2019年高考理科数学模拟试卷
- 格式:docx
- 大小:592.13 KB
- 文档页数:12
2019年陕西省高考数学全真模拟试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.集合P={x|x2﹣9<0},Q={x∈Z|﹣1≤x≤3},则P∩Q=()A.{x|﹣3<x≤3}B.{x|﹣1≤x<3}C.{﹣1,0,1,2,3}D.{﹣1,0,1,2}3.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.74.若命题p:对任意的x∈R,都有x3﹣x2+1<0,则¬p为()A.不存在x∈R,使得x3﹣x2+1<0B.存在x∈R,使得x3﹣x2+1<0C.对任意的x∈R,都有x3﹣x2+1≥0D.存在x∈R,使得x3﹣x2+1≥05.在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2 B.﹣2 C.3 D.﹣36.已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.7.函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称的充要条件是()A.φ=2kπ﹣,k∈Z B.φ=kπ﹣,k∈Z C.φ=2kπ﹣,k∈Z D.φ=kπ﹣,k∈Z8.执行如图所示的程序框图(算法流程图),输出的结果是()A.9 B.121 C.130 D.170219.双曲线的离心率为2,则的最小值为()A.B. C.2 D.110.5的展开式中,x5y2的系数为()A.﹣90 B.﹣30 C.30 D.9011.已知不等式组表示平面区域D,现在往抛物线y=﹣x2+x+2与x 轴围成的封闭区域内随机地抛掷一小颗粒,则该颗粒落到区域D中的概率为()A.B.C.D.12.定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1﹣1|<|x2﹣1|时,有()A.f(2﹣x1)≥f(2﹣x2)B.f(2﹣x1)=f(2﹣x2)C.f(2﹣x1)<f(2﹣x2)D.f(2﹣x1)≤f(2﹣x2)第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(),0a t =r ,()1,3b =-r,若4a b ⋅=r r ,则2a b -=r r . 14.若()52132x a x x ⎛⎫-- ⎪⎝⎭的展开式中3x 的系数为80,则a = .15.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且ABC ∆的外接圆半径为1,若6abc =,则ABC ∆的面积为 .16.已知抛物线()2:20C x py p =>的焦点为F ,O 为坐标原点,点4,2p M ⎛⎫- ⎪⎝⎭,1,2p N ⎛⎫-- ⎪⎝⎭,射线,MO NO 分别交抛物线C 于异于点O 的点,A B ,若,,A B F 三点共线,则p = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知正项数列3n n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列,且12,9,a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .18. 2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子500米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过4个直道与弯道的交接口()1,2,3,4k A k =.已知某男子速滑运动员顺利通过每个交接口的概率均为34,摔倒的概率均为14.假定运动员只有在摔倒或到达终点时才停止滑行,现在用X 表示一名顺利进入最后一圈的运动员在滑行结束后,在最后一圈顺利通过的交接口数.(1)求该运动员停止滑行时恰好已顺利通过3个交接口的概率; (2)求X 的分布列及数学期望()E X .19. 如图,在三棱锥P ABC -中,D 为棱PA 上的任意一点,,,F G H 分别为所在棱的中点.(1)证明:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB BC ⊥,2AB =,45BAC ∠=︒,当二面角C GF H --的平面角为3π时,求棱PC 的长.20. 已知椭圆()2222:10x y E a b a b+=>>的焦距为2c ,且b =,圆()222:0O x y r r +=>与x 轴交于点,,M N P 为椭圆E 上的动点,2PM PN a +=,PMN ∆(1)求圆O 与椭圆E 的方程;(2)设圆O 的切线l 交椭圆E 于点,A B ,求AB 的取值范围.21. 已知函数()()326,f x x x ax b a b =-++∈R 的图象在与x 轴的交点处的切线方程为918y x =-. (1)求()f x 的解析式; (2)若()()212910kx x f x x k -<<+对()2,5x ∈恒成立,求k 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C的极坐标方程为3cos ρθ=. (1)求圆C 的参数方程;(2)设P 为圆C 上一动点,()5,0A ,若点P 到直线sin 3πρθ⎛⎫-= ⎪⎝⎭求ACP ∠的大小.23.选修4-5:不等式选讲 已知函数()3121f x x x a =--++. (1)求不等式()f x a >的解集;(2)若恰好存在4个不同的整数n ,使得()0f n <,求a 的取值范围.2019年陕西省高考数学全真模拟试卷(理科)一、选择题1.复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数,求出复数在复平面上对应的点的坐标,则答案可求.【解答】解:=,则复数在复平面上对应的点的坐标为:(,),位于第一象限.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.2.集合P={x|x2﹣9<0},Q={x∈Z|﹣1≤x≤3},则P∩Q=()A.{x|﹣3<x≤3}B.{x|﹣1≤x<3}C.{﹣1,0,1,2,3}D.{﹣1,0,1,2}【考点】交集及其运算.【分析】求出集合P中一元二次不等式的解集确定出集合P,取集合Q中解集的整数解确定出集合Q,然后找出既属于P又属于Q的元素即可确定出两集合的交集.【解答】解:由集合P中的不等式x2﹣9<0,解得:﹣3<x<3,∴集合P={x|﹣3<x<3};由集合Q中的解集﹣1≤x≤3,取整数为﹣1,0,1,2,3,∴集合Q={﹣1,0,1,2,3},则P∩Q={﹣1,0,1,2}.故选D【点评】此题属于以不等式解集为平台,考查了交集的元素,是一道基础题,也是高考中常考的题型.3.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.7【考点】两角和与差的正切函数;弦切互化.【分析】先根据cosα的值求出tanα的值,再由两角和与差的正切公式确定答案.【解答】解析:由cosα=﹣且α∈()得tanα=﹣,∴tan(α+)==,故选C.【点评】本题主要考查两角和与差的正切公式.属基础题.4.若命题p:对任意的x∈R,都有x3﹣x2+1<0,则¬p为()A.不存在x∈R,使得x3﹣x2+1<0B.存在x∈R,使得x3﹣x2+1<0C.对任意的x∈R,都有x3﹣x2+1≥0D.存在x∈R,使得x3﹣x2+1≥0【考点】命题的否定.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定¬p为:存在x∈R,使得x3﹣x2+1≥0故选:D【点评】本题主要考查全称命题的否定,要求掌握全称命题的否定是特称命题.5.在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2 B.﹣2 C.3 D.﹣3【考点】等比关系的确定.【分析】由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列,即(s2+2)2=(S+2)(S3+2)1代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解方程即可求解【解答】解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.【点评】等比数列得前n项和公式的应用需要注意公式的选择,解题时要注意对公比q=1,q≠1的分类讨论,体现了公式应用的全面性.6.已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.【考点】数量积表示两个向量的夹角.【分析】利用向量的坐标运算求出;利用向量的数量积公式求出两个向量的数量积;利用向量模的坐标公式求出两个向量的模;利用向量的数量积公式求出两个向量的夹角余弦.【解答】解:∵∴∴∵∴两个向量的夹角余弦为故选C【点评】本题考查向量的数量积公式,利用向量的数量积公式求向量的夹角余弦、考查向量模的坐标公式.7.函数f(x)=sin(2x+φ)+cos(2x+φ)的图象关于原点对称的充要条件是()A.φ=2kπ﹣,k∈Z B.φ=kπ﹣,k∈Z C.φ=2kπ﹣,k∈Z D.φ=kπ﹣,k∈Z【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用辅助角公式对函数化简可得,f(x)=sin(2x+φ)+cos(2x+φ)=2sin(2x+φ+),由函数的图象关于原点对称可知函数f(x)为奇函数,由奇函数的性质可得,f(0)=0代入可得sin(φ)=0,从而可求答案.【解答】解:∵f(x)=sin(2x+φ)+cos(2x+φ)=2sin(2x+φ+)的图象关于原点对称∴函数f(x)为奇函数,由奇函数的性质可得,f(0)=0∴sin(φ)=0∴φ=kπ∴φ=故选:D【点评】本题主要考查了利用辅助角公式把不同名的三角函数化为y=Asin(x+)的形式,进而研究函数的性质;还考查了奇函数的性质(若奇函数的定义域内有0,则f(0)=0)的应用,灵活应用性质可以简化运算,减少运算量.8.执行如图所示的程序框图(算法流程图),输出的结果是()A.9 B.121 C.130 D.17021【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的a,b,c的值,当c=16900时,不满足条件c<2016,退出循环,输出a的值为121.【解答】解:模拟执行程序,可得a=1,b=2,c=3满足条件c<2016,a=2,b=9,c=11满足条件c<2016,a=9,b=121,c=130满足条件c<2016,a=121,b=16900,c=17021不满足条件c<2016,退出循环,输出a的值为121.故选:B.【点评】本题主要考察了程序框图和算法,正确理解循环结构的功能是解题的关键,属于基本知识的考查.9.双曲线的离心率为2,则的最小值为()A.B. C.2 D.1【考点】双曲线的简单性质;基本不等式.【分析】根据基本不等式,只要根据双曲线的离心率是2,求出的值即可.【解答】解:由于已知双曲线的离心率是2,故,解得,所以的最小值是.故选A.【点评】本题考查双曲线的性质及其方程.双曲线的离心率e和渐近线的斜率之间有关系,从这个关系可以得出双曲线的离心率越大,双曲线的开口越大.10.(x2+3x﹣y)5的展开式中,x5y2的系数为()A.﹣90 B.﹣30 C.30 D.90【考点】二项式系数的性质.=(﹣y)5﹣r(x2+3x)r,令5【分析】(x2+3x﹣y)5的展开式中通项公式:T r+1﹣r=2,解得r=3.展开(x2+3x)3,进而得出.=(﹣y)5﹣r(x2+3x)r,【解答】解:(x2+3x﹣y)5的展开式中通项公式:T r+1令5﹣r=2,解得r=3.∴(x2+3x)3=x6+3(x2)2•3x+3(x2)×(3x)2+(3x)3,∴x5y2的系数=×9=90.故选:D.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.11.已知不等式组表示平面区域D,现在往抛物线y=﹣x2+x+2与x轴围成的封闭区域内随机地抛掷一小颗粒,则该颗粒落到区域D中的概率为()A.B.C.D.【考点】几何概型.【分析】根据积分的知识可得先求y=﹣x2+x+2与x轴围成的封闭区域为曲面MEN,的面积,然后根据线性规划的知识作出平面区域D,并求面积,最后代入几何概率的计算公式可求.【解答】解:根据积分的知识可得,y=﹣x2+x+2与x轴围成的封闭区域为曲面MEN,面积=等式组表示平面区域D即为△AOB,其面积为根据几何概率的计算公式可得P=故选:C【点评】本题主要考查了利用积分求解曲面的面积,还考查了几何概率的计算公式的应用,属于基础试题.12.定义在R上的函数f(x)满足(x﹣1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1﹣1|<|x2﹣1|时,有()A.f(2﹣x1)≥f(2﹣x2)B.f(2﹣x1)=f(2﹣x2)C.f(2﹣x1)<f(2﹣x2)D .f (2﹣x 1)≤f (2﹣x 2)【考点】函数的单调性与导数的关系.【分析】①若函数f (x )为常数,可得当|x 1﹣1|<|x 2﹣1|时,恒有f (2﹣x 1)=f (2﹣x 2).②若f (x )不是常数,可得y=f (x )关于x=1对称.当x 1≥1,x 2≥1,则由|x 1﹣1|<|x 2﹣1|可得f (x 1)>f (x 2).当x 1<1,x 2<1时,同理可得f (x 1)>f (x 2).综合①②得出结论.【解答】解:①若f (x )=c ,则f'(x )=0,此时(x ﹣1)f'(x )≤0和y=f (x +1)为偶函数都成立,此时当|x 1﹣1|<|x 2﹣1|时,恒有f (2﹣x 1)=f (2﹣x 2).②若f (x )不是常数,因为函数y=f (x +1)为偶函数,所以y=f (x +1)=f (﹣x +1), 即函数y=f (x )关于x=1对称,所以f (2﹣x 1)=f (x 1),f (2﹣x 2)=f (x 2). 当x >1时,f'(x )≤0,此时函数y=f (x )单调递减,当x <1时,f'(x )≥0,此时函数y=f (x )单调递增.若x 1≥1,x 2≥1,则由|x 1﹣1|<|x 2﹣1|,得x 1﹣1<x 2﹣1,即1≤x 1<x 2,所以f (x 1)>f (x 2).同理若x 1<1,x 2<1,由|x 1﹣1|<|x 2﹣1|,得﹣(x 1﹣1)<﹣(x 2﹣1),即x 2<x 1<1,所以f (x 1)>f (x 2).若x 1,x 2中一个大于1,一个小于1,不妨设x 1<1,x 2≥1,则﹣(x 1﹣1)<x 2﹣1, 可得1<2﹣x 1<x 2,所以f (2﹣x 1)>f (x 2),即f (x 1)>f (x 2). 综上有f (x 1)>f (x 2),即f (2﹣x 1)>f (2﹣x 2), 故选A .【点评】本题主要考查函数的导数与函数的单调性的关系,体现了分类讨论的数学思想,属于中档题.二、填空题13.()2,6-- 14.-2 15.3216.2 三、解答题17.解:(1)因为数列3n n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列,所以212233a a -=, 则21318a a =+,又12,9,a a 成等比数列,所以()212113189a a a a =+=,解得13a =或19a =-,因为数列3n n a ⎧⎫⎨⎬⎩⎭为正项数列,所以13a =.所以()3212133n n a n n =+-=-, 故()213n n a n =-⋅.(2)由(1)得()21333213n n S n =⨯+⨯++-⋅L , 所以()23131333213n n S n +=⨯+⨯++-⋅L ,所以()231332333213n n n n S S n +⎡⎤-=+⨯+++--⋅⎣⎦L ,即()2133323221313n n n S n +-⨯-=+⨯--⋅-()1136123n n n ++=-+-⋅()12236n n +=-⋅-, 故()1133n n S n +=-⋅+.18.解:(1)由题意可知:3312744256P ⎛⎫=⨯= ⎪⎝⎭.(2)X 的所有可能值为0,1,2,3,4.则()()31,2,3,44k P A k ==,且1234,,,A A A A 相互独立. 故()()1104P X P A ===,()()121P X P A A ==⋅=3134416⨯=,()()1232P X P A A A ==⋅⋅=23194464⎛⎫⨯= ⎪⎝⎭,()()12343P X P A A A A ==⋅⋅⋅=3312744256⎛⎫⨯= ⎪⎝⎭,()()12344P X P A A A A ==⋅⋅⋅=43814256⎛⎫=⎪⎝⎭.从而X 的分布列为所以()139********E X =⨯+⨯+⨯+278152534256256256⨯+⨯=.19.(1)证明:因为,G H 分别为,AC BC 的中点, 所以AB GH ∥,且GH ⊂平面FGH ,AB ⊄平面FGH ,所以AB ∥平面FGH .又因为,F G 分别为,PC AC 的中点,所以有GF AP ∥,FG ⊂平面FGH , 且AP ⊄平面FGH ,所以AP ∥平面FGH . 又因为AP AB A =I ,所以平面ABP ∥平面FGH . 因为BD ⊂平面ABP ,所以BD ∥平面FGH .(2)解:在平面ABC 内过点C 作CM AB ∥,如图所示,以C 为原点,,,CB CM CF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -.由ABC ∆为等腰直角三角形知BG AC ⊥,又BG C F ⊥,AC CF C =I ,所以有BG ⊥平面PAC .