-≤1(3)(4)五.(本题8分)作出函数y=-2_+3的图象,观察图象并回答下列问题,(1)_取何值时,-2_+3>0;(2)_取何值时,-2_+3=0;(3)_取何值时,-2_+3<0;六.(本题8分)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,求住宿人数和宿舍间数.七.(本题6分)某校校长暑假将带领该校〝市级三好学生〞去三峡旅游.甲旅行社说:如果校长买全票一张,则其余学生可以享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠.已知两家旅行社的全票价都是240元,请你就学生数说明哪家旅行社更优惠.。
2024-2025学年湘教版八年级数学上册《第4章一元一次不等式(组)》单元综合练习题(附答案)一、选择题(满分30分)1.下列式子中是一元一次不等式的是()A.﹣2>﹣5B.x2>4C.xy>0D.+x<﹣12 2.不等式﹣4x≤5的解集是()A.x≤﹣B.x≥﹣C.x≤﹣D.x≥﹣3.一元一次不等式组的解集是()A.﹣2<x<3B.﹣3<x<2C.x<﹣3D.x<2 4.如图,在数轴上所表示的是哪一个不等式的解集()A.>﹣1B.≥﹣3C.x+1≥﹣1D.﹣2x>45.不等式组的解在数轴上表示为()A.B.C.D.6.不等式组的整数解的个数是()A.1个B.2个C.3个D.4个7.如果b>a>0,那么()A.B.C.D.﹣b>﹣a 8.关于x的方程2a﹣3x=6的解集是非负数,那么a满足的条件是()A.a>3B.a≤3C.a<3D.a≥3 9.不等式组:的解集是x>4,那么m的取值范围是()A.m≥4B.m≤4C.m<4D.m=410.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆二.填空题(共30分)11.不等式2﹣x<x﹣6的解集为.12.用恰当的不等号表示:x的3倍与8的和比y的2倍小:.13.不等式组的整数解为.14.当x时,代数式2﹣3x的值是正数.15.当a时,不等式(a﹣1)x>1的解集是x<.16.若不等式组的解集是﹣1<x<2,则a=.17.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.18.如果不等式组有解,那么m的取值范围是.19.若a<b,用“<”或“>”号填空:2a a+b,﹣0.20.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有人.三、解答题(共40分)21.解下列不等式,并把解集在数轴上表示出来:(1)3x+4≤6+2(x﹣2)(2)≥﹣1.22.解下列不等式组:(1)(2).23.x为何值时,代数式﹣的值比代数式的值大.24.已知关于x,y的方程组的解是非负数,求整数m的值.25.某种植物适宜生长在温度在18℃~20℃的山区,已知山区海拔每升高100米,气温下降0.5℃,现在测得山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)26.某学校计划购进一批电脑和电子白板,购买1台电脑和2台电子白板需要3.5万元;购进2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有哪几种购买方案?(3)请你求出学校在(2)的购买活动中最多需要多少资金?参考答案一、选择题(满分30分)1.解:A、不含有未知数,不是一元一次不等式,故本选项错误;B、未知数系数是2,属于一元二次不等式,故本选项错误;C、含有2个未知数,属于二元二次不等式,故本选项错误;D、符合一元一次不等式的定义,故本选项正确;故选:D.2.解:由﹣4x≤5,得x≥﹣.故选:B.3.解:由①得:x<2由②得:x<﹣3所以x<﹣3故选:C.4.解:依题意得:数轴表示的解集是:x≥﹣2A、解得:x>﹣2B、解x+3≥﹣6,不等式的解集是x≥﹣9C、解得:x≥﹣2D、解得x<﹣2故选:C.5.解:由不等式①,得2x>2,解得x>1,由不等式②,得﹣2x≤﹣4,解得x≥2,∴数轴表示的正确的是C选项,故选:C.6.解:解不等式组得﹣<x<,所以整数x=0,1,2,3.所以整数解的个数是4个.故选:D.7.解:∵b>a>0,∴<,故选项B错误∴﹣>﹣,故选项A错误、C正确;∵b>a,∴﹣b<﹣a,故选项D错误.故选:C.8.解:2a﹣3x=6x=(2a﹣6)÷3又∵x≥0∴(2a﹣6)÷3≥0∴a≥3故选:D.9.解:由(1)得:x>4.当x>m时的解集是x>4,所以m≤4.故选:B.10.解:设甲种运输车安排x辆,根据题意得x+(46﹣5x)÷4≤10,解得:x≥6,当x=6时,(46﹣5×6)÷4=4,故至少甲要6辆车.故选:C.二.填空题(共30分)11.解:移项得:﹣x﹣x<﹣6﹣2,合并同类项得:﹣2x<﹣8,解得:x>4.12.解:∵x的3倍与8的和为3x+8,y的2倍是2y,∴x的3倍与8的和比y的2倍小可表示为:3x+8<2y;故答案为:3x+8<2y.13.解:由①得,2x>﹣1﹣1,x>﹣1;由②得,x≤3﹣2,x≤1;不等式组的解集为:﹣1<x≤1.