设CF a =,则()2,0,0B ,()1,1,0G -,所以()1,1,0BG =--uuu r为平面PAC 的一个法向量.又()0,0,F a ,()1,0,0H ,所以()1,0,FH a =-uuu r ,()1,1,FG a =--uuu r,设(),,m x y z =u r 为平面FGH 的一个法向量,则有0m FH m FG ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uu u r,即有0x az x y az -=⎧⎨--=⎩,所以可取(),0,1m a =u r .由1cos ,2m BG ==u r uu u r,得1a =,从而22a =. 所以棱PC 的长为2.20.解:(1)因为b =,所以2a c =.①因为2PM PN a +=,所以点,M N 为椭圆的焦点,所以,22214r c a ==. 设()00,P x y ,则0b x b -≤≤,所以0012PMN S r y a y ∆=⋅=, 当0y b =时,()max 12PMN S ab ∆== 由①,②解得2a =,所以b =1c =,所以圆O 的方程为221x y +=,椭圆E 的方程为22143x y +=. (2)①当直线l 的斜率不存在时,不妨取直线l 的方程为1x =,解得31,2A ⎛⎫⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,3AB =.②当直线l 的斜率存在时,设直线l 的方程为y kx m =+,()11,A x kx m +,()22,B x kx m +.因为直线l1=,即221m k =+,联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得()2224384120k x kmx m +++-=, ()224843k m ∆=+-=()248320k +>,122843kmx x k +=-+,212241243m x x k -=+.AB ===24k+=令2134t k =+,则214034t k <=≤+,所以AB =,403t <≤,所以AB =33AB <≤.综上,AB 的取值范围是⎛ ⎝⎦.21.解:(1)由9180x -=得2x =,∴切点为()2,0. ∵()2312f x x x a '=-+,∴()2129f a '=-=,∴21a =,又()282420f a b =-++=,∴26b =-,()3262126f x x x x =-+-. (2)由()9f x x k <+得()9k f x x >-=3262126x x x -+-,设()3261226g x x x x =-+-,()()2344g x x x '=-+=()2320x ->对()2,5x ∈恒成立,∴()g x 在()2,5上单调递增,∴()59k g ≥=.∵()()32612892f x x x x x =-+-+-=()()3292x x -+-,∴由()()21210kx x f x -<对()2,5x ∈恒成立得()129102x k x x x -<+-213212x x x -=+-对()2,5x ∈恒成立,设()()21321252x h x x x x -=+<<-,()()22213132x x h x x x -+'=-, 当25x <<时,213130x x -+<,∴()0h x '<,∴()h x 单调递减,∴()165105k h ≤=,即12k ≤. 综上,k 的取值范围为[]9,12.22.解:(1)∵3cos ρθ=,∴23cos ρρθ=,∴223x y x +=,即223924x y ⎛⎫-+= ⎪⎝⎭,∴圆C 的参数方程为33cos ,223sin 2x y αα⎧=+⎪⎪⎨⎪=⎪⎩(α为参数).(2)由(1)可设333cos ,sin 222P θθ⎛⎫+ ⎪⎝⎭,[)0,2θπ∈,sin 3πρθ⎛⎫-= ⎪⎝⎭0y -+=, 则P到直线sin 3πρθ⎛⎫-= ⎪⎝⎭=3sin 23πθ⎛⎫-=⎪⎝⎭, ∴sin 03πθ⎛⎫-= ⎪⎝⎭,∵[)0,2θπ∈,∴3πθ=或43π,故3ACP π∠=或23ACP π∠=. 23.解:(1)由()f x a >,得3121x x ->+, 不等式两边同时平方得,22961441x x x x -+>++, 即2510x x >,解得0x <或2x >.所以不等式()f x a >的解集为()(),02,-∞+∞U .(2)设()3121g x x x =--+=12,2115,2312,3x x x x x x ⎧-≤-⎪⎪⎪--<<⎨⎪⎪-≥⎪⎩,作出()g x 的图象,如图所示,因为()()020g g ==,()()()34213g g g <=<-=, 又恰好存在4个不同的整数n ,使得()0f n <,所以()()30,40,f f <⎧⎪⎨≥⎪⎩即1020a a +<⎧⎨+≥⎩,故a 的取值范围为[)2,1--.。
2019年湖南省高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n ∈Z},则()A.M=P B.P≠M C.N∩P≠∅D.M∩N≠∅2.复数(2+i)i的共轭复数的虚部是()A.2 B.﹣2 C.2i D.﹣2i3.若点P到直线y=3的距离比到点F(0,﹣2)的距离大1,则点P 的轨迹方程为()A.y2=8x B.y2=﹣8x C.x2=8y D.x2=﹣8y4.已知数列{a n}满足:对于∀m,n∈N*,都有a n•a m=a n+m,且,那么a5=()A. B. C.D.5.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=3,n=2,依次输入的a为2,2,5,则输出的s=()A .8B .17C .29D .836.若,则=( )A .B .C .D . 7.为响应“精确扶贫”号召,某企业计划每年用不超过100万元的资金购买单价分别为1500元/箱和3000元/箱的A 、B 两种药品捐献给贫困地区某医院,其中A 药品至少100箱,B 药品箱数不少于A 药品箱数.则该企业捐献给医院的两种药品总箱数最多可为( ) A .200 B .350 C .400 D .5008.圆O 的半径为3,一条弦AB=4,P 为圆O 上任意一点,则•的取值范围为( )A .[﹣16,0]B .[0,16]C .[﹣4,20]D .[﹣20,4]9.设函数,则关于函数f (x )有以下四个命题( )①∀x ∈R ,f (f (x ))=1;②∃x 0,y 0∈R ,f (x 0+y 0)=f (x 0)+f (y 0);③函数f (x )是偶函数;④函数f(x)是周期函数.其中真命题的个数是()A.4 B.3 C.2 D.110.若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是,函数f'(x)的图象的一个对称中心是,则f(x)的最小正周期是()A. B. C.πD.2π11.点P为棱长是的正方体ABCD﹣AB1C1D1的内切球O球面上的动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.πB.2πC.4πD.12.已知函数与g(x)=|x|+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A.B. C.D.二、填空题:本题共4小题,每小题5分,满分20分.13.一个总体分为A,B两层,其个体数之比为5:1,用分层抽样方法从总体中抽取一个容量为12的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数为.14.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器﹣﹣﹣﹣商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x为.15.设F是双曲线的右焦点,若点F关于双曲线的一条渐近线的对称点P恰好落在双曲线的左支上,则双曲线的离心率为.16.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.若,其中m为给定的正整数,则d的所有可能取值的和为.三、解答题:解答应写出文字说明、证明过程或演算步骤.)17.某学校的平面示意图为如下图五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度).,.(1)求道路BE的长度;(2)求生活区△ABE面积的最大值.18.如图,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,G是棱BB1上的动点.(1)当为何值时,平面CDG⊥平面A1DE?(2)求平面AB1F与平面AD1E所成的锐二面角的余弦值.19.随着生活水平和消费观念的转变,“三品一标”(无公害农产品、绿色食品、有机食品和农产品地理标志)已成为不少人的选择,为此某品牌植物油企业成立了有机食品快速检测室,假设该品牌植物油每瓶含有机物A的概率为p(0<p<1),需要通过抽取少量油样化验来确定该瓶油中是否含有有机物A,若化验结果呈阳性则含A,呈阴性则不含A.若多瓶该种植物油检验时,可逐个抽样化验,也可将若干瓶植物油的油样混在一起化验,仅当至少有一瓶油含有有机物A时混合油样呈阳性,若混合油样呈阳性,则该组植物油必须每瓶重新抽取油样并全部逐个化验.(1)若,试求3瓶该植物油混合油样呈阳性的概率;(2)现有4瓶该种植物油需要化验,有以下两种方案:方案一:均分成两组化验;方案二:混在一起化验;请问哪种方案更适合(即化验次数的期望值更小),并说明理由.20.已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1,k2.(1)求椭圆C的方程;(2)当r变化时,①求k1•k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.21.已知函数f(x)=xe x﹣a(lnx+x).(1)若函数f(x)恒有两个零点,求a的取值范围;(2)若对任意x>0,恒有不等式f(x)≥1成立.①求实数a的值;②证明:x2e x>(x+2)lnx+2sinx.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.若曲线C的左焦点F在直线l上,且直线l与曲线C交于A,B两点.(1)求m的值并写出曲线C的直角坐标方程;(2)求的值.[选修4-5:不等式选讲]23.设函数f(x)=2x﹣a,g(x)=x+2.(1)当a=1时,求不等式f(x)+f(﹣x)≤g(x)的解集;(2)求证:中至少有一个不小于.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n ∈Z},则()A.M=P B.P≠M C.N∩P≠∅D.M∩N≠∅【考点】交集及其运算;集合的包含关系判断及应用.【分析】利用交集定义、集合相等的定义直接求解.【解答】解:∵集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n∈Z},∴M≠P,N∩P=∅,M∩N=∅,故选:B.2.复数(2+i)i的共轭复数的虚部是()A.2 B.﹣2 C.2i D.﹣2i【考点】复数的基本概念;复数代数形式的乘除运算.【分析】利用复数代数形式的乘法运算化简,再求出其共轭复数得答案.【解答】解:∵(2+i)i=﹣1+2i,∴复数(2+i)i的共轭复数为﹣1﹣2i,其虚部为﹣2.故选:B.3.若点P到直线y=3的距离比到点F(0,﹣2)的距离大1,则点P 的轨迹方程为()A.y2=8x B.y2=﹣8x C.x2=8y D.x2=﹣8y【考点】轨迹方程.【分析】由题意得,点P到直线y=1的距离和它到点(0,﹣1)的距离相等,故点P的轨迹是以点(0,﹣1)为焦点,以直线y=1为准线的抛物线,可得轨迹方程.【解答】解:∵点P到直线y=3的距离比到点F(0,﹣1)的距离大2,∴点P到直线y=1的距离和它到点(0,﹣1)的距离相等,故点P的轨迹是以点(0,﹣1)为焦点,以直线y=1为准线的抛物线,方程为x2=﹣4y.故选:D.4.已知数列{a n}满足:对于∀m,n∈N*,都有a n•a m=a n+m,且,那么a5=()A. B. C.D.【考点】数列递推式.【分析】数列{a n}对任意的m,n∈N*满足a n•a m=a n+m,且,可得a2,a3,a4,a5.即可.【解答】解:∵数列{a n}满足:对于∀m,n∈N*,都有a n•a m=a n+m,且,∴a2=a1a1=,a3=a1•a2=.那么a4=a2•a2=.a5=a3•a2=.故选:A.5.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=3,n=2,依次输入的a为2,2,5,则输出的s=()A.8 B.17 C.29 D.83【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=3,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=8,k=2,不满足退出循环的条件;当输入的a为5时,S=29,k=3,满足退出循环的条件;故输出的S值为29,故选:C6.若,则=()A.B.C. D.【考点】两角和与差的余弦函数;两角和与差的正弦函数.【分析】由已知利用诱导公式可求cos(α+)=,进而利用二倍角的余弦函数公式即可计算得解.【解答】解:∵=cos(α+),∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.故选:D.7.为响应“精确扶贫”号召,某企业计划每年用不超过100万元的资金购买单价分别为1500元/箱和3000元/箱的A、B两种药品捐献给贫困地区某医院,其中A药品至少100箱,B药品箱数不少于A药品箱数.则该企业捐献给医院的两种药品总箱数最多可为()A.200 B.350 C.400 D.500【考点】简单线性规划的应用.【分析】设A药品为x箱,B药品为y箱,该企业捐献给医院的两种药品总箱数为z=x+y,则x,y满足的关系式为,根据约束条件对目标函数的范围进行验证即可【解答】解:设A药品为x箱,B药品为y箱,该企业捐献给医院的两种药品总箱数为z=x+y,则x,y满足的关系式为,若x+y=500,又因为≥x,∴y≥250,则0.15x+0.3y=0.15+0.3y=75+0.15y>100,不合题意.若x+y=400,又因为y≥x,∴y≥200,则0.15x+0.3y=0.15+0.3y=60+0.15y≥90,合题意.故选:C8.圆O的半径为3,一条弦AB=4,P为圆O上任意一点,则•的取值范围为()A.[﹣16,0]B.[0,16]C.[﹣4,20]D.[﹣20,4]【考点】平面向量数量积的运算.【分析】如图所示,连接OA,OB.过点O作OC⊥AB,垂足为C.利用垂径定理可得BC=AB=2.可得cos∠OBA.利用向量的三角形法则,可得•==,代入数量积即可得出•的取值范围.【解答】解:如图所示,连接OA,OB.过点O作OC⊥AB,垂足为C.则BC=AB=2.∴cos∠OBA=.∴•===.==.∵cos∈[﹣1,1],∴12cos﹣8∈[﹣20,4].故选:D.9.设函数,则关于函数f(x)有以下四个命题()①∀x∈R,f(f(x))=1;②∃x0,y0∈R,f(x0+y0)=f(x0)+f(y0);③函数f(x)是偶函数;④函数f(x)是周期函数.其中真命题的个数是()A.4 B.3 C.2 D.1【考点】命题的真假判断与应用.【分析】由函数的值的求法、函数的性质逐一核对四个命题得答案.【解答】解:由,可得f(x)=0或1,则∀x∈R,f(f(x))=1,故①正确;当时,f(x0+y0)=f(x0)+f(y0),故②正确;∵x为有理数,则﹣x为有理数,x为无理数,则﹣x为无理数,∴函数f(x)是偶函数,故③正确;任何一个非0的有理数都是函数的周期,∴函数f(x)是周期函数,故④正确.∴真命题的个数是4个.故选:A.10.若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是,函数f'(x)的图象的一个对称中心是,则f(x)的最小正周期是()A. B. C.πD.2π【考点】三角函数的周期性及其求法.【分析】由题意可得f(0)=f(),由此得到a=b,再根据函数f′(x)的图象的一个对称中心是,求得ω的值,可得f(x)的最小正周期.【解答】解:∵函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是,∴f(0)=f(),即b=asin(ω•)+bcos(ω•)=a,∴f(x)=asinωx+acosωx=a•sin(ωx+).又函数f'′(x)=a•ω•cos(ωx+)的图象的一个对称中心是,∴a•ωcos(ω•+)=0,∴ω•+=kπ+,k∈Z,即ω=8k+2,故取ω=2,则f(x)的最小正周期是=π,故选:C.B1C1D1的内切球O球面上的11.点P为棱长是的正方体ABCD﹣A动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.πB.2πC.4πD.【考点】轨迹方程.【分析】首先,求解其内切球的半径,然后,结合球面的性质求解点O到平面DCN的距离,然后,确定其周长.【解答】解:根据题意,该正方体的内切球半径为r=,由题意,取BB1的中点N,连接CN,则CN⊥BM,∵正方体ABCD﹣A1B1C1D1,∴CN为DP在平面B1C1CB中的射影,∴点P的轨迹为过D,C,N的平面与内切球的交线,B1C1D1的棱长为2,∵正方体ABCD﹣A∴O到过D,C,N的平面的距离为1,∴截面圆的半径为:=2,∴点P的轨迹周长为:2π×2=4π.故选:C.12.已知函数与g(x)=|x|+log2(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A.B. C.D.【考点】函数的图象.【分析】令f(﹣x)=g(x)在(0,+∞)上有解,根据函数图象得出a的范围.【解答】解:f(x)关于y轴对称的函数为h(x)=f(﹣x)=x+2﹣x﹣(x>0),令h(x)=g(x)得2﹣x﹣=log2(x+a)(x>0),则方程2﹣x﹣=log2(x+a)在(0,+∞)上有解,作出y=2﹣x﹣与y=log2(x+a)的函数图象如图所示:当a≤0时,函数y=2﹣x﹣与y=log2(x+a)的函数图象在(0,+∞)上必有交点,符合题意;若a>0,若两图象在(0,+∞)上有交点,则log2a,解得0,综上,a.故选:B.二、填空题:本题共4小题,每小题5分,满分20分.13.一个总体分为A,B两层,其个体数之比为5:1,用分层抽样方法从总体中抽取一个容量为12的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数为48.【考点】分层抽样方法.【分析】设出B层中的个体数,根据条件中所给的B层中甲、乙都被抽到的概率值,写出甲和乙都被抽到的概率,使它等于,算出n 的值,由已知A和B之间的比值,得到总体中的个体数.【解答】解:设B层中有n个个体,∵B层中甲、乙都被抽到的概率为,∴=,∴n2﹣n﹣56=0,∴n=﹣7(舍去),n=8,∵总体分为A,B两层,其个体数之比为5:1,∴共有个体(5+1)×8=48,故答案为:48.14.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造一种标准量器﹣﹣﹣﹣商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x为3.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由此构造关于x的方程,解得答案.【解答】解:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4﹣1.6)•x×1+π•()2×1.6=12.6,∵π=3.解得x=3,故答案为:3.15.设F是双曲线的右焦点,若点F关于双曲线的一条渐近线的对称点P恰好落在双曲线的左支上,则双曲线的离心率为.【考点】双曲线的简单性质.【分析】设F(﹣c,0),渐近线方程为y=x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为﹣1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.【解答】解:设F(﹣c,0),渐近线方程为y=x,对称点为F'(m,n),即有=﹣,且•n=•,解得m=,n=﹣,将F'(,﹣),即(,﹣),代入双曲线的方程可得﹣=1,化简可得﹣4=1,即有e2=5,解得e=.故答案为:16.已知数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项.若,其中m为给定的正整数,则d的所有可能取值的和为.【考点】等差数列的通项公式.【分析】由公差d是的约数,得到d=2i•3j,(i,j=0,1,2,…,m),由此能求出d的所有可能取值之和.【解答】解:∵数列{a n}是各项均为正整数的等差数列,公差d∈N*,且{a n}中任意两项之和也是该数列中的一项,∴公差d是的约数,∴d=2i•3j,(i,j=0,1,2,…,m),∴d的所有可能取值之和为:=.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.)17.某学校的平面示意图为如下图五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度).,.(1)求道路BE的长度;(2)求生活区△ABE面积的最大值.【考点】余弦定理的应用;解三角形的实际应用;点、线、面间的距离计算.【分析】(1)连接BD,在△BCD中,由余弦定理得:BD,在Rt△BDE 中,求解BE即可.(2)设∠ABE=α,在△ABE中,由正弦定理,求解AB,AE,表示S△,然后求解最大值.ABE【解答】解:(1)如图,连接BD,在△BCD中,由余弦定理得:,∴.∵BC=CD,∴,又,∴.在Rt△BDE中,所以.(2)设∠ABE=α,∵,∴.在△ABE中,由正弦定理,得,∴.∴=.∵,∴.∴当,即时,S△ABE取得最大值为,即生活区△ABE面积的最大值为.注:第(2)问也可用余弦定理和均值不等式求解.18.如图,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,G是棱BB1上的动点.(1)当为何值时,平面CDG⊥平面A1DE?(2)求平面AB1F与平面AD1E所成的锐二面角的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)当G为BB1中点(即)时,平面CDG⊥平面A1DE.证明D,E,C1,A1四点共面.连接C1E交GC于H.证明CG⊥C1E.DE⊥CG,推出CG⊥平面A1DE,即可证明平面CDG⊥平面A1DE.(2)以C为原点,CA,CB,CC1所在的直线分别为x,y,z轴建立空间直角坐标系,求出平面A1DE的法向量,平面A1BF的法向量,设平面A1BF与平面A1DE所成的锐二面角为θ,利用数量积求解即可.【解答】解:(1)当G为BB1中点(即)时,平面CDG⊥平面A1DE.证明如下:由于DE∥AC且,∴,故D,E,C1,A1四点共面.连接C1E交GC于H.在正方形CBB1C1中,,故∠CHE=90°,即CG⊥C1E.又A1C1⊥平面CBB1C1,CG⊂平面CBB1C1,所以DE⊥CG,又因为C1E∩DE=E,故CG⊥平面A1DE,从而平面CDG ⊥平面A1DE.(2)三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,于是可以以C为原点,CA,CB,CC1所在的直线分别为x,y,z轴建立空间直角坐标系,如图所示.因为AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,所以A1(2,0,2),D(1,1,0),E(0,1,0),B(0,2,0),F (0,1,2),G(0,2.1),=(﹣2,2,﹣2),=(﹣2,1,0).由(1)知平面A1DE的法向量为=(0,2,1),设平面A1BF的法向量为=(x,y,z),则,即:,令x=1得,设平面A1BF与平面A1DE所成的锐二面角为θ,则cosθ===.19.随着生活水平和消费观念的转变,“三品一标”(无公害农产品、绿色食品、有机食品和农产品地理标志)已成为不少人的选择,为此某品牌植物油企业成立了有机食品快速检测室,假设该品牌植物油每瓶含有机物A的概率为p(0<p<1),需要通过抽取少量油样化验来确定该瓶油中是否含有有机物A,若化验结果呈阳性则含A,呈阴性则不含A.若多瓶该种植物油检验时,可逐个抽样化验,也可将若干瓶植物油的油样混在一起化验,仅当至少有一瓶油含有有机物A时混合油样呈阳性,若混合油样呈阳性,则该组植物油必须每瓶重新抽取油样并全部逐个化验.(1)若,试求3瓶该植物油混合油样呈阳性的概率;(2)现有4瓶该种植物油需要化验,有以下两种方案:方案一:均分成两组化验;方案二:混在一起化验;请问哪种方案更适合(即化验次数的期望值更小),并说明理由.【考点】离散型随机变量的期望与方差;相互独立事件的概率乘法公式.【分析】(1)设X为3瓶该植物油中油样呈阳性的瓶数,利用相互对立事件的概率计算公式可得所求的概率为P(X≥1)=1﹣P(X=0).(2)设q=1﹣p,则0<q<1.方案一:设所需化验的次数为Y,则Y的所有可能取值为2,4,6次,利用二项分布列的概率计算公式及其数学期望计算公式即可得出.方案二:设所需化验的次数为Z,则Z的所有可能取值为1,5次,P (Z=1)=q4,P(Z=5)=1﹣q4,E(Z)=1×q4+5×(1﹣q4).进而得出数学期望.【解答】解:(1)设X为3瓶该植物油中油样呈阳性的瓶数,所求的概率为,所以3瓶该种植物油的混合油样呈阳性的概率为.(2)设q=1﹣p,则0<q<1.方案一:设所需化验的次数为Y,则Y的所有可能取值为2,4,6次,,.方案二:设所需化验的次数为Z,则Z的所有可能取值为1,5次,P (Z=1)=q4,P(Z=5)=1﹣q4,E(Z)=1×q4+5×(1﹣q4)=5﹣4q4.因为E(Y)﹣E(Z)=6﹣4q2﹣(5﹣4q4)=(2q2﹣1)2≥0,即E(Y)≥E(Z),所以方案二更适合.20.已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1,k2.(1)求椭圆C的方程;(2)当r变化时,①求k1•k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.【考点】圆锥曲线的定值问题;椭圆的标准方程;直线与椭圆的位置关系.【分析】(1)利用已知条件求出a,b即可求解椭圆C的方程.(2)AB:y=k1x+1,则有,化简得,直线AD:y=k2x+1,同理有,推出k1,k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的两实根,故k1•k2=1.考虑到r→1时,D是椭圆的下顶点,B趋近于椭圆的上顶点,故BD若过定点,则猜想定点在y轴上.联立直线与椭圆方程,求出相关点的坐标,求出直线BD的方程,推出直线BD过定点.【解答】解:(1)由题设知,,,又a2﹣b2=c2,解得a=2,b=1.故所求椭圆C的方程是.(2)AB:y=k1x+1,则有,化简得,对于直线AD:y=k2x+1,同理有,于是k1,k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的两实根,故k1•k2=1.考虑到r→1时,D是椭圆的下顶点,B趋近于椭圆的上顶点,故BD 若过定点,则猜想定点在y轴上.由,得,于是有.直线BD的斜率为,直线BD的方程为,令x=0,得,故直线BD过定点.21.已知函数f(x)=xe x﹣a(lnx+x).(1)若函数f(x)恒有两个零点,求a的取值范围;(2)若对任意x>0,恒有不等式f(x)≥1成立.①求实数a的值;②证明:x2e x>(x+2)lnx+2sinx.【考点】导数在最大值、最小值问题中的应用;函数恒成立问题;不等式的证明.【分析】(1)利用导数的运算法则可得f′(x),对a分类讨论,当a ≤0时,f'(x)>0,故f(x)单调递增,舍去.当a>0时,f'(x)=0有唯一解x=x0,此时,求出极值,进而得出答案.(2)①当a≤0时,不符合题意.当a>0时,由(1)可知,f(x)=a﹣alna,故只需a﹣alna≥1.令,上式即转化为lnt≥t﹣1,min利用导数研究其单调性极值即可得出.②由①可知x2e x﹣xlnx≥x2+x,因而只需证明:∀x>0,恒有x2+x>2lnx+2sinx.注意到前面已经证明:x﹣1≥lnx,因此只需证明:x2﹣x+2>2sinx.对x分类讨论,利用导数研究函数的单调性极值即可得出.【解答】解:(1)f(x)=xe x﹣alnx﹣ax,x>0,则.当a≤0时,f'(x)>0,故f(x)单调递增,故不可能存在两个零点,不符合题意;当a>0时,f'(x)=0有唯一解x=x0,此时,则.注意到,因此.(2)①当a<0时,f(x)单调递增,f(x)的值域为R,不符合题意;当a=0时,则,也不符合题意.当a>0时,由(1)可知,f(x)min=a﹣alna,故只需a﹣alna≥1.令,上式即转化为lnt≥t﹣1,设h(t)=lnt﹣t+1,则,因此h(t)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)max=h(1)=0,所以lnt≤t﹣1.因此,lnt=t﹣1⇒t=1,从而有.故满足条件的实数为a=1.②证明:由①可知x2e x﹣xlnx≥x2+x,因而只需证明:∀x>0,恒有x2+x>2lnx+2sinx.注意到前面已经证明:x﹣1≥lnx,因此只需证明:x2﹣x+2>2sinx.当x>1时,恒有2sinx≤2<x2﹣x+2,且等号不能同时成立;当0<x≤1时,设g(x)=x2﹣x+2﹣2sinx,则g'(x)=2x﹣1﹣2cosx,当x∈(0,1]时,g'(x)是单调递增函数,且,因而x∈(0,1]时恒有g'(x)<0;从而x∈(0,1]时,g(x)单调递减,从而g(x)≥g(1)=2﹣2sin1>0,即x2﹣x+2>2sinx.故x2e x>(x+2)lnx+2sinx.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.若曲线C的左焦点F在直线l上,且直线l与曲线C交于A,B两点.(1)求m的值并写出曲线C的直角坐标方程;(2)求的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线l的参数方程为(t为参数),消去参数t可得普通方程.曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.利用互化公式可得曲线C的直角坐标方程,可得其左焦点,即可得出m.(2)直线l的参数方程为,与曲线C的方程联立,利用根与系数的关系、弦长公式即可得出.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t可得普通方程:x﹣y=m.曲线C的极坐标方程为2ρ2﹣ρ2cos2θ=12.可得曲线C的直角坐标方程:2(x2+y2)﹣(x2﹣y2)=12,∴曲线C的标准方程为,则其左焦点为,故,曲线C的方程.(2)直线l的参数方程为,与曲线C的方程联立,得t'2﹣2t'﹣2=0,则|FA|•|FB|=|t'1t'2|=2,第31页(共31页),故.[选修4-5:不等式选讲]23.设函数f (x )=2x ﹣a ,g (x )=x +2.(1)当a=1时,求不等式f (x )+f (﹣x )≤g (x )的解集; (2)求证:中至少有一个不小于. 【考点】反证法的应用;绝对值不等式的解法.【分析】(1)利用绝对值的意义,分类讨论,即可求不等式f (x )+f (﹣x )≤g (x )的解集;(2)利用反证法证明即可.【解答】(1)解:当a=1时,|2x ﹣1|+|2x +1|≤x +2,无解;,解得;,解得.综上,不等式的解集为. (2)证明:若都小于, 则,前两式相加得与第三式矛盾.故中至少有一个不小于.。
2019年北京市高考数学一模试卷(理科)(解析版)2019年北京市高考数学一模试卷(理科)一、选择题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z=i(1+i),则|z|等于()A。
2B。
√2C。
1D。
2√22.在方程r=2cosθ+3sinθ(θ为参数)所表示的曲线上的点是()A。
(2.-7)B。
(3.1)C。
(1.5)D。
(2.1)3.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则Sn=()A。
5anB。
6anC。
7anD。
14an4.将函数y=sin2x的图象向左平移π/4个单位后得到函数y=g(x)的图象。
则函数g(x)的一个增区间是()A。
(π/4.3π/4)B。
(3π/4.5π/4)C。
(5π/4.7π/4)D。
(7π/4.9π/4)5.使“a>b”成立的一个充分不必要条件是()A。
a>b+1B。
a>b-1C。
a^2>b^2D。
a^3>b^36.下列函数:①y=-|x|;②y=(x-1)^3;③y=log2(x-1);④y=-6.在x中,在(1.+∞)上是增函数且不存在零点的函数的序号是()A。
①④B。
②③C。
②④D。
①③④7.某三棱锥的正视图和侧视图如图所示,则该三棱锥的俯视图的面积为()A。
6B。
8C。
10D。
128.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A。
336B。
510C。
1326D。
3603二、填空题共6小题,每小题5分,共30分。
9.在(1-x)^5的展开式中,x^2的系数为______(用数字作答)。
答案:1010.已知向量a=(1.b)。
b=(-2.-1),且向量a+b的模长为√10.则实数x=______。