其整数解为0,1.14.解:2﹣3x>0移项得,﹣3x>﹣2系数化为1,得x<.15.解:∵不等式(a﹣1)x>1的解集是x<,∴a﹣1<0,∴a<1.故答案为:a<1.16.解:解不等式组得a<x<2∵﹣1<x<2∴a=﹣1.故答案为:﹣1.17.解:因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.18.解:∵不等式组有解,∴m<x<5,∴m<5.故答案为:m<5.19.解:∵a<b,∴a+a<b+a,即2a<a+b;∵a<b,∴<,∴﹣>﹣,∴﹣+>﹣+,∴﹣>0.故答案为<,>0.20.解:设得5分的人数为x人,得3分的人数为y人.则可得,解得:x>21.9若x=23,则23+3=26,没有得3分的人,不符合题意,所以x=22.答:得5分的人数应为22人.故答案为:22.三、解答题(共40分)21.解:(1)去括号得,3x+4≤6+2x﹣4,移项得,3x﹣2x≤6﹣4﹣4,合并同类项得,x≤﹣2.在数轴上表示为:;(2)去分母得,3(3x﹣2)≥5(2x+1)﹣15,去括号得,9x﹣6≥10x+5﹣15,移项得,9x﹣10x≥5﹣15+6,合并同类项得,﹣x≥﹣4,把x的系数化为1得,x≤4.在数轴上表示为:.22.解:(1),由①得,x>2,由②得,x>1.故此不等式组的解集为:x>2.(2),由①得,x>1,由②得,x<4.故此不等式组的解集为:1<x<4.23.解:解不等式,去分母,得﹣9x﹣9>2x+2﹣18,移项合并同同类项,得11x<7,把系数化为1,得x<;则x<时,代数式﹣的值比代数式的值大.24.解:解方程组可得因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.25.解:设该植物种在海拔x米的地方为宜,则解得400≤x≤800答:该植物种在山的400﹣﹣800米之间比较适宜.26.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得,,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑m台,则购进电子白板(30﹣m)台,根据题意得:,解得:15≤m≤17,又∵m为正整数,∴m可以为15,16,17,∴共有3种购买方案:方案1:购进电脑15台,电子白板15台;方案2:购进电脑16台,电子白板14台;方案3:购进电脑17台,电子白板13台.(3)选择方案1所需费用为0.5×15+1.5×15=30(万元);选择方案2所需费用为0.5×16+1.5×14=29(万元);选择方案3所需费用为0.5×17+1.5×13=28(万元).∵30万元>29万元>28万元,∴学校在(2)的购买活动中最多需要30万元.。
一元一次不等式(组)单元测试卷一、选择题:1.下列各式中,是一元一次不等式的是( )A 、835<-B 、xx 112<- C 、832≥x D 、1822≤+x π 2.若b a >,则下列各式中不正确的是( )A 、22->-b aB 、0<-b aC 、b a 66-<-D 、b a 2121-<-3.不等式512>-x 的解集是( )A 、5>xB 、2>xC 、3>xD 、3<x 4.下列说法中,肯定错误的是( )A 、62->-x 的解集是3<xB 、-8是不等式82-<-x 的解C 、2>x 的整数解有无数个D 、3>x 没有负整数解5.已知三角形的两边8=b ,10=c ,则这个三角形的第三边a 的取值范围是( )A 、182<<-aB 、182<<aC 、182≤≤-aD 、182≤≤a 6.一个不等式的解集为12x -<≤,那么在数轴上表示正确的是( )7.若440-=m ,则估计m 的值所在的范围是( )A 、21<<mB 、32<<mC 、43<<mD 、54<<m 8.平面直角坐标系中,若点)1,3+-m m P (在第二象限,则m 的取值范围为( )A 、-1<m <3B 、m >3C 、m <-1D 、m >-19.要使代数式2-x 有意义,则x 的取值范围是( )A 、2-≤xB 、2-≥xC 、2≥xD 、2≤x10.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( )A 、至多6人B 、至少6人C 、至多5人D 、至少5人 二、填空题:11.“m 与10的和不小于m 的一半”用代数式表示为 .12.若582112>--m x 是关于x 的一元一次不等式,则m =_________. 13.不等式23x x >-的解集为 .14.若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += . 15.不等式2x +7>-5-2x 的负整数解有 . 16.不等式组21527x x ->⎧⎨-<⎩的解集是____________.17.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是18.已知关于x 的不等式x a )1(->2的解集为x <a-12,则a 的取值范围是 。