2019年湖北省武汉二中高考理科数学全仿真试卷一、选择题(每小题5分,共60分)1.(5分)已知集合A={x|x<1},B={x|2x>1},则()A.A∪B={x|x<1} B.A∪B={x|x>0} C.A∩B={x|0<x<1} D.A∩B={x|x<0}2.(5分)设复数z1满足,z2=a+i(a∈R),且|z1﹣z2|=5,则a=()A.1 B.7 C.﹣1 D.1或73.(5分)已知数列{a n}满足a1=1,,若 , ,则数列{a n}的通项a n=()A.B.C.D.4.(5分)已知p:ln(x﹣1)<0,q:x(x﹣2)≥0,则下列说法正确的是()A.¬p是q的充分不必要条件B.q是¬p的充分不必要条件C.p是q的充分不必要条件D.对∀x∈R,¬p和¬q不可能同时成立5.(5分)若函数f(x),, >的最小值为f(2),则实数a的取值范围为()A.a<0 B.a>0 C.a≤0 D.a≥06.(5分)已知a>b>0,且a+b=1,x=()b,y=log ab(),z=log b,则x,y,z的大小关系是()A.z>x>y B.x>y>z C.z>y>x D.x>z>y7.(5分)某四棱锥的三视图如图所示,则该四棱锥的四个侧面三角形中,最大面积为()A.B.6 C.D.8.(5分)中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术,蕴涵了极致的数学美和丰富的传统文化信息.现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为()A.B.C.D.9.(5分)过△ABC内一点M任作一条直线l,再分别过顶点A,B,C作l的垂线,垂足分别为D,E,F,若恒成立,则点M是△ABC的()A.垂心B.重心C.外心D.内心10.(5分)已知函数f(x)=2cos x,且函数y=f(ωx)在,上单调递增,则正数ω的最大值为()A.B.1 C.D.11.(5分)在直角坐标平面内,已知A(﹣2,0),B(2,0)以及动点C是△ABC的三个顶点,且sin A sin B ﹣2cos C=0,则动点C的轨迹曲线Γ的离心率是()A.B.C.D.12.(5分)已知函数f(x),, >,g(x)=f(x)﹣ax,若g(x)有4个零点,则a的取值范围为()A.(0,)B.(0,)C.(, )D.(, )二、填空题(每小题5分,共20分)13.(5分)电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是“中华诗词”“社会主义核心价值观”“依法治国理念”“中国戏剧”“创新能力”.某参赛队从中任选2个主题作答,则“中华诗词”主题被该队选中的概率是.14.(5分)若在关于x的展开式中,常数项为4,则x2的系数是15.(5分)F1,F2分别是双曲线>>左右焦点,P是双曲线上一点,△PF1F2内切圆被渐近线所截得弦长不大于实半轴,且与y轴相切,则双曲线离心率取值范围是.16.(5分)已知正三棱柱ABC﹣A1B1C1的底面边长为2,D为BB1的中点,平面ADC1与平面ABC所成的锐二面角的正切值是,则四棱锥A﹣BCC1B1外接球的表面积为.三、解答题(第17-21题每题12分,第22、23题任选一题作答,计10分,共70分)17.已知△ABC中,内角A,B,C所对的边分别为a,b,c,若sin(A+C)=4sin2.(1)求cos B;(2)若b=2,△ABC面积为2,求a+c的值.18.依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.试估计该河流在8月份水位的中位数;(I)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;(Ⅱ)该河流域某企业,在8月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.现此企业有如下三种应对方案:试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.19.如图,已知圆柱OO1,底面半径为1,高为2,ABCD是圆柱的一个轴截面,动点M从点B出发沿着圆柱的侧面到达点D,其路径最短时在侧面留下的曲线记为Γ:将轴截面ABCD绕着轴OO1,逆时针旋转θ(0<θ<π)角到A1B1C1D1位置,边B1C1与曲线Γ相交于点P.(1)当时,求证:直线D1B1⊥平面APB;(2)当时,求二面D﹣AB﹣P的余弦值.20.已知O为坐标原点,点 , , , , , ,动点N满足,点P为线段NF1的中点.抛物线C:x2=2my(m>0)上点A的纵坐标为.(1)求动点P的轨迹曲线W的标准方程及抛物线C的标准方程;(2)若抛物线C的准线上一点Q满足OP⊥OQ,试判断是否为定值,若是,求这个定值;若不是,请说明理由.21.设函数f(x)=e x﹣b(1+lnx).(1)证明f(x)的图象过一个定点A,并求f(x)在点A处的切线方程;(2)已知b>0,讨论f(x)的零点个数.22.以坐标原点O为极点,以x轴正半轴为极轴,建立的极坐标系中,直线C1:ρsin(θ);在平面直角坐标系xOy中,曲线C2:(φ为参数,a>0).(1)求直线C1的直角坐标方程和曲线C2的极坐标方程;(2)曲线C3的极坐标方程为(ρ>0),且曲线C3分别交C1,C2于A,B两点,若|OB|=4|OA|,求a的值.23.已知函数f(x)=|2x+1|+|ax﹣1|.(1)当a=﹣1时,求不等式f(x)>2的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.2019年湖北省武汉二中高考数学全仿真试卷(理科)(5月份)参考答案与试题解析一、选择题(每小题5分,共60分)1.【解答】解:由2x>1得x>0,所以B={x|x>0}.所以A∩B={x|0<x<1}.A∪B=R,故选:C.2.【解答】解:由,得z14+5i,又z2=a+i,∴z1﹣z2=(4﹣a)+4i,再由|z1﹣z2|=5,得(4﹣a)2+16=25,解得a=1或7.故选:D.3.【解答】解:由 , ,可得:2,3﹣1=2,∴数列是等比数列,首项为2,公比为2.∴2n.∴2n﹣1+2n﹣2+…+2+12n﹣1.∴a n.故选:B.4.【解答】解:已知p:ln(x﹣1)<0,q:x(x﹣2)≥0,解得:p即为“1<x<2”,q即为“x≤0或x≥2”,则:¬p:x≤1或x≥2;¬q:0<x<2;由充要条件的定义可知答案B成立.故选:B.5.【解答】解:当x≤2时,f(x)=2|x﹣2|=22﹣x,单调递减,∴f(x)的最小值为f(2)=1,当x>2时,f(x)=log2(x+a)单调递增,若满足题意,只需log2(x+a)≥1恒成立,即x+a≥2恒成立,∴a≥(2﹣x)min,∴a≥0,故选:D.6.【解答】解:∵a>b>0,a+b=1,∴1>a>>b>0,∴1<<,∴x=()b>()0=1,y=log(ab)()=log(ab)1,z=log b log b a>﹣1.∴x>z>y.故选:D.7.【解答】解:根据题中所给的三视图,可得该几何体是底面边长为3的正方形的四棱锥,且高为2,从而可求得其四个侧面三角形面积分别为,,通过比较可得最大的面积为.故选:D.8.【解答】解:如图所示,设正方形的边长为2,其中的4个圆过正方形的中心,且内切正方形的两邻边的小圆的半径为r,故BE=O2E=O2O=r,∴BO2r,∵BO2+O2O=BO BD,∴r+r,∴r,∴黑色部分面积S=π()2π,正方形的面积为1,∴在正方形内随机取一点,则该点取自黑色部分的概率为π,故选:A.9.【解答】解:本题采用特殊位置法较为简单.因为过△ABC内一点M任作一条直线,可将此直线特殊为过点A,则|AD|=0,有.如图:则有直线AM经过BC的中点,同理可得直线BM经过AC的中点,直线CM经过AB的中点,所以点M是△ABC的重心.故选:B.10.【解答】解:依题意,f(x)=2cos x=cos x•sin x,则f(ωx),又函数y=f(ωx)在,上单调递增,∴,即0<ω,∴2,即,则,得ω≤1.故选:B.11.【解答】解:∵sin A sin B﹣2cos C=0,∴sin A sin B=2cos C=﹣2cos(A+B)=﹣2(cos A cos B﹣sin A sin B),∴sin A sin B=2cos A cos B,即tan A tan B=2,∴k AC•k BC=﹣2,设C(x,y),又A(﹣2,0),B(2,0),所以有(y≠0),整理得 , ,∴a,c=2,离心率为:故选:A.12.【解答】解:由题意,可知:①当x=0时,g(0)=f(0)﹣0=0,∴x=0为g(x)的1个零点.②当x≠0时,由题意,可得:a,, >,即:y=a与y,, >有3个交点且交点的横坐标都不为0.可设h(x),x>0,则h′(x),令h′(x)0,解得:x,则函数h(x)在(0,)单调递增,在(,+∞)上单调递减.∴y,, >的大致图象如下:又∵h(),若y=a与y,, >有3个交点且交点的横坐标不为0,则必有0<a<.故选:B.二、填空题(每小题5分,共20分)13.【解答】解:由于知识竞赛有五个板块,所以共有5种结果,某参赛队从中任选2个主题作答,选中的结果为2种,则“中华诗词”主题被选中的概率为P(A).故答案为:14.【解答】解:由(1)8展开式的通项为T r+1()r=(﹣1)r x,所以关于x的展开式中常数项为(﹣1)0•a=a=4,所以关于x的展开式中x2项的系数为4•(﹣1)63•(﹣1)356,故答案为:﹣56.15.【解答】解:根据题意,不妨设P在第一象限,M,N,A分别为△PF1F2内切圆与△PF1F2三边的切点,如图所示:∵2a=|PF1|﹣|PF2|=(|PM|+|MF1|)﹣(|PN|+|NF2|)=|MF1|﹣|NF2|=|AF1|﹣|AF2|,∴A在双曲线上,故△PF1F2内切圆圆心为(a,a),半径为a,∴圆心到渐近线bx+ay=0的距离是d∴弦长BC=222a,依题得2a a,即.∴b﹣a c,∴b2≥(c+a)2,∵b2=c2﹣a2,∴c2﹣4ac﹣8a2≥0,同时除以a2得e2﹣4e﹣8≥0∴e≥22,故答案为e∈[22,+∞).16.【解答】解:如图,延长C1D与CB的延长线交于点M,连接AM.∵B1C1∥BC,D为BB1的中点,∴D也是C1M的中点,又取E是AC1的中点,∴AM∥DE.∵DE⊥平面ABB1A1,∴AM⊥平面ACC1A1.∴∠C1AC为平面AC1D与平面ABC所成二面角的平面角.∴tan∠C1AC,∴,又AC,则,又四棱锥A﹣BCC1B1外接球即为正三棱柱ABC﹣A1B1C1的外接球,其球心在底面ABC中心正上方的处,又底面外接圆的半径为2r,∴,∴四棱锥A﹣BCC1B1外接球的表面积4πR2=19π,故答案为:19π.三、解答题(第17-21题每题12分,第22、23题任选一题作答,计10分,共70分)17.【解答】解:(1)由题设及A+B+C=π,得:sin B=4sin2,故sin B=2(1﹣cos B).上式两边平方,整理得:5cos2B﹣8cos B+3=0,解得:cos B=1(含去),cos B.(2)由cos B,得sin B,又S△ABC ac sin B=2,则ac=5.由余弦定理,b2=a2+c2﹣2ac cos B=(a+c)2﹣2ac(1+cos B)=(a+c)2﹣16=4.所以a+c=2.18.【解答】解:频率分布直方图中6个小矩形的面积分别是0.1,0.25,0.3,0.2,0.1,0.05,设8月份的水位中位数为x,则35<x<40,∴0.1+0.25+(x﹣35)×0.06=0.5,解得x=37.5.∴8月份的水位中位数为37.5.(I)设该河流8月份水位小于40米为事件A1,水位在40米至50米为事件A2,水位大于50为事件A3,在P(A1)=0.1+0.25+0.3=0.65,P(A2)=0.2+0.1=0.3,P(A3)=0.05.设发生小型灾害为事件B,由条形图可知:P(B|A1)=0.1,P(B|A2)=0.2,P(B|A3)=0.6,∴P(A1B)=P(A1)P(B|A1)=0.065,P(A2B)=P(A2)P(B|A2)=0.06,P(A3B)=P(A3)P(B|A3)=0.03.∴P(B)=P(A1B)+P(A2B)+P(A3B)=0.155.(II)由(I)可知8月份该河流不发生灾害的概率为0.65×0.9+0.3×0.75+0.05×0=0.81,发生1级灾害的概率为0.155,发生2级灾害的概率为1﹣0.81﹣0.155=0.035.设第i种方案的企业利润为X i(i=1,2,3),若选择方案一,则X1的取值可能为500,﹣100,﹣1000,∴P(X1=500)=0.81,P(X1=﹣100)=0.155,P(X1=﹣1000)=0.035.∴X1的分布列为:∴E(X1)=500×0.81﹣100×0.155﹣1000×0.035=354.5(万元).若选择方案二,则X2的取值可能为460,﹣1040,且P(X2=460)=0.81+0.155=0.965,P(X2=﹣1040)=0.035.X2的分布列为:∴E(X2)=460×0.965﹣1040×0.035=407.5(万元).若选择方案三,则X3的可能取值为400,﹣200.X3的分布列为:∴E(X3)=400×0.845﹣200×0.155=307(万元).∴E(X2)>E(X1)>E(X3),∴从利润考虑,该企业应选择第二种方案.19.【解答】证明:(1)方法一:当时,建立如图所示的空间直角坐标系,则有A(0,﹣1,0),B(0,1,0),P(﹣1,0,1),C1(﹣1,0,2),B1(﹣1,0,0),D1(1,0,2),(0,2,0),(﹣1,1,1).设平面ABP的法向量为(x,y,z),则,可取x=1,得(1,0,1),∵(﹣2,0,﹣2),∴∥.∴直线D1B1⊥平面APB.方法二:在正方形A1B1C1D1中,OP∥A1C1,D1B1⊥A1C1,∴OP⊥B1D1,AB⊥OO1,AB⊥A1B1,OO1∩A1B1=O,∴AB⊥平面A1B1C1D1,又B1D1⊂平面A1B1C1D1,∴AB⊥BD,又OP⊥B1D1,AB∩OP=O,AB,OP⊂平面APB,∴直线D1B1⊥平面APB.解:(2)当时,以AB所在直线为y轴,过点O与AB垂直的直线为x轴,OO1所在的直线为z轴,建立如图空间直角坐标系,A(0,﹣1,0),P(,,),B(0,1,0),(, ,),(0,2,0),设平面ABP的法向量为(x,y,z),则,取x=2,得(2,0,3),又平面ABD的一个法向量为(1,0,0),则|cos<,>|,所以二面角D﹣AB﹣P的余弦值为.20.【解答】解:(1)由题知|PF2|,|PF1|;∴|PF1|+|PF2|2 >|F1F2|=2,因此动点P的轨迹W是以F1,F2为焦点的椭圆,且2a=2,2c=2,∴b=1,∴曲线W的标准方程为:y2=1;又由题知:点A的纵坐标为,;∴, , ,∴x A=2;又∵点A(2,)在抛物线x2=2my(m>0)上,∴12=2m,解得m;所以抛物线C的标准方程为y.(2)设P(x P,y P),则N(2x P,2y P),Q(t,);由题知OP⊥OQ,∴,即;∴;由∵1,∴1,∴1;∴为定值,且定值为1.21.【解答】解:(1)由f()=e b(1+ln)=e,则f(x)的图象经过定点A(,e),由f′(x)=e x,可得切线的斜率为f′()=e be,可得f(x)在点A处的切线方程为y﹣e(e be)(x),即y=(e be)x+e(1)+b;(2)f′(x)=e x,令g(x)=xe x﹣b,则g′(x)=e x(x+1)>0,g(x)在(0,+∞)上单调递增,由g(0)=﹣b<0,g(b)=b(e b﹣1)>0,可得存在唯一x1∈(0,b),使g(x1)=x1e b=0 且当0<x<x1时,g(x)<0即f′(x)<0;当x>x1时,g(x)>0即f′(x)>0,可得f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,可得f(x)min=f(x1)=e b(lnx1+1)=e x1e(lnx1+1)=x1e(lnx1﹣1),令h(x)lnx﹣1,则h(x)在(0,+∞)上递减,且h(1)=0,①0<x1<1时,即b=x1e∈(0,e)时,h(x1)>h(1)=0,可得f(x1)>0,f(x)在(0,+∞)上无零点;②x1=1时,即b=e时,h(x1)=0,即f(x1)=0,f(x)在(0,+∞)上存在唯一零点x1;③1<x1<b时,即b=x1e∈(e,+∞)时,h(x1)<h(1)=0,即f(x1)<0,又f()=e>0,令m(x)=e x﹣2x(x>e),则m′(x)=e x﹣2>0,m(x)在(e,+∞)上单增,则m(x)>m(e)=e e﹣2e=e(e e﹣1﹣2)>0,e x>2x在(e,+∞)上恒成立,e b>2b>b>x1,又f(e b)=e b(lne b+1)=e b(b+1)>e2b﹣b(b+1),e b>b,e b>2b>b+1,可得e2b>b(b+1),即f(e b)>0,f(x)在(,x1),(x1,e b)上各存在一个零点.综上所述,0<b<e时,f(x)无零点;b=e时,f(x)有一个零点;b>e时,f(x)有两个零点.22.【解答】解:(1)由ρsin(θ),得,即x+y=1.由,消去参数φ得C2的普通方程:x2+(y﹣1)2=a2.又x=ρcosθ,y=ρsinθ,得C2的极坐标方程为:(ρcosθ)2+(ρsinθ﹣1)2=a2.即C2的极坐标方程为ρ2﹣2ρsinθ+1﹣a2=0;(2)曲线C3的直角坐标方程为y=x(x>0),由,得A(,).|OA|,|OB|.即点B的极坐标为(,),代入ρ2﹣2ρsinθ+1﹣a2=0,得a.23.【解答】解:(1)当a=﹣1时,f(x)=|2x+1|+|x+1|∴f(x)>2等价于>>或>或<>,解得:x>0或<,∴f(x)>2的解集为{x|<或x>0};(2)∵0<a<2,∴>,2+a>0,2﹣a>0,则f(x)=|2x+1|+|ax﹣1|,<,,>,∴函数f(x)在(∞,)上单调递减,在[,]上单调递增,在(,∞)上单调递增,∴当时,f(x)取得最小值,∵对∀x∈R,恒成立,∴,又∵a>0,∴a2+2a﹣3≥0,解得a≥1(a≤﹣3不合题意),∴a的最小值为1.。