一、选择题1.不等式3 23xx+-≤的非负整数解有()A.3个B.4个C.5个D.无数个2.不等式组10840xx-⎧⎨-≤⎩>的解集在数轴上表示为().A.B.C.D.3.关于函数3y x=-,下列说法正确的是()A.在y轴上的截距是3 B.它不经过第四象限C.当x≥3时,y≤0D.图象向下平移4个单位长度得到7y x=-的图象4.若a b>,则下列各式中一定成立的是()A.22a b-<-B.11a b+>+C.22a b<D.33a b->-5.点P坐标为(m+1,m-2),则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.不等式组()()303129xx x-≥⎧⎨->+⎩的解集为()A.3x<-B.3x>-C.3x≥D.3x≤7.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或518.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-29.运行程序如图所示,规定从“输入一个值x”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤ 10.若a b <,则下列结论不正确的是( )A .44a b +<+B .33a b -<-C .22a b ->- D.1122a b > 11.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( ) A .a <b B .3a <3b C .﹣a >﹣b D .a ﹣2>b ﹣2 12.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <-二、填空题13.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________. 14.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________. 15.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.16.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________. 17.某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.18.已知关于x 的不等式2x ﹣a >﹣3的解集是x >1,则a 的值为_____.19.一次函数y =kx +b (k≠0)的图象如图所示,则一元一次不等式﹣kx +2k +b >0的解集为_____.20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______. 三、解答题21.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.22.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方形形状的无盖纸盒.(1)现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒各多少个?(2)若有正方形纸板32张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完,已知7075a <<.求a 的值.23.某数学兴趣小组开展了一次活动,过程如下:设()090BAC θθ∠=︒<<︒,小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,12A A 为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:______;(填“能”或“不能”)(2)若112231AA A A A A ===,则θ=______度;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第1根小棒,且121A A AA =.数学思考:(3)若已经向右摆放了3根小棒,则1θ=______,2θ=______,3θ=______(用含θ的式子表示);(4)若只能摆放4根小棒,求θ的范围.24.(1)解不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解; (2)计算:21390454025.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 26.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x-2)≤x+3,去括号,得3 x-6≤x+3,移项、合并同类项,得2x≤9,系数化为1,得x≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C.