………外…………○…学校:_…………○…………装…………○…绝密★启用前广东省百校联考2019届高三高考模拟数学(理科)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.若集合A ={x|3−2x <1}, B ={x|3x −2x 2≥0},则A ∩B =( ) A . (1,2] B . (1,94] C . (1,32] D . (1,+∞)2.已知复数z 满足(z +3)(1−i )=6−4i (i 为虚数单位),则z 的共轭复数所对应的点在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 3.已知sinα+cosα=−75, 2sinα−cosα=−25,则cos2α=( ) A .725B . −725C .1625D . −16254.如图1为某省2018年1~4月快递义务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误..的是( )A . 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B . 2018年1~4月的业务量同比增长率超过50%,在3月最高…○…………※※请※※不※○……全一致D . 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长5.在△ABC 中,内角A,B,C 所对的边分别是a,b,c ,若C =π4, a =4, S △ABC =2,则2a+3c−b 2sinA+3sinC−sinB= ( )A . √5B . 2√5C . 2√7D . 2√136.已知平面向量a ⃗,b ⃑ 满足|a |=2, |b ⃑ |=1,且(4a ⃗−b ⃑ )⋅(a ⃗+3b ⃑ )=2,则向量a ⃗, b ⃑ 的夹角θ为( )A . π6 B . π3 C . π2 D .2π37.为了得到y =−2cos2x 的图象,只需把函数y =√3sin2x −cos2x 的图象( )A . 向左平移π3个单位长度 B . 向右平移π3个单位长度C . 向左平移π6个单位长度 D . 向右平移π6个单位长度8.已知抛物线C 1: x 2=2py(y >0)的焦点为F 1,抛物线C 2:y 2=(4p +2)x 的焦点为F 2,点P(x 0,12)在C 1上,且|PF 1|=34,则直线F 1F 2的斜率为( )A . −12B . −14C . −13D . −159.如图,B 是AC 上一点,分别以AB, BC, AC 为直径作半圆.从B 作BD ⊥AC ,与半圆相交于D .AC =6, BD =2√2,在整个图形中随机取一点,则此点取自图中阴影部分的概率是( )A . 29B . 13C . 49D . 2310.某几何体的三视图如图所示,则该几何体的各条棱中,最长的棱与最短的棱所在直线所成角的正切值为( )……线…………○………………○…………装…………○…A . √5B . √6C . √7D . 2√2 11.已知双曲线x 2a−y 2b =1(a >0,b >0)的离心率为2,F 1, F 2分别是双曲线的左、右焦点,点M(−a,0),N(0,b),点P 为线段MN 上的动点,当PF 1⃑⃑⃑⃑⃑⃑⃑ ⋅PF 2⃑⃑⃑⃑⃑⃑⃑ 取得最小值和最大值时,△PF 1F 2的面积分别为S 1, S 2,则S1S 2=( )A . 4B . 8C . 2√3D . 4√312.已知函数f(x)=a x +e x −xlna (a >0, a ≠1),对任意x 1, x 2∈[0,1],不等式|f(x 2)−f(x 1)|≤a −2恒成立,则a 的取值范围为( ) A . [12,e 2] B . [e e ,+∞) C . [12,+∞) D . [e 2,e e ]第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.在(x+2x)4的展开式中,含x−2的项的系数是____________.14.已知实数x,y满足{y≥−13x+23,y≤−2x−1,y≤12x+4,则目标函数z=3x−y的最大值为____________.15.已知f(x), g(x)分别是定义在R上的奇函数和偶函数,且g(0)=0,当x≥0时,f(x)−g(x)=x2+2x+2x+b(b为常数),则f(−1)+g(−1)=____________.16.在四面体A−BCD中,AB=AC=AD=BC=BD=2,若四面体A−BCD的外接球的体积V=8√23π,则CD=____________.三、解答题17.已知数列{a n}的前n项和为S n,满足S1=1,且对任意正整数n,都有S n+1n+1+n=S n+1−S n.(1)求数列{a n}的通项公式;(2)若b n=a n2n,求数列{b n}的前n项和T n.18.某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:A类(不参加课外阅读),B类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表:……○…………装……学校:___________姓名:__…装…………○…………订…………○(2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加阅读与否”与性别有关;(3)从抽出的女生中再随机抽取3人进一步了解情况,记X 为抽取的这3名女生中A 类人数和C 类人数差的绝对值,求X 的数学期望. 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).19.如图,在五面体ABCDFE 中,底面ABCD 为矩形,EF //AB ,BC ⊥FD ,过BC 的平面交棱FD 于P ,交棱FA 于Q .(1)证明:PQ //平面ABCD ;(2)若CD ⊥BE, EF =EC, CD =2EF, BC =tEF ,求平面ADF 与平面BCE 所成锐二面角的大小.20.已知F 为椭圆C:x 2a 2+y 2b 2=1(a >b >0)的右焦点,点P(2,3)在C 上,且PF ⊥x 轴. (1)求C 的方程;(2)过F 的直线l 交C 于A,B 两点,交直线x =8于点M .判定直线PA, PM, PB 的斜率是否依次构成等差数列?请说明理由. 21.设函数f(x)=xe x +a(1−e x )+1. (1)求函数f(x)的单调区间;(2)若函数f(x)在(0,+∞)上存在零点,证明:a >2. 22.[选修4—4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 1的参数方程为{x =5cosαy =5+5sinα(α为参数).M 是曲线C 1上的动点,将线段OM 绕O 点顺时针旋转90°得到线段ON ,设点N 的轨迹为曲线C 2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 1, C 2的极坐标方程;(2)在(1)的条件下,若射线θ=π3(ρ≥0)与曲线C 1, C 2分别交于A,B 两点(除极点外),且有定点T(4,0),求△TAB 的面积.23.[选修4—5:不等式选讲]已知函数f(x)=|x +m |−|2x −2m | (m >0).(1)当m =12时,求不等式f(x)≥12的解集;(2)对于任意的实数x ,存在实数t ,使得不等式f(x)+|t −3|<|t +4|成立,求实数m 的取值范围.参考答案1.C【解析】【分析】先化简集合,再根据集合交集的定义求解.【详解】因为A={x|x>1},B={x|0≤x≤32},所以A∩B={x|1<x≤32}.故选C.【点睛】本题考查了集合的交集运算,A∩B可理解为:集合A和集合B中的所有相同的元素的集合. 一般步骤为:先明确集合,即化简集合,然后再根据集合的运算规则求解.2.D【解析】【分析】利用复数的乘除运算性质可求得z=2+i,从而可得z=2−i,根据复数的几何意义可得解.【详解】因为z=6−4i1−i −3=(6−4i)⋅(1+i)(1−i)⋅(1+i)−3=−4i2+2i+61−i2−3=2+i,所以z=2−i,其在复平面对应的点为(2,−1),位于第四象限,故选D.【点睛】解答与复数有关的问题时,通常需要先把所给的复数化为a+bi (a,b∈R)的形式,再根据题意求解,复数z=a+bi(a,b∈R)在复平面的对应点坐标是(a,b)3.A【解析】【分析】联立两个等式得方程组,解得sina的值,再根据二倍角的余弦公式求解.【详解】因为{sinα+cosα=−752sinα−cosα=−25,所以sinα=−35,从而cos2α=1−2sin2α=725.故选A.【点睛】本题考查了根据二倍角的余弦公式求值,二倍角的余弦公式:cos2a=1−2sin2a= 2cos2a−1=cos2a−sin2a4.D【解析】【分析】由题意结合所给的统计图确定选项中的说法是否正确即可.【详解】对于选项A: 2018年1~4月的业务量,3月最高,2月最低,差值为4397−2411=1986,接近2000万件,所以A是正确的;对于选项B: 2018年1~4月的业务量同比增长率分别为55%,53%,62%,58%,均超过50%,在3月最高,所以B是正确的;对于选项C:2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C是正确的;对于选项D,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D错误.本题选择D选项.【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.5.B【解析】【分析】根据三角形的面积公式求得b的值,再根据余弦定理求得c的值,再根据正弦定理求解2a+3c−b2sinA+3sinC−sinB的值.【详解】C =π4, a =4, S △ABC =12absinC =12×4×b ×√22=2,得b =√2,又根据余弦定理得:c 2=a 2+b 2−2abcosC =10,即c =√10,所以2a+3c−b2sinA+3sinC−sinB =2R =csinC =2√5. 故选B. 【点睛】本题考查了三角形的面积公式,正弦定理,余弦定理的应用,考查了运算求解能力 ;熟练掌握公式和定理是解答本题的关键.6.D 【解析】 【分析】展开(4a ⃗−b ⃑ )⋅(a ⃗+3b⃑ ),利用向量的数量积公式,解得cosθ=−12,进而求解θ的值. 【详解】因为(4a ⃗−b ⃑ )⋅(a ⃗+3b ⃑ )=4a ⃗2−3b ⃑ 2+11a ⃗⋅b ⃑ =2 ,已知 |a |=2, |b ⃑ |=1,解得a ⃗⋅b ⃑ =−1, 由a ⃗⋅b ⃑ =|a |⋅|b⃑ |cosθ=2cosθ=−1,得cosθ=−12,所以θ=2π3.故选D 【点睛】本题考查了平面向量的数量积以及向量的夹角,考查了运算求解能力;在解题时要注意两向量夹角的范围是[0,π].7.D 【解析】 【分析】逆用两角和的余弦公式,得y =√3sin2x −cos2x =−2cos [2(x +π6)],再分析两个函数图象的变换. 【详解】因为y =√3sin 2x −cos 2x =−2cos (2x +π3)=−2cos [2(x +π6)] ,故选D.要得到函数y =−2cos2x ,只需将y =√3sin2x −cos2x 的图象向右平移π6个单位长度即可. 【点睛】本题考查了三角函数的图象与变换,考查了两角和的余弦公式的应用;解决三角函数图象的变换问题,首先要把变换前后的两个函数化为同名函数. 8.B 【解析】 【分析】根据抛物线的定义,求得p 的值,即可得抛物线C 1,C 2的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解. 【详解】因为|PF 1|=34,所以12+p 2=34,解得p =12. C 1:x 2=y, C 2:y 2=4x, F 1(0,14), F 2(1,0),所以直线F 1F 2的斜率为140−1=−14.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置. 9.C 【解析】 【分析】求得阴影部分的面积和最大的半圆的面积,再根据面积型几何概型的概率计算公式求解. 【详解】 连接AD,CD ,可知△ACD 是直角三角形,又BD ⊥AC ,所以BD 2=AB ⋅BC ,设AB =x(0<x <6),则有8=x(6−x),得x =2,所以AB =2, BC =4,由此可得图中阴影部分的面积等于π×322−(π×122+π×222)=2π,故概率P =2π12×9π=49.故选C【点睛】本题考查了与面积有关的几何概型的概率的求法,当试验结果所构成的区域可用面积表示,用面积比计算概率.涉及了初中学习的射影定理,也可通过证明相似,求解各线段的长. 10.C【解析】【分析】由三视图还原几何体,采用补形法补成长方体,可知最长的棱与最短的棱,再求异面直线所成角的正切值.【详解】如图,AB=√5,BD=1, CD=√2,将四面体补成长方体,则BC=√3,可知最长的棱为长方体的体对角线AC=2√2,最短的棱为BD=1,BD平行与CE,异面直线AC与BD所成的角为∠ACE,因为BE=CD=√2, 则AE=√7,因为BD=CE=1,且根=√7.据面面垂直和线面垂直的性质,可知CE⊥AE,所以tan∠ACE=AECE故选C.【点睛】本题综合考查了由三视图还原几何体,考查了求异面直线夹角,考查了面面垂直和线面垂直的性质,涉及了长方体的结构特征;把不规则的几何体补成规则几何体,把不熟悉的几何体补成熟悉的几何体,便于计算求解.11.A【解析】【分析】根据离心率公式和双曲线方程的a ,b ,c 的关系,可知c =2a, b =√3a ,根据题意表示出点p (m,√3m +√3a)和m 的取值范围,利用平面向量数量积的坐标表示得关于m 的一元二次函数,问题转化为求在给定区间内二次函数的最大值与最小值,进而问题得解. 【详解】由e =ca =2,得c =2a, 则b =√3a ,故线段MN 所在直线的方程为y =√3(x +a),又点P 在线段MN 上,可设P(m,√3m +√3a),其中m ∈[−a,0],由于F 1(−c,0), F 2(c,0),即F 1(−2a,0), F 2(2a,0),得PF 1⃑⃑⃑⃑⃑⃑⃑ =(−2a −m,−√3m −√3a), PF 2⃑⃑⃑⃑⃑⃑⃑ =(2a −m,−√3m −√3a),所以PF 1⃑⃑⃑⃑⃑⃑⃑ ⋅PF 2⃑⃑⃑⃑⃑⃑⃑ =4m 2+6ma −a 2=4(m +34a)2−134a 2.由于m ∈[−a,0],可知当m =−34a 时,PF 1⃑⃑⃑⃑⃑⃑⃑ ⋅PF 2⃑⃑⃑⃑⃑⃑⃑ 取得最小值,此时y P =√34a , 当m =0时,PF 1⃑⃑⃑⃑⃑⃑⃑ ⋅PF 2⃑⃑⃑⃑⃑⃑⃑ 取得最大值,此时y P =√3a ,则S 2S 1=√3a √34a=4.故选A.【点睛】本题考查了平面向量在解析几何中应用,涉及了双曲线的简单性质,平面向量的数量积表示,二次函数在给定区间的最值问题;关键是利用向量作为工具,通过运算脱去“向量外衣”,将曲线上的点的坐标之间的关系转化为函数问题,进而解决距离、夹角、最值等问题. 12.B 【解析】 【分析】先求导函数f ′(x),经过分析a 的取值范围,可知f(x) )在x ∈[0,1]是单调递增的,则不等式恒成立就转化为函数在区间内f(x)max −f(x)min ≤a −2,进而解不等式,可得a 的取值范围. 【详解】因为f(x)=a x +e x −xlna ,所以f ′(x)=a x lna +e x −lna =(a x −1)lna +e x . 当a >1时,对任意的x ∈[0,1],a x −1≥0, lna >0,恒有f ′(x)>0; 当0<a <1时,a x −1≤0, lna <0,恒有f ′(x)>0, 所以f(x)在x ∈[0,1]是单调递增的.那么对任意的x 1, x 2∈[0,1],不等式|f(x 2)−f(x 1)|≤a −2恒成立,只要f(x)max−f(x)min≤a−2,且a≥2,f(x)max=f(1)=a+e−lna,f(x)min=f(0)=1+1=2,所以a−2≥a+e−lna−2,即lna≥e, a≥e e.故选B.【点睛】本题考查了利用导数解决不等式的恒成立问题,涉及了求函数的导函数,导数与函数的单调性的关系,函数的最值等知识; 根据绝对值的意义,和函数的单调性,将含绝对值的不等式恒成立转化为函数最大值和最小值之间的差,是解决本题的基本思路.13.32【解析】【分析】利用二项展开式的通项公式求出含x−2的项,进而可得其系数.【详解】T r+1=C4r x4−r(2x )r=C4r⋅2r x4−2r,令4−2r=−2,得r=3,所以含x−2的项的系数为C43⋅23=32 .故填:32.【点睛】本题考查了二项展开式的通项公式,根据通项公式可求出对应项的系数.14.−4【解析】【分析】根据约束条件,画出可行域,再平移直线3x-y=0,确定取最大值时点的位置,进而求解.【详解】作可行域如图所示,由图可知,当z=3x−y过点B(−1,1)时,-z取得最小值4,则z取得最大值−4.故填:-4.【点睛】本题考查了线性规划求最值,解决这类问题一般要分三步:画出可行域、找出关键点、求出最值.线性规划求最值,通常利用“平移直线法”解决.15.−4【解析】【分析】根据函数的奇偶性,先求的b值,再代入x=1,求得f(1)−g(1)=4,进而求解f(−1)+g(−1)的值.【详解】由f(x)为定义在R上的奇函数可知f(0)=0,已知g(0)=0,所以f(0)−g(0)=20+b=0,得b=−1,所以f(1)−g(1)=4,于是f(−1)+g(−1)=−f(1)+g(1)=−[f(1)−g(1)]=−4.【点睛】本题考查了函数的奇偶性的应用,涉及了函数求值的知识;注意解析式所对应的自变量区间. 16.2√2【解析】【分析】设CD的中点为M,AB的中点为N,连接MN,可知球心O在MN上,连接CN,DN,OA,OD,设CD=2x,根据勾股定理,得方程,进而问题得解.设CD的中点为M,AB的中点为N,连接MN,由题目中已知条件可知,MN分别为CD,AB的垂直平分线,故四面体A−BCD的外接球球心O在线段MN上,连接CN,DN,OA,OD,设四面体A−BCD的外接球半径为r,由V=43πr3=8√23π,得r=√2.设CD=2x,在Rt△OAN中,ON=2−AN2=√2−1=1,在Rt△ADN中,DN=√AD2−AN2=√3,在Rt△DMN中,MN=√DN2−DM2=√3−x2,所以OM=MN−ON=√3−x2−1,在Rt△ODM中,OM2=OD2−DM2,由(√3−x2−1)2=2−x2,解得x=√2,所以CD=2√2.故填:2√2【点睛】本题考查了几何体的外接球的有关问题,关键是确定球心在几何体中的位置,根据已知条件,结合几何体的半径和表面积或体积公式求解.17.(1)a n=2n−1 (n∈N∗);(2)T n=3−2n+32n.【解析】【分析】(1)利用a n=S n−S n−1,(n≥2)结合已知条件,求得a n+1−a n=2,a2−a1=2,即可判断数列{a n}是首项为1,公差为2的等差数列,进而求得数列{a n}的通项公式;(2)采用错位相减法求数列{b n}的前n项和T n.(1)由S n+1n+1+n=S n+1−S n=a n+1,可得S n+1+n(n+1)=(n+1)a n+1,当n≥2时,S n+n(n−1)=na n,两式相减,得a n+1+2n=(n+1)a n+1−na n,整理得a n+1−a n=2,在S n+1n+1+n=a n+1中,令n=2,得S22+1=a2,即1+a2+2=2a2,解得a2=3,∴a2−a1=2,所以数列{a n}是首项为1,公差为2的等差数列,∴a n=1+2(n−1)=2n−1.