【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.2.A解析:A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式①得,1x>,解不等式②得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.3.D解析:D【分析】令x=0,得到的y值就是在y轴上的截距;根据k,b判定图像的分布;根基自变量的范围计算函数的范围;根据平移规律确定即可.【详解】令x=0,得y= -3,∴函数在y轴上的截距为-3,∴选项A错误;∵3y x =-,∴函数分布在第一,第三,第四象限,∴选项B 错误;∵x≥3,∴x-3≥0,∴y≥0,∴选项C 错误;∵3y x =-,∴图象向下平移4个单位长度得到7y x =-的图象,∴选项D 正确;故选D .【点睛】本题考查了一次函数的性质,图像分布,平移规律,截距的定义,熟练掌握性质,规律是解题的关键.4.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.5.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B 符合题意;C 、当m<-1时,m+1与m-2都小于0,P 在第三象限,所以C 不符合题意;D 、当-1<m<2时,m+1>0,m-2<0,P 在第四象限,所以D 不符合题意;故选B .本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.6.A解析:A【分析】先解每一个不等式,再求不等式组的解集.【详解】解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 解不等式①得,x ≤3,解不等式②得,x <-3,∴不等式组的解集为x <-3,故选A【点睛】本题考查了解一元一次不等式组,先解每一个不等式,再求它们解集的公共部分即可求出不等式组的解集.7.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x+-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键. 8.D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122x a x x ->⎧⎨->-⎩①② 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.9.B解析:B【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可.【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>② 解不等式①得,47x ≤,解不等式②得,23x >,∴2347x ≤<,故选:B .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.10.D解析:D【分析】根据不等式的基本性质对各选项分析判断后利用排除法.【详解】A 、∵a <b ,∴44a b +<+,故本选项正确;B 、∵a <b ,∴a-3<b-3,故本选项正确;C 、∵a <b ,∴-2a >-2b ,故本选项正确;D、∵a<b,∴1122a b<,故本选项错误.故选D.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一定要注意不等号的方向的处理,也是容易出错的地方.11.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.12.B解析:B【分析】利用函数图象,写出直线y1在直线y2下方所对应的自变量的范围即可.【详解】结合图象,当x>3时,y1<y2,即kx+b<x+a,所以不等式kx-x<a-b的解集为x>3.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题13.【分析】直接把两个方程相加得到然后结合即可求出a的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到 解析:4a.【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】 解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.16.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 17.101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时由题意得:;②假设输入的正整数x 为奇数时由题意得:5x-23>100分别解出不等式的解集再确定x 的值【详解】解:①假设输入解析:101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时,由题意得:1891002x ;②假设输入的正整数x 为奇数时,由题意得:5x-23>100,分别解出不等式的解集,再确定x 的值.【详解】解:①假设输入正整数x 为偶数时,由题意得:1891002x , 解得:x >22,∵x 为偶数,∴x=24,当x=24时,对应的y=124891012; ②假设输入的正整数x 为奇数时,由题意得:5x-23>100,解得:x >24.6,∵x 为奇数,∴x=25,当x=25时,对应的y=5×25-23=102;∵24<25,∴首次大于100时对应的x=24,y=101,故答案为:101.【点睛】此题主要考查了一元一次不等式的应用,关键是看懂题意与图示,根据题目中的条件列出不等式,注意要分两种情况进行计算.18.【分析】先解关于x 的不等式然后根据解集确定a 的值即可【详解】解:由2x ﹣a >﹣3得x >∵不等式2x ﹣a >﹣3的解集是x >1∴=1解得:a =5故答案为5【点睛】本题考查了根据一元一次不等式的解集确定参解析:5a =【分析】先解关于x 的不等式,然后根据解集确定a 的值即可.【详解】解:由2x ﹣a >﹣3,得x >32a -, ∵不等式2x ﹣a >﹣3的解集是x >1, ∴32a -=1, 解得:a =5.故答案为5.【点睛】 本题考查了根据一元一次不等式的解集确定参数,掌握一元一次不等式的解法是解答本题的关键.19.x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣20)y 随x 的增大而增大从而可以得到k 和b 的关系k >0然后即可得到不等式﹣kx +2k +b >0的解集【详解】解:由图解析:x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大,从而可以得到k 和b 的关系,k >0,然后即可得到不等式﹣kx +2k +b >0的解集.【详解】解:由图象可得,一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大, ∴﹣2k +b =0,k >0,∴b =2k ,∴不等式﹣kx +2k +b >0可以化为:﹣kx +2k +2k >0,解得:x <4,故答案为:x <4.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答解答.20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .22.(1);(2)a=73【分析】(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.根据制作竖式纸盒用的正方形纸板+制作横式纸盒用的正方形纸板=150张;制作竖式纸盒用的长方形纸板+制作横式纸盒用的长方形纸板=300张.列方程组即可得到结论;(2)设x 个竖式需要正方形纸板x 张,长方形纸板横4x 张;y 个横式需要正方形纸板2y 张,长方形纸板横3y 张,可列出方程组,再根据a 的取值范围求出y 的取值范围即可.【详解】解:(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得215043300x y x y +=⎧⎨+=⎩, 解得:3060x y =⎧⎨=⎩, 答:可制作横式纸盒60个、竖式纸盒30个;(2)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得23243x y x y a +=⎧⎨+=⎩, 解得y=1285a -, ∵70<a <75, ∴53<128-a <58,∵y 是整数,∴128-a=55,∴a=73.【点睛】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.(1)能;(2)22.5︒;(3)2θ;3θ;4θ;(4)1822.5θ︒≤︒<【分析】(1)因为角的两条边为两条射线,没有长度限制,所以小棒可以无限摆下去; (2)根据直角三角形的性质、三角形外角的性质和等腰三角形的性质,即可推出; (3)根据三角形外角的性质、等腰三角形的性质即可推出12132A A A θθ=∠=,即可推出,同理即可推出2θ,3θ;(4)根据(3)的结论,和三角形外角的性质,即可推出不等式,解不等式即可.【详解】(1)∵角的两边为两条射线,没有长度限制,∴小棒可以无限摆下去;(2)∵112231AA A A A A ===,1223A A A A ⊥,∴12AA A 为等腰三角形,145a ∠=︒, ∴1122.52a θ=∠=︒; (3)∵1212334A A AA A A A A ===,,∴12132312A A A A A A θθ=∠=∠=,∴223123A A A θθθθθ=∠+=+=,∴324334A A A θθθθθ=∠+=+=;(4)∵根据三角形内角和定理和等腰三角形的性质,∴590490θθ≥︒⎧⎨︒⎩,< 解得,1822.5θ︒≤︒<.【点睛】本题考查了射线的性质、等腰三角形的性质、解一元一次不等式组,解题的关键在于找到等量关系,求相关角的度数.24.