(2)由(1)可得b n=a n2n =2n−12n,所以T n=12+322+523+⋯+2n−32n−1+2n−12n,①则12T n=122+323+524+⋯+2n−32n+2n−12n+1,②①−②,得12T n=12+222+223+224+⋯+22n−2n−12n+1,整理得12T n=32−22n−2n−12n+1=32−2n+32n+1,所以T n=3−2n+32n.【点睛】本题考查了求数列的通项公式和错位相减法求数列的和;已知S n−S n−1的形式的式子,通常与a n=S n−S n−1,(n≥2)联系起来求解.18.(1)4,2;(2)列联表见解析,没有90%的把握认为“参加阅读与否”与性别有关;(3)5156.【解析】【分析】(1)设被抽取的20人中,男、女生人数分别为n1, n2;根据分层抽样的原理,求得n1, n2,进而求得x,y的值;(2)根据题意填写列联表,计算K2,对照临界值得出结论(3)X可能的取值为0,1,2,3,根据组合数公式和古典概型概率公式计算概率,再得出X的数学期望.【详解】(1)设抽取的20人中,男、女生人数分别为n 1, n 2,则{n 1=20×12002000=12n 2=20×8002000=8 , 所以x =12−5−3=4, y =8−3−3=2. (2)列联表如下:K 2的观测值k =20×(4×6−2×8)212×8×14×6=1063≈0.159<2.706,所以没有90%的把握认为“参加阅读与否”与性别有关. (3)X 的可能取值为0,1,2,3, 则P(X =0)=C 33+C 21C 31C 31C 83=1956,P(X =1)=C 32C 31+C 32C 21+C 21C 32+C 22C 31C 83=37,P(X =2)=C 22C 31+C 32C 31C 83=314,P(X =3)=C 33C 83=156,所以EX =0×1956+1×37+2×1314+3×156=5156. 【点睛】本题考查了分层抽样原理,独立性检验思想,离散型变量的均值;用K 2的值可以决定是否拒绝原来的统计假设H 0,若K 2值较大,就拒绝H 0,即拒绝事件A 与事件B 无关;换一种说法:计算随机变量的观测值k 越大,说明“两个变量有关系”的可能性越大 19.(1)见解析; (2)π4. 【解析】【分析】(1)根据线面平行的判定与性质定理,证明PQ //平面ABCD ;(2)根据线面垂直的判定与性质,知CD ⊥CE ,BC ⊥CE ,以C 为坐标原点,CD ⃑⃑⃑⃑⃑ , CB ⃑⃑⃑⃑⃑ , CE ⃑⃑⃑⃑⃑ 所在方向为x,y,z 轴正方向,建立空间直角坐标系,用空间向量法求二面角的大小. 【详解】(1)证明:因为底面ABCD 为矩形,所以AD //BC ,又因为AD ⊂平面ADF ,BC ⊄平面ADF ,所以BC //平面ADF ,又因为BC ⊂平面BCPQ ,平面BCPQ ∩平面ADF =PQ ,所以BC //PQ , 又因为PQ ⊄平面ABCD ,BC ⊂平面ABCD ,所以PQ //平面ABCD . (2)解: ∵CD ⊥BE, CD ⊥CB, BE ∩CB =B ,∴CD ⊥平面BCE , 又因为CE ⊂平面BCE ,所以CD ⊥CE ;因为BC ⊥CD, BC ⊥FD, CD ∩FD =D ,所以BC ⊥平面CDFE ,所以BC ⊥CE ,以C 为坐标原点,CD ⃑⃑⃑⃑⃑ , CB ⃑⃑⃑⃑⃑ , CE ⃑⃑⃑⃑⃑ 所在方向为x,y,z 轴正方向建立如图所示空间直角坐标系C −xyz ,设EF =CE =1,则A(2,t,0), D(2,0,0), F(1,0,1),所以AD ⃑⃑⃑⃑⃑ =(0,−t,0), AF ⃑⃑⃑⃑⃑ =(−1,−t,1), 设平面ADF 的一个法向量为n ⃑ =(x,y,z),则{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =−ty =0n ⃑ ⋅AF ⃑⃑⃑⃑⃑ =−x −ty +z =0 ,令x =1,得n ⃑ =(1,0,1),易知平面BCE 的一个法向量为m ⃑⃑ =(1,0,0),设平面ADF 与平面BCE 所成的锐二面角为θ,则cosθ=|n ⃑ ⋅m ⃑⃑⃑ ||n ⃑ |⋅|m ⃑⃑⃑ |=√22, 所以θ=π4,故平面ADF 与平面BCE 所成锐二面角为π4. 【点睛】本题考查了线面平行的证明,考查了空间向量法求二面角,求二面角的空间向量坐标法的一般步骤:建立空间直角坐标系,确定点及向量的坐标,分别求出两个平面的法向量,通过两个法向量的夹角得出二面角的大小.另外需注意本题中所求的为锐二面角.20.(1)x216+y212=1;(2)见解析.【解析】【分析】(1)将点的坐标代入椭圆方程,结合椭圆方程中a,b,c的关系,求出a2,b2的值,进而求得椭圆标准方程;(2)联立椭圆方程和直线方程,利用一元二次方程的根与系数的关系,结合斜率公式,证得k1+k2=2k3,进而问题得证.【详解】(1)因为点P(2,3)在C上,且PF⊥x轴,所以c=2,由{4a2+9b2=1a2−b2=4,得{a2=16b2=12,故椭圆C的方程为x 216+y212=1.(2)由题意可知直线l的斜率存在,设直线l的的方程为y=k(x−2),令x=8,得M的坐标为(8,6k).由{x216+y212=1y=k(x−2),得(4k2+3)x2−16k2x+16(k2−3)=0.设A(x1,y1), B(x2,y2),则有x1+x2=16k24k2+3, x1x2=16(k2−3)4k2+3.①设直线PA, PM, PB的斜率分别为k1, k2, k3,从而k1=y1−3x1−2,k2=y2−3x2−2, k3=6k−38−2=k−12.因为直线AB的方程为y=k(x−2),所以y1=k(x1−2), y2=k(x2−2),所以k1+k2=y1−3x1−2+y2−3x2−2=y1x1−2+y2x2−2−3(1x1−2+1x2−2)=2k−3×x1+x2−4x1x2−2(x1+x2)+4.②把①代入②,得k1+k2=2k−3×16k24k2+3−416(k2−3)4k2+3−32k24k2+3+4=2k−1.又k 3=k −12,所以k 1+k 2=2k 3,故直线PA, PM, PB 的斜率成等差数列.【点睛】本题考查了过一点求椭圆的标准方程,考查了直线与椭圆的位置关系,考查了等差数列的判断;涉及椭圆与直线的交点问题时,通常联立椭圆方程和直线方程,得一元二次方程,再根据根与系数的关系求解.21.(1)在(a −1,+∞)上是增函数,在(−∞,a −1)上是减函数; (2)a >2. 【解析】 【分析】(1)先确定函数的定义域,然后求f ′(x),进而根据导数与函数单调性的关系,判断函数f(x) 的单调区间;(2)采用分离参数法,得a = x +x+1e x −1,根据f(x)在(0,+∞)上存在零点,可知a = x +x+1e x −1有解,构造g(x)=x +x+1e x −1,求导g ′(x),知g ′(x)在(0,+∞)上存在唯一的零点,即零点k 满足g ′(k)=0,进而求得g(k) ∈(2,3),再根据a = x +x+1e x −1有解,得证a >2 【详解】(1)解:函数f(x)的定义域为(−∞,+∞),因为f(x)=xe x +a(1−e x )+1,所以f ′(x)=(x +1−a)e x . 所以当x >a −1时,f ′(x)>0,f(x)在(a −1,+∞)上是增函数; 当x <a −1时,f ′(x)<0,f(x)在(−∞,a −1)上是减函数. 所以f(x)在(a −1,+∞)上是增函数,在(−∞,a −1)上是减函数. (2)证明:由题意可得,当x >0时,f(x)=0有解, 即a =xe x +1e x −1=x (e x −1)+x+1e x −1=x +x+1e x −1有解.令g(x)=x +x+1e x −1,则g ′(x)=−xe x −1(e x −1)2+1=e x (e x −x−2)(e x −1)2.设函数ℎ(x)=e x −x −2, ℎ′(x)=e x −1>0,所以ℎ(x)在(0,+∞)上单调递增. 又ℎ(1)=e −3<0, ℎ(2)=e 2−4>0,所以ℎ(x)在(0,+∞)上存在唯一的零点. 故g ′(x)在(0,+∞)上存在唯一的零点.设此零点为k ,则k ∈(1,2). 当x ∈(0,k)时,g ′(x)<0;当x ∈(k,+∞)时,g ′(x)>0. 所以g(x)在(0,+∞)上的最小值为g(k).又由g′(k)=0,可得e k=k+2,所以g(k)=k+k+1e k−1=k+1∈(2,3),因为a=g(x)在(0,+∞)上有解,所以a≥g(k)>2,即a>2.【点睛】本题考查了利用导数求函数的单调区间,考查了利用导数证明不等式成立,考查了利用导数研究函数的零点问题,涉及了求函数导数,函数零点存在性定理的应用等知识;从哪里入手,怎样构造,如何构造适当的函数,是解决此类问题的关键一步. 22.(1)ρ=10sinθ,ρ=10cosθ(ρ≠0);(2)15−5√3.【解析】【分析】(1)将曲线C1的参数方程转化为普通方程,然后由普通方程转化为极坐标方程;再用N 表示出M,根据点M在曲线C1上,采用相关点法,求轨迹C2的极坐标方程;(2)根据已知条件,求得S△TOA=15,S△TOB=5√3,通过S△TAB=S△TOA−S△TOB求解.【详解】(1)由题设,得C1的直角坐标方程为x2+(y−5)2=25,即x2+y2−10y=0,故C1的极坐标方程为ρ2−10ρsinθ=0,即ρ=10sinθ.设点N(ρ,θ)(ρ≠0),则由已知得M(ρ,θ+π2),代入C1的极坐标方程得ρ=10sin(θ+π2),即ρ=10cosθ(ρ≠0).(2)将θ=π3代入C1, C2的极坐标方程得A(5√3, π3), B(5,π3),又因为T(4,0),所以S△TOA=12|OA|⋅|OT|sinπ3=15,S△TOB=12|OB|⋅|OT|sinπ3=5√3,所以S△TAB=S△TOA−S△TOB=15−5√3.【点睛】本题考查了极坐标方程、直角坐标方程、参数方程的互化,考查了点的极坐标以及极坐标与直角坐标的关系,涉及了三角函数的诱导公式和三角形的面积公式,考查了推理论证能力、运算求解能力,以及化归与转化思想.23.(1){x|13≤x≤1};(2)(0,72).【解析】【分析】(1)去掉绝对值符号,得到分段函数,然后求解不等式的解集.(2)不等式f(x)+|t−3|<|t+4|⇔f(x)≤|t+4|−|t−3|,根据已知条件,结合绝对值不等式的几何意义,转化求解f(x)max≤g(t)max即可.【详解】因为m>0,所以f(x)=|x+m|−|2x−2m|={x−3m, x≤−m3x−m, −m<x<m −x+3m, x≥m.(1)当m=12时,f(x)={x−32, x≤−123x−12, −12<x<12,−x+32, x≥12所以由f(x)≥12,可得{x−32≥12,x≤−12或{3x−12≥12,−12<x<12或{−x+32≥12x≥12,解得13≤x<12或12≤x≤1,故原不等式的解集为{x|13≤x≤1}.(2)因为f(x)+|t−3|<|t+4|⇔f(x)≤|t+4|−|t−3|,令g(t)=|t+4|−|t−3|,则由题设可得f(x)max≤g(t)max,由f(x)={x−3m, x≤−m3x−m, −m<x<m−x+3m, x≥m,得f(x)max=f(m)=2m.因为||t+4|−|t−3||≤|(t+4)−(t−3)|=7,所以−7≤g(t)≤7.故g(t)max=7,从而2m<7,即m<72,又已知m>0,故实数m的取值范围是(0,72).【点睛】本题考查了绝对值不等式的解法,考查了绝对值不等式的几何意义的应用;绝对值不等式问题中的求参数范围问题,一般思路是:借助绝对值的几何意义、零点分段法等,先求出相关函数的最值或值域,再根据题目要求求解.。
年高考数学模拟试题及答案解析最新2019 (理科版))二高考理科数学模拟试题精编()试卷满分:150分(考试用时:120分钟注意事项:铅笔在答题卡上对应题目选1.作答选择题时,选出每小题答案后,用2B项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各2题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
3.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷分.在每小题给出的四5分,共6012一、选择题(本大题共小题,每小题)个选项中,只有一项是符合题目要求的.||)(2 019i3-) ,则复数的共轭复数为1.复数z=(+i(i为虚数单位) .B2+iA.2-ii4+D.C4-i.x2) N=(x|2>1},则M∩|2.已知集合M={xx{<1},N=<1} .{x|0<xB .A?x|x<0} xD .{ x|<1}C.{yyyy--) x(-xxyx3.若>1,>0,+x的值为2=2,则A.6B.-2D 2 C..2或-21 / 2222yx,则其离的一条渐近线的倾斜角为30°>0,b>0)4.若双曲线-=1(a22ba)心率的值为( 2 .B2 A.23232D. C. 235.某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有()A.18种B.24种D .48C.36种种6.某几何体的三视图如图所示,则该几何体的体积为()A .12B .18C .24D .3003≤+y -2x ???0≥y +33x -的解集记为D7.不等式组,有下面四个命题: ??0-2y +1≤xp ∶?(x ,y)∈D,2x +3y ≥-1;p ∶?(x ,y)∈D,2x -5y ≥-3;p ∶?(x ,321y -1122+2y ≤1.y 其中的真命题是( x(≤;p ∶?x ,y)∈D ,)+,y)∈D 43x2-A .p ,p B .p ,p C .p ,p D .p ,p 42223341x 的2x ;④y =·||cos =;③cos =;②sin =.现有四个函数:①8yxxyxxyxx 图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正2 / 22)(确的一组是D .①④②③ B .①④③② C .③④②① A .④①②③π个的图象向左平移φ<π)+3cos(2x +φ)(0sin(29.若将函数f(x)=x +φ)< 4πππ????,,0-在))=cos(x +单位长度,平移后的图象关于点φ对称,则函数g(x ???? 622????)( 上的最小值是2131D. C. B .- A .- 222210.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.2 B.3 C.4 D.52=8y与直线y=2x-xC:2相交于A,B两点,点P是抛11.已知抛物线物线C上不同于A,B的一点,若直线PA,PB分别与直线y =2相交于点Q,→→的值是() R,O为坐标原点,则OR·OQA.20 B.16D.与点.C12 P的位置有关的一个实数3 / 221x+,0)≤mx,若有且仅有两个整数使得)=(3x+1)ef(x+12.已知函数f(x)(则实数m的取值范围是855????,--,2 A. B.????2 3e2ee????851????,-,---4e D. C. ????23e2e2????第Ⅱ卷分.把答案填在题中横线分,共204小题,每小题5二、填空题(本大题共)上这次考试考生的分数服从名高三学生参加了一次数学考试,.某校1 000132,估计这次考试分数不超0.7.若分数在(70,110]N(90,σ内的概率为)正态分布.70的人数为________过ππ??+xA,过点轴交于点A<14)的图象与x)=2sinx<(-2x.若函数14f(??48??→→→OA(OBC两点,O为坐标原点,则与函数f(x)的图象交于B+OC)·、=的直线l________.是等腰直角三角形,其斜边,△ABCABC的体积为215.已知三棱锥D-的体积OAD的中点,则球D-ABC的外接球的球心O恰好是=AC2,且三棱锥.为________,3BC=2AB,点D=16.已知等腰三角形ABC满足ABAC为BC边上一点且AD=BD,则tan∠ADB的值为________.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.(本小题满分12分)已知等差数列{a}的公差为2,前n项和为S,且nn4 / 22S,S,S成等比数列.412(1)求数列{a}的通项公式;n4n1n-,求数列{b-1)}的前n项和T. (2)令b=(nnn aa1nn+18.(本小题满分12分)在如图所示的多面体ABCDEF中,⊥平面为直角梯形,平面ABCDABCD为正方形,底面ABFE11.=AB=BF90°∥BF,∠EAB=,ABFE,AE 2 ;DB⊥EC(1)求证:的余弦值.EF-B=AB,求二面角C-若(2)AEX个等级,等级系数某产品按行业生产标准分成812.(本小题满分分)19A已知甲厂执行标准B.X≥3为标准A依次为1,2,…,8,其中X≥5为标准,生产该产品,产品的零B/件;乙厂执行标准生产该产品,产品的零售价为6元/件,假定甲、乙两厂的产品都符合相应的执行标准.售价为4元X的概率分布列如下所示:(1)已知甲厂产品的等级系数187 6 X510.10.4 b Pa的值;a,b(X)=6,求的数学期望且XE11件,30X,从该厂生产的产品中随机抽取为分析乙厂产品的等级系数(2)2相应的等级系数组成一个样本,数据如下:85565333 4 363475348538343447567用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X的2数学期望;(3)在(1),(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.5 / 22产品的等级系数的数学期望注:①产品的“性价比”=;产品的零售价②“性价比”大的产品更具可购买性.22yx=:+在平面直角坐标系xOy中,已知椭圆E20.(本小题满分12分)22ba222与椭圆my=kx+b),圆O的一条切线>0),圆O:xl+y:=r<(0r<>1(ab 两点.A,BE相交于1的方E,B都在坐标轴的正半轴上,求椭圆=-,r=1时,若点A(1)当k 2 程;之间的等量关系,b,r,探究若以AB为直径的圆经过坐标原点Oa,(2) 并说明理由.12.ln x--a)x)已知函数f(x)=xa+(1分21.(本小题满分12 2 )的单调性;(1)讨论f(x ;a-x)<f(a+x)f(aa(2)设>0,证明:当0<x<时,x+x??21′的两个零点,证明:x)f设x,x是f(>0. (3)??212??题中任选一题作答.如果多做,22、23(二)选考题:共10分.请考生在第则按所做的第一题计分.4:坐标系与参数方程)选修4-分22.(本小题满分102?t1+x=2?(t为参数):在平面直角坐标系下,直线l,以原点O为极点,2?ty=2以x轴的非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方0.=4cos ρ程为-θ(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C交于A,B两点,求|AB|的值.6 / 2223.(本小题满分10分)选修4-5:不等式选讲设函数f(x)=|x-a|,a∈R.(1)当a=5时,解不等式f(x)≤3;(2)当a=1时,若?x∈R,使得不等式f(x-1)+f(2x)≤1-2m成立,求实数m的取值范围.7 / 22高考理科数学模拟试题精编(二)班级:___________姓名:__________得分:____________题号1 2 3 4 5 6 7 8 9 10 11 12答案请在答题区域内答题二、填空本大题小题,每小分,2分.把答案填在中横线)13.________14._____15._____16._______三、解答7分.解答应写出文字说明、证明过程或演算步骤)17.本小题满1)18.(本小题满分12分)9 / 22题中任选一题作答.如果多做,则按所做的第2请考生在2题计分.作答时请写清题号)(二高考理科数学模拟试题精编i.2+i=2-i.∴z=1解析:.选B.z=|(33i|-i)i|+i=|1+-2 019x<M∩N ={x|0=|-1<x<1},N{x|x>0},选2.解析:B.依题意得M={xB. <1},选xx>0.∵x+>y0,∴x>1,0<x<1-,则x选3.解析:C.∵x>1,---yyyyyy x-,从而x(=6,∴x-x)=4+=·2=2,∴x+2xx +x8,即xx----yyy22y2y2yyy2y C.2,故选=-y3bbtan 30°,=依题意可得双曲线的渐近线方程为y=±=,C.4.解析:选x aa3b3b124c 2C. e故=,离心率为=1=+==,选??2aa33a3??2甲、乙都抢到红包,则没有抢到红包的有丙、丁、戊三种情选C.5.解析:A44.36(种)3况,故甲、乙都抢到红包的情况有×=A22由三视图知,该几何体是一个长方体的一半再截去一个三棱C.解析:选6.111,故选=242)(534×534=锥后得到的,该几何体的体积V×××-×××-22310 / 22C.作出不等式组.解析:选C.7?0≤-32x+y??0y+3≥3x--((0,3),B表示的平面区域如图中阴影部分所示,其中A??0y≤+1x -2??1x2x+y=3=??<-1)+,由0p,因为2×(得-,即C(1,1),对于1,0)1??1y=0=-x2y+115×2×1-+2x-5y3=0得到C排除1,故p是假命题,A;对于p,将(1,1)代入21,pp是真命题,排除D;对于-5y+3=0上,故,说明点+3=0C(1,1)在2x321-31C.是假命题,排除B,故选p因为=1>,故3302-时,π③当x是奇函数;x=是偶函数;y=xsin x②y=xcos 选8.解析:D.①是非2·0;④y=x时,且当|cos ,∴π<0y=xx|是奇函数,x>0y≥=-=yπcos πx.奇非偶函数,故图象对应的函数序号为①④②③)+3cos(2φx=xfD.解析:9.选∵()sin(2+)+xφ=11 / 22ππ??2x+φ+,∴将函数f(x)2sin的图象向左平移个单位长度后,得到函数解??34??ππ????x++φ+2==2sin 析式为y???? 43????ππ????2x+φ+,02cos∵该图象关于点对称中心在函数图象上,对称,的图象.????32????ππ??2×+φ+∴2cos ??32??πππ5π??π+φ+=2cos=0,解得π+φ+=kπ+,k∈Z,即φ=kπ-,k∈Z.∵??3623??πππππππ??????x+-,-,,x,∵x∈+∈,∴0<φ<π,∴φ=,∴g(x)=cos??????3366266??????πππ11??????x+,1-,上的最小值是在.故选+)=∴coscos(x∈φ),则函数g(x??????62262??????D.51510.解析:选C.a=5,b=2,当n=1时,a=5+=,b=4;当n =2221515454545135时,a=+=,b=8;当n=3时,a=+=,b=16;当n=4时,244488135135405+=,b=32=;且a<b,则输出的n等于4. a81616xxx??????222021x,x,x,,Q(a,2),R(b,解析:11.选A.设点P2).,A由,B??????210888??????xxx212120--2?,yx=88882?=Q三点共线得由P,A,x-16x+16=0,x=16.得x?2-2xy=110x+xxx+16xx+xxx?x+x?x?x+221xxa-x-x?11012210201100=,a===,同理b=,ab=8xxx+x+x+xx+x21000011x?x+x?x?x+x?101202→→=ab+4=20,故选A. ×=·xx=16,OROQ21xxx+x+201012 / 2212.解析:选B.由f(x)≤0得(3x+1)e+mx≤0,即mx≤-(3x+1)e,设++11xx g(x)=mx,h(x)=-(3x+1)e,则h′(x)=+1x得0)>,由h′(x]+(3x+1)e=-(3x+4)e-[3e+++11xx1x4x,即<0(3x+4)′<,由h(x)<0得--(3x+4)>0,即x344取得极大值.在同一平面直)(xx=-时,函数h>-,故当33 角坐标系中作出的整数x))≤h(的大致图象如图所示,当m≥0时,满足g(xy=h(x),y =g(x)的整数解只有两个,则x)≤h(<m0时,要使g(x)解超过两个,不满足条件;当5?-m≥???m2-h?2?≥g?-2?5e ≥-2e-51???<需满足,即,即m,即-≤2e8??m3-?h?-3<g?3?8e<-?<-m-2?3e28 ,-3e285??,--B.即实数m的取值范围是,故选??3e2e??2因90对称.则考试成绩的正态曲线关于直线ξ=.13解析:记考试成绩为ξ,1,所以这0.150.7)=110)=×(1->(110)=0.7,所以Pξ≤70)=P(ξ<为P(70ξ≤2150.0.15×=次考试分数不超过70的人数为1 000150答案:恰为(6,0),而A6x=,即A(6,0)0(<∵-14.解析:2<x14,∴fx)=的解为→→→→→=函数f(x)图象的一个对称中心,∴B2OC +)OA=OA·、C关于A对称,∴(OBOA13 / 22→OA2|36=72. |=2×272答案:ABCO到平面如图,设球15.解析:O的半径为R,球心的距ABC 到平面的距离为d,则由O是AD的中点得,点D12的=××2,记×2×d=2,解得d=3ACV2离等于d,所以V=2ABCABCD-O-23,即Rt△OO′A中,OA=OO′′A+O⊥平面中点为O′,则OO′ABC.在222104404 10π.×πRπ=10=的体积+R=d1=10,所以球OV=32223331040 π答案:3=BCAB得,,由3BC=2AC16.解析:如图,设AB==a,AD==BDb32 a.中,由余弦定理得,在△ABC3??a23+aa-??ACBC-+AB22233??222=cos∠ABC==,3BCAB×2×32a×2a×36=cos∠ABC-∴∠. ABC是锐角,则sin∠ABC=123,得ABD×BDbcos∠×AB中,由余弦定理在△ABDAD=+BD-2AB ×2222323=a+b-2×a×b×,解得a=b.223314 / 22aABbADADB得=,解得sin∠解法一:由正弦定理=,6ADBABDsin∠ADBsin∠sin∠3122ADB,tan ∠1-sin>a,∴∠ADB∠为锐角,∴cos∠ADB=ADB==,又2b 222332.=2ab--ABb++ADBD1222222sin,∴===解法二:由余弦定理得,cos∠ADB32bBDAD×2222 ADB =,∠ADB=1-cos∠2322. ∠ADB=tan答案:222×14×317.解:(1)因为S=a,S=2a+×2=2a+2,S=4a+×2=1111214224a+12,由题意,得(2a+2)=a(4a+12),解得a =1,所以a=2n-1,n∈n121111N.(4分)*4n4n=(-1)=(-1)-1)=((2)由题意,可知b---nnnn11?aa-1??2n+1?2n+1nn11????+) .(7分??1112+-2nn??1111????111????????+++1+-=为偶数时,T+-…+n当????????n53312n-32nn+21n-12-????????2n1) 分=1=-;(91+2n2n+11111????111????????++1+++…--当n为奇数时,T=+????????n53312n-2n-2n2-3n1+1????????15 / 222n+21)分=.(11=1+1n++122n?2+2n?为奇数,,n 2n+1+?-1?12n+-1n?(或所以T=T=)(12分)?.n为偶数,?1+2n18.解:(1)解法一:∵连接nn1n+2n2AC,∵平面ABCD⊥平面ABFE,∠EAB=90°,∴AE⊥AB,(1分) 又平面ABCD∩平面ABFE=AB,∴AE⊥平面ABCD,BD?平面ABCD,∴AE⊥BD.(3分)∵ABCD为正方形,∴AC⊥BD,又AE∩AC=A,∴BD⊥平面AEC,EC?平面AEC,故BD⊥EC.(6分)解法二:因为底面ABFE为直角梯形,AE∥BF,∠EAB=90°,所以AE⊥AB,BF⊥AB.因为平面ABCD⊥平面ABFE,平面ABCD∩平面ABFE⊥BF⊥平面ABCD,所以,AB,所以AE⊥平面ABCDBF=)分BC.(3轴建立如图所示的zy,,BC所在的直线分别为x,BA设AE =t,以,BF→DB,故0)(1,t,,,C(0,0,1)D(1,0,1),E(0,0,0)1,0=(-,空间直角坐标系,则B→→→,所01=1-=1),--EC,-,--DB1),--=(1t,,因为·=(1,01)·1)EC(1t,).(6⊥以DBEC分16 / 22AEKB,则四边形作EK⊥BF,垂足为K(2)解法一:过E11.=1,知KF==为正方形,故EK=BK=1,由ABF2=KF=1,∠EAB因为AE=AB=1,∠=90°,故EBEKF=2,因为EK=)=EF2.(8分90°,故.(9EF90°,即BE⊥因为EB+EF=(2)+=(2)=4=BF,所以∠BEF22222)分,+2=1=1+?52?=3,在Rt△中,CBFCF在Rt△CBE中,CE =22CF,+(2)=5因为CE+EF=(=3)22222.EFCEF=90°,即CE⊥所以∠) 分故∠CEB为所求二面角的平面角,(11626.(12的余弦值为BEFCBE中,cos∠CEBC==,即二面角--在Rt△333)分→BCy是平面=(0,0,1)BEF的一个法向量,设n=(x,,解法二:由(1)可知11→CE,故FE(1,1,0),又(0,2,0)=是平面z)CEF的法向量,因为AEAB=1,所以1→CF1),-,1)(0,2,-.(8分) =(1,1=→) (9=y可得)y(=·由CEn(1,1,-1)·x,,z=0x+-z0,分111111→,,得=z0=-y可得=),y,(,-=CF·由n(0,21)·xz02z,令2y1=1111111)=n,故=1x(1,1,2)的一个法向量,CEF为平面(10分117 / 22→6n·BC2→的余弦值为-EFB-,BC〉===,即二面角C所以cos 〈n3→6×1||BC|n|·6.(12分) 319.解:(1)E(X)=5×0.4+6a +7b+8×0.1=6,1即6a+7b=3.2,①(1分)又由X的概率分布列得0.4+a+b+0.1=1,a+b=0.5,②(2分) 1由①②得a=0.3,b=0.2.(4分)(2)由已知得,样本的频率分布表如下:X 3 4 5 6 7 820.3 0.2 0.2 0.1 0.1 0.1f)分(5X用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2的概率分布列如下: 3 4 5 X 6 7 820.3 0.2 0.2 0.1 0.1 0.1P)(6分) +×+×=)(所以EX30.340.25分=×+0.1×+×+0.2×60.1780.14.8.(72) 4.8.(8的数学期望为即乙厂产品的等级系数X分2 (3)乙厂的产品更具可购买性,理由如下:6件,所以其性价比为,价格为6甲厂产品的等级系数的数学期望等于6/元6)1=(9,分18 / 22所以其性价比为件,4元/乙厂产品的等级系数的数学期望等于4.8,价格为4.8) ,(10分1.2=4) 据此,乙厂的产品更具可购买性.(12分|m| 20.解:(1)∵直线l与圆Or相切,∴=1k+251.,解得|=m由k=-,r=|12251),(2y∵点A,B都在坐标轴的正半轴上,∴l:分=-x+225??5的E,b=∴切线l与坐标轴的交点为,,∴椭圆(5,0),∴a=5,0??22??x4y22方程是+=1.(4分)55(2)设A(x,y),B(x,y).2121→→=0,即xx+yy=0. ∵以AB为直径的圆经过点·O,∴OAOB1212?m+y=kx11?,l上,∴∵点A,B在直线?mkx+y=22∴(1+k)xx+mk(x+x)+m=0.(*)(6分) 212122?m+=kxy??,消去y,得bx+a(kx+2kmx+由m)-ab=0,即(b+yx22222222222?1+=?ba22ak)x+2kmax+(am-ab)=0. 22222222-2kmaam-ab22222显然Δ>0,x+x=,xx=,(8分)2211b+akb+ak22222219 / 22代入(*)式,得am+amk-ab-abk-2kma+mb+akm222222222222222222=kab+222kabab-m?a+b?-22222222)分k=0.(10a)-ab-b=0,即m(a+b22222222kb+a222111.=),∴+ab(1+k,∴(1+k)(a+b)r=r又由(1),知m=(1+k) 2222222222rba222111)分=.(12b,r满足+故a,rab222.∞))的定义域为(0,+.21解:(1)f(x?-a??x+1x1-a?x-a?x+?a2) .(2分a-==(x)=x+1-由已知,得f′xxx )上单调递增.(0,+∞0,此时f(x)在f若a≤0,则′(x)>时,a;当x>′(x)<0x,得=a.当0<x<a时,ff若a>0,则由′(x)=00.>(x)f′) 分上单调递增.(4(a,+∞)(此时fx)在(0,a)上单调递减,在),则(a-xf)=f(a+x)-(2)证明:令g(x1 -+x)ln(+x)-aaaag(x)=(+x)+(1-)(a221???-x?-alna???+?1-aa-x?x?a-??22??=2x-aln(a+x)+aln(a-x).(6分)-2xaa2∴g′(x)=2--=.x-aaa+x-x2220 / 22在(0,a)上是减函数.)a时,g′(x<0,∴g(x)当0<x<) (8分x).时,f(a+x)<f(a-<g而(0)=0,∴g(x)<g(0)=0.故当0x<a,从而0至多有一个零点,故a>x(3)证明:由(1)可知,当a≤0时,函数f()) 分)<0.(10x)的最小值为f(a),且f(af(. x<ax<a<x,∴0<a-,则不妨设0<x<x0<11122 ).(x)=0=f(xf由(2),得f(2a-x)=(a+a-x)<f2111xx+21.ax从而>2a-x,于是>122??xx+??21)(1)知,f′分>0.(12由??2??) -1=0,(2分22.解:(1)直线l的普通方程为x-y ,x4=0-ρ4ρcos θ=0,则x+y-ρ由-4cos θ=0,得222,y=4即(x-2)+22)=4.(5分即曲线C的直角坐标方程为(x-2)+y22????22,4+(2)把直线l的参数方程代入曲线C的直角坐标方程得=t-1t????2222????)(8分t=|t,,则|AB|-=30,设方程t-2t3=0的两根分别为tt即-2t -12212-4tt=14.(10分?-t|=t+t?)22212123.解:(1)当a=5时,原不等式等价于|x-5|≤3,即-3≤x-5≤3?2≤x≤8,所以解集为{x|2≤x≤8}.(4分)21 / 22(2)当a=1时,f(x)=|x-1|.1?,≤+3,x-3x2??1 1|=-2|+|2x-|-x)=f(x1)+f(2x)=xg令(,<2+1,<xx2??,≥2-3,x3x作出其图象,如图所示,(6分)31)取得最小值分.(8x=(时,gx)由图象,易知2213的取值m≤-,所以实数m-由题意,知≤12m?范围42为1??,--∞).(10分??4??22 / 22。