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解. (2)先化简二次根式,再合并即可.【详解】解:(1)()3x 24x?2x 5x 1?3⎧--≥-⎪⎨-<-⎪⎩①② 由①去括号得,-3x+6≥4-x ,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x <2,化系数为1得,x >-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)213904540+- =101091055+- =910.【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.25.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.26.2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.。
第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。
湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1已知3>2,两边都乘x ,则正确的是() A .3x>2x B .3x ≥2xC .3x ≤2xD .以上都不正确2下列不等式组求解正确的是()A .不等式组{x >3,x >5的解集是x>3B .不等式组{x ≥3,x <5的解集是3≤x<5C . 不等式组{x <3,x <5的解集是x<5D . 不等式组{x >3,x <5无解3不等式-2x<1的两边都除以-2得 .4代数式3x -4的值不小于代数式5-x 的值,列不等式为 .5若不等式(3m -2)x<7的解集为x<12,则m= .6x 同时满足不等式2(x+2)<x+5和不等式3(x -2)+8<2x ,则x 的取值范围是 . 7不等式-3≤2x -13<5的解集是 .8解不等式:3x+2(2-4x )<19.9求不等式组{2(x +8)≤10−4(x -3),x+12-6x+73<1的整数解.10若不等式5(x -2)+8<6(x -1)+7的最小整数解为方程3x -ax=4的解,求a 的值.【能力巩固】11已知a>0 ,且b 是有理数,那么一定有()A .-b 2<aB .-a 2<bC .a -b>0D .a -b 2<012一元一次不等式组{x >a,x <b,且a ≠b ,若它无解,则a 与b 的关系为 () A .a>b B .a<b C .a>b>0 D .a<b<013某商店以每件9元的进价购进一批商品,希望每件获毛利(毛利=销售价-进货价)不少于1元,但上级规定毛利不超过销售价的20%,设这件商品的销售价为x 元,根据题意列不等式组是()A .{x -9≥1,x -9≤20%xB . {x -9≤1,x -9≤20%xC . {x -9≥1,x -9≤20%D . {x -9≤1,x -9≥20%x14若不等式组{x >2m +1,x >7−m的解集为x>7-m ,则m 2 . 15求同时满足不等式x -3<4(x+3)和5(2x -1)≤3x -4的最大整数和最小整数.16已知|3x-2|+(6x-y+4k)2=0,若y>2k-1,求k的取值范围.【素养拓展】17.2024年4月18日,以“上春山寻好茶干净黔茶全球共享”为主题的2024中国好绿茶大会暨第16届贵州茶产业博览会在遵义湄潭中国茶城广场开幕,全国各地客商齐聚于此.一采购商看中了湄潭翠芽和都匀毛尖这两种优质茶叶,并得到信息如下:湄潭翠芽都匀毛尖总价/元251800质量/千克311270(1)求每千克湄潭翠芽和都匀毛尖的进价.(2)若湄潭翠芽和都匀毛尖这两种茶叶的销售单价分别是450元/千克和260元/千克,该采购商准备购进这两种茶叶共30千克,进价总支出不超过1万元,全部售完后,总利润不低于2660元,该采购商共有几种进货方案?(均购进整千克数)(利润=售价-进价)参考答案基础达标作业1.【答案】D2.【答案】B3.【答案】x>-124.【答案】3x-4≥5-x5.【答案】1636.【答案】x<-27.【答案】-4≤x<88.【答案】解:去括号,得3x+4-8x<19移项,得-5x<15∴x>-3.9.【答案】解:不等式组化简得{x≤1, x>−179,∴不等式组的解集为-179<x≤1∴不等式组的整数解为-1,0,1.10.【答案】解:解不等式得x>-3,∴最小整数解为x=-2.∴3×(-2)-(-2)a=4,∴a=5.能力巩固作业11.【答案】A12.【答案】A13.【答案】A14.【答案】≤15.【答案】解:由题意得{x-3<4(x+3), 5(2x-1)≤3x-4,解得{x>−5, x≤17,∴不等式组的解集为-5<x≤17∴符合题意的最大整数是0,最小整数是-4.16.【答案】解:由题意得{3x-2=0,6x-y+4k=0,解得{x=23,y=4k+4.又∴y>2k -1,∴4k+4>2k -1,∴k>-52素养拓展作业17.【答案】解:(1)设每千克湄潭翠芽的进价是x 元,每千克都匀毛尖的进价是y 元根据题意得{2x +5y =1800,3x +y =1270,解得{x =350,y =220. 答:每千克湄潭翠芽的进价是350元,每千克都匀毛尖的进价是220元.(2)设购进m 千克湄潭翠芽,则购进(30-m )千克都匀毛尖根据题意得{350m +220(30−m)≤10000,(450-350)m +(260−220)(30−m)≥2660,解得733≤m ≤34013.∴m 为正整数,∴m 可以为25,26.答:该采购商共有2种进货方案.。
一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则―5a <―5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x ―2>y ―2C .―2x >―2yD .x ―y >03.将不等式组x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x3≥2x ―15;④x ―1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组2x +3>12x ―a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥―1时,关于x 的代数式ax ―2恰好能取到两个非负整数值,则a 的取值范围是( )A .―4<a ≤―3B .―4≤a <―3C .―4<a <0D .a ≤―39.若整数m使得关于x的方程mx―1=21―x+3的解为非负整数,且关于y的不等式组4y―1<3(y+3)y―m⩾0至少有3个整数解,则所有符合条件的整数m的和为( )A.7 B.5 C.0 D.-210.对于任意实数p、q,定义一种运算:p@q=p-q+pq,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x的不等式组2@x<4x@2≥m有3个整数解,则m的取值范围为是( )A.-8≤m<-5B.-8<m≤-5C.-8≤m≤-5D.-8<m<-5二、填空题11.关于x的不等式3⩾k―x的解集在数轴上表示如图,则k的值为 .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M=3x、N=2―8x,且M、N不重合,M―N<0,则x的取值范围是 .14.关于x的不等式组x>m―1x<m+2的整数解只有0和1,则m= .15.关于x的不等式组a―x>3,2x+8>4a无解,则a的取值范围是 .16.若数a既使得关于x、y的二元一次方程组x+y=63x―2y=a+3有正整数解,又使得关于x x+a―3的解集为x≥15,那么所有满足条件的a的值之和为 .三、计算题17.(1)解一元一次不等式组:x+3(x―2)⩽6 x―1<2x+13.(2)解不等式组:3(x+1)≥x―1x+152>3x,并写出它的所有正整数解.四、解答题18.先化简:a2―1a2―2a+1÷a+1a―1―aa―1;再在不等式组3―(a+1)>02a+2⩾0的整数解中选取一个合适的解作为a的取值,代入求值.19.解不等式组2―3x≤4―x,①1―2x―12>x4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得―3x+x≤4―2第1步合并同类项,得―2x≤2第2步两边都除以―2,得x≤―1第3步任务一:该同学的解答过程中第▲步出现了错误,这一步的依据是▲,不等式①的正确解是▲.任务二:解不等式②,并写出该不等式组的解集.20.由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x―1=3的解为x=4,而不等式组x―1>2x+2<7的解集为3<x<5,不难发现x=4在3<x<5的范围内,所以方程x―1=3是不等式组x―1>2x+2<7的“关联方程”.(1)在方程①3(x+1)―x=9;②4x―8=0;③x―12+1=x中,关于x的不等式组2x―2>x―13(x―2)―x≤4的“关联方程”是;(填序号)(2)若关于x的方程2x+k=61≤2x2≤x―12的“关联方程”,求k的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x>1被不等式x>0“容纳”;(1)下列不等式(组)中,能被不等式x<―3“容纳”的是________;A.3x―2<0B.―2x+2<0C.―19<2x<―6D.3x<―84―x<3(2)若关于x的不等式3x―m>5x―4m被x≤3“容纳”,求m的取值范围;(3)若关于x的不等式a―2<x<―2a―3被x>2a+3“容纳”,若M=5a+4b+2c 且a+b+c=3,3a+b―c=5,求M的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】―1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,,解不等式x﹣1 <2x+133(x-1)<2x+1,3x-3<2x+1,x<4,的解为:x<4,∴不等式x﹣1 <2x+13∴不等式组的解集为x≤3.(2)【答案】解:3(x+1)≥x―1①x+152>3x②,由①得,x≥―2,由②得,x<3,∴不等式组的解集为―2≤x<3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a<2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a<2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x≥―1任务二:解不等式②,得x<65,∴不等式组的解为―1≤x<65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x元.由题意得90000x=80000 x―500解得x=4500经检验x=4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a台,则乙种型号进(20―a)台.由题意得75000≤3500a+4000(20―a)≤76000解得8≤a≤10a为整数,a为8,9,10有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥8 22.【答案】(1)C (2)m≤2(3)19。
单 元 检 测
(一元一次不等式和一元一次不等式组) 班级 姓名
一、判断题(每题1分,共6分)
1、a >b ,得a +m >b +m ( )
2、由a >3,得a >2
3
( )
3、x = 2是不等式x +3>4的解 ( )
4、由-21>-1,得-2
a
>-a ( )
5、如果a >b ,c <0,则ac 2>bc 2 ( )
6、如果a <b <0,则b
a
<1 ( )
二、填空题(每题2分,共34分)
1、若a <b ,用“>”号或“<”号填空:a -5 b -5; -2a -2
b
;-1+2a -1+2b ;6-a 6-b ; 2、x 与3的和不小于-6,用不等式表示为 ; 3、当x 时,代数式2x -3的值是正数;
4、代数式41+2x 的不大于8-2
x
的值,那么x 的正整数解是 ;
5、如果x -7<-5,则x ;如果-2
x
>0,那么x ;
6、不等式ax >b 的解集是x <a
b
,则a 的取值范围是 ;
7、不等式组⎩⎨⎧x x 的解集是 ;不等式组⎩⎨⎧x x
的解集是 ;
不等式组⎩⎨⎧x x 的解集是 ;不等式组⎩⎨⎧x x
的解集是 ;
8、一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,
那么x 应满足的不等式为 ; 9、点A (-5,y 1)、B (-2,y 2)都在直线y = -2x 上,则y 1与y 2的关系是 ;
10、如果一次函数y =(2-m )x +m 的图象经过第一、二、四象限,那么m 的取值范围是 ;
三、选择题(每题3分,共18分)
1、下列用“>”或“<”号表示的不等关系正确的是( )
A 、-3>-2
B 、41<5
1
C 、32<53
D 、-21<-3
1
2、如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是( )
A 、大于2千克
B 、小于3千克
C 、大于2千克且.小于3千克
D 、大于2千克或.小于3千克 3、在下列各题中,结论正确的是( )
A 、若a >0,b <0,则a
b
>0 B 、若a >b ,则a -b >0
C 、若a <0,b <0,则ab <0
D 、若a >b ,a <0,则a
b
<0
4、如果0<x <1,则下列不等式成立的是( )
A 、x 2>x 1>x
B 、x 1>x 2>x
C 、x >x 1>x 2
D 、x
1
>x >x 2
5、若直线y =x +k 与直线y =-2
1
x +2的交点在y 轴右侧,则k 的取值
范围是( )
A 、-2<k <2
B 、-2<k <0
C 、k >2
D 、k <2
6、若不等式组⎩⎨⎧x x
的解集为x >3,则a 的取值范围是( )
A 、a ≥3
B 、a >3
C 、a ≤3
D 、a <3 四、解下列不等式或不等式组,并把解集在数轴上表示出来(每题5分,
共20分)
(1)5(x -2)>4(2x -1)
(2)2x -3
x
≤1
(3)⎪⎩⎪
⎨⎧-+--1521
5312x x x
(4)⎪⎩⎪⎨⎧+-33
472x x
五、(本题8分)作出函数y =-2x +3的图象,观察图象并回答下列问题,
(1)x 取何值时,-2x +3>0; (2)x 取何值时,-2x +3=0; (3)x 取何值时,-2x +3<0;
六、(本题8分)现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,求住宿人数和宿舍间数。
七、(本题6分)某校校长暑假将带领该校“市级三好学生”去三峡旅游。
甲旅行社说:如果校长买全票一张,则其余学生可以享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。
已知两家旅行社的全票价都是240元,请你就学生数说明哪家旅行社更优惠。