2019年全国百所名校联盟高考模拟试卷理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i1iz =+(i 为虚数单位),则z =( ) A .3 B .2 CD【答案】D2.已知集合{}220A x x x =∈-≥R ,{}2210B x x x =∈--=R ,则()A B =R I ð( )A .∅B .12⎧⎫-⎨⎬⎩⎭C .{}1D .1 12⎧⎫-⎨⎬⎩⎭,【答案】C3.已知椭圆2222:1y x E a b +=(0a b >>)经过点)A,()0 3B ,,则椭圆E 的离心率为( )A .23BC .49D .59【答案】A4.已知111 2 3 23α⎧⎫∈-⎨⎬⎩⎭,,,,,若()f x x α=为奇函数,且在()0 +∞,上单调递增,则实数α的值是( )A .1-,3B .13,3C .1-,13,3D .13,12,3【答案】B5.若l m ,为两条不同的直线,α为平面,且l α⊥,则“//m α”是“m l ⊥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A6.已知()()*12nx n -∈N 展开式中3x 的系数为80-,则展开式中所有项的二项式系数之和为( )A .64B .32C .1D .1-【答案】B7.已知非零实数a ,b 满足a a b b >,则下列不等式一定成立的是( ) A .33a b > B .22a b >C .11a b< D .1122log log a b <【答案】A8.运行如图所示的程序框图,若输出的s 值为10-,则判断框内的条件应该是( ) A .3?k <B .4?k <C .5?k <D .6?k <【答案】C9.若正项等比数列{}n a 满足()2*12n n n a a n +=∈N ,则65a a -的值是( ) AB.-C .2D.【答案】D10.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有( )A .24B .48C .96D .120【答案】C11.我国古代《九章算术》将上下两面为平行矩形的六面体称为刍童.如图所示为一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A.B .40C.16+D.16+【答案】D12.已知函数()22f x x x a =---有零点1x ,2x ,函数()2(1)2g x x a x =-+-有零点3x ,4x ,且3142x x x x <<<,则实数a 的取值范围是( )A .924⎛⎫-- ⎪⎝⎭,B .9 04⎛⎫- ⎪⎝⎭,C .()20-,D .()1 +∞,【答案】C第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若实数x ,y 满足条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =-的最大值为___________.【答案】414.已知()OA =uu r,()0 2OB =u u u r ,,AC t AB =uuu r uu u r ,t ∈R ,当OC uuu r 最小时,t =___________. 【答案】3415.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .若45A =︒,2sin sin 2sin b B c C a A -=,且ABC △的面积等于3,则b =___________. 【答案】316.设等差数列{}n a 的公差为d ,前n 项的和为n S,若数列也是公差为d 的等差数列,则=n a ___________.【答案】1n a =-或1524n a n =-三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数()1πcos cos 223f x x x x ⎛⎫-- ⎪⎝⎭.(1)求函数()f x 图象的对称轴方程; (2)将函数()f x 图象向右平移π4个单位,所得图象对应的函数为()g x .当π0 2x ⎡⎤∈⎢⎥⎣⎦,时,求函数()g x 的值域.【答案】(1)ππ32k x =+,k ∈Z ;(2)12⎡-⎢⎣⎦.【解析】(1)()1π11πcos cos 22cos 2sin 223426f x x x x x x x ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭. 令ππ2π62x k -=+,k ∈Z ,解得ππ32k x =+. ∴函数()f x 图象的对称轴方程为ππ32k x =+,k ∈Z .…………………………5分 (2)易知()12πsin 223g x x ⎛⎫=- ⎪⎝⎭.∵π0 2x ⎡⎤∈⎢⎥⎣⎦,,∴2π2ππ2 333x ⎡⎤-∈-⎢⎥⎣⎦,,∴2πsin 213x ⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣⎦,∴()12π1sin 2232g x x ⎡⎛⎫=-∈-⎢ ⎪⎝⎭⎣⎦,即当π0 2x ⎡⎤∈⎢⎥⎣⎦,时,函数()g x的值域为12⎡-⎢⎣⎦.…………………………12分 18.(本小题满分12分)2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(1(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动. (i )问男、女学生各选取了多少人?(ii )若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X . 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【解析】(1)因为()22120602020207.5 6.63580408040K ⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为,收看开幕式与性别有关.………………………5分 (2)(i )根据分层抽样方法得,男生31294⨯=人,女生11234⨯=人,所以选取的12人中,男生有9人,女生有3人.………………………8分 (ii )由题意可知,X 的可能取值有0,1,2,3.()3093312C C 840220C P X ===,()2193312C C 1081220C P X ===,()1293312C C 272220C P X ===,()0393312C C 13220C P X ===,∴X 的分布列是:∴()8401232202202202204E X =⨯+⨯+⨯+⨯=.……………………12分19.(本小题满分12分)如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,ABAC ⊥,AE BD ⊥,12DE AC ∥=,1AD BD ==. (1)求AB 的长;(2)已知24AC ≤≤,求点E 到平面BCD 的距离的最大值.EDCBA【答案】(1(2【解析】(1)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC AB ⊥,∴AC ⊥平面ABD . 又∵DE AC ∥,∴DE ⊥平面ABD ,从而DE BD ⊥. 注意到BD AE ⊥,且DE AE E =,∴BD ⊥平面ADE ,于是BD AD ⊥.而1AD BD ==,∴AB (5)分 (2)∵AD BD =,取AB 的中点为O ,∴DO AB ⊥. 又∵平面ABD ⊥平面ABC,∴DO ⊥平面ABC .过O 作直线OY AC ∥,以点O 为坐标原点,直线OB ,OY ,OD分别为x ,y ,z 轴,建立空间直角坐标系O xyz -,如图所示.记2AC a =,则12a ≤≤, 0 0A ⎛⎫ ⎪ ⎪⎝⎭, 0 0B ⎫⎪⎪⎝⎭, 2 0C a ⎛⎫ ⎪⎪⎝⎭,,0 0D ⎛ ⎝⎭,0E a ⎛- ⎝⎭,, ()0BC a=,, 0BD ⎛=- ⎝⎭. 令平面BCD 的一个法向量为()x y z =,,n .由00BC BD ⎧⋅=⎪⎨⋅=⎪⎩n n 得200ay⎧+=⎪⎨=⎪⎩.令x =,得1a=,n . 又∵()0 0DE a =-,,,∴点E 到平面BCD 的距离||DE d ⋅==nn∵12a ≤≤,∴当2a =时,d 取得最大值,max d .………………………12分20.(本小题满分12分)已知抛物线2:2C y px =(0p >)的焦点为F ,以抛物线上一动点M 为圆心的圆经过点F .若圆M 的面积最小值为π. (1)求p 的值;(2)当点M 的横坐标为1且位于第一象限时,过M 作抛物线的两条弦MA ,MB ,且满足AM F BM F ∠=∠.若直线AB 恰好与圆M 相切,求直线AB 的方程.【答案】(1)2;(2)3y x =-+-【解析】(1)由抛物线的性质知,当圆心M 位于抛物线的顶点时,圆M 的面积最小, 此时圆的半径为2p OF =,∴2ππ4P =,解得2p =.……………………4分(2)依题意得,点M 的坐标为()12,,圆M 的半径为2. 由()10F ,知,MF x ⊥轴.由AM F BM F ∠=∠知,弦MA ,MB 所在直线的倾斜角互补,∴0MA MB k k +=. 设MA k k =(0k ≠),则直线MA 的方程为()12y k x =-+,∴()121x y k=-+, 代入抛物线的方程得,()21421y y k ⎛⎫=-+ ⎪⎝⎭,∴24840y y k k -+-=,∴42A y k +=,42A y k=-. 将k 换成k -,得42B y k=--,∴22441444A B AB AB A B A B A B y y y y k x x y y y y --=====--+--.设直线AB 的方程为y x m =-+,即0x y m +-=. 由直线AB 与圆M 2=,解得3m =±经检验3m =+3m =+∴所求直线AB的方程为3y x =-+-……………………12分 21.(本小题满分12分)已知函数()21e 2x f x x ax =--有两个极值点1x ,2x (e 为自然对数的底数).(1)求实数a 的取值范围; (2)求证:()()122f x f x +>. 【答案】(1)()1 +∞,;(2)见解析. 【解析】(1)∵()21e 2x f x x ax =--,∴()e x f x x a '=--.设()e x g x x a =--,则()e 1x g x '=-. 令()e 10x g x '=-=,解得0x =.∴当() 0x ∈-∞,时,()0g x '<;当()0x ∈+∞,时,()0g x '>. ∴()()min 01g x g a ==-.当1a ≤时,()()0g x f x '=≥,∴函数()f x 单调递增,没有极值点;当1a >时,()010g a =-<,且当x →-∞时,()g x →+∞;当x →+∞时,()g x →+∞. ∴当1a >时,()()e x g x f x x a '==--有两个零点12x x ,. 不妨设12x x <,则120x x <<.∴当函数()f x 有两个极值点时,a 的取值范围为()1 +∞,.…………………5分 (2)由(1)知,1x ,2x 为()0g x =的两个实数根,120x x <<,()g x 在() 0-∞,上单调递减. 下面先证120x x <-<,只需证()()210g x g x -<=.∵()222e 0x g x x a =--=,得22e x a x =-,∴()222222e e e 2x x x g x x a x ---=+-=-+.设()e e 2x x h x x -=-+,0x >, 则()1e 20ex xh x '=--+<,∴()h x 在()0 +∞,上单调递减, ∴()()00h x h <=,∴()()220h x g x =-<,∴120x x <-<. ∵函数()f x 在()1 0x ,上单调递减,∴()()12f x f x >-. ∴要证()()122f x f x +>,只需证()()222f x f x -+>,即证2222e e20x x x -+-->.设函数()2e e 2xxk x x -=+--,()0x ∈+∞,,则()e e 2x x k x x -'=--. 设()()e e 2x x x k x x ϕ-'==--,则()e e 20x x x ϕ-'=+->, ∴()x ϕ在()0+∞,上单调递增,∴()()00x ϕϕ>=,即()0k x '>. ∴()k x 在()0+∞,上单调递增,∴()()00k x k >=. ∴当()0x ∈+∞,时,2e e 20x x x -+-->,则2222e e 20x x x -+-->, ∴()()222f x f x -+>,∴()()122f x f x +>.………………………12分请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,直线l的参数方程为11x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),圆C 的方程为 ()()22215x y -+-=.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 及圆C 的极坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求cos AOB ∠的值. 【答案】(1)见解析;(2【解析】(1)由直线l的参数方程11x y ⎧=-+⎪⎪⎨⎪=⎪⎩得,其普通方程为2y x =+, ∴直线l 的极坐标方程为sin cos 2ρθρθ=+. 又∵圆C 的方程为()()22215x y -+-=, 将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得4cos 2sin ρθθ=+,∴圆C 的极坐标方程为4cos 2sin ρθθ=+.……………………5分 (2)将直线l :sin cos 2ρθρθ=+,与圆C :4cos 2sin ρθθ=+联立,得()()4cos 2sin sin cos 2θθθθ+-=,整理得2sin cos 3cos θθθ=,∴π2θ=或tan 3θ=. 不妨记点A 对应的极角为π2,点B 对应的极角为θ,且tan =3θ.于是πcos cos sin 2AOB θθ⎛⎫∠=-== ⎪⎝⎭……………………10分23.(本小题满分10分)选修4-5:不等式选讲已知函数()13f x x x =-+-. (1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数a b ,满足0a >,0b >,a b c +=,求证:22111a b a b +≥++.【答案】(1)[]1 5,;(2)见解析.【解析】(1)()1f x x ≤+,即131x x x -+-≤+. ①当1x <时,不等式可化为421x x -≤+,1x ≥. 又∵1x <,∴x ∈∅;②当13x ≤≤时,不等式可化为21x ≤+,1x ≥. 又∵13x ≤≤,∴13x ≤≤.③当3x >时,不等式可化为241x x -≤+,5x ≤. 又∵3x >,∴35x <≤.综上所得,13x ≤≤或35x <≤,即15x ≤≤. ∴原不等式的解集为[]1 5,.…………………5分(2)由绝对值不等式性质得,()()13132x x x x -+-≥-+-=, ∴2c =,即2a b +=.令1a m +=,1b n +=,则1m >,1n >,1a m =-,1b n =-,4m n +=,()()2222211114441112m n a b m n a b m n m n mn m n --+=+=+++-=≥=+++⎛⎫ ⎪⎝⎭,当且仅当2m n ==时取等号, 原不等式得证.…………………10分2019年全国百所名校联盟高考模拟试卷理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2019届全国高考高三模拟考试卷数学(理)试题(二)(解析版)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·南昌一模]已知复数()i2ia z a +=∈R 的实部等于虚部,则a =( ) A .12-B .12C .1-D .12.[2019·梅州质检]已知集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =,则集合A B I 中元素的个数为( ) A .2B .3C .4D .53.[2019·菏泽一模]已知向量()1,1=-a ,()2,3=-b ,且()m ⊥+a a b ,则m =( ) A .25B .25-C .0D .154.[2019·台州期末]已知圆C :()()22128x y -+-=,则过点()3,0P 的圆C 的切线方程为( ) A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=5.[2019·东北三校]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种6.[2019·汕尾质检]边长为1的等腰直角三角形,俯视图是扇形,则该几何体的体积为( )A .π9B .π3C .π6D .π187.[2019合肥质检]将函数()π2sin 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( ) A .函数()g x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是π2C .函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增D .函数()g x 在π0,6⎛⎫⎪⎝⎭上最大值是18.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )A .0B .12C .1D .1-9.[2019·重庆一中]2sin80cos70cos20︒︒-=︒( )A .3B .1C 3D .210.[2019·揭阳一模]函数()f x 在[)0,+∞单调递减,且为偶函数.若()21f =-,则满足()31f x -≥-的x 的取值范围是( ) A .[]1,5B .[]1,3C .[]3,5D .[]2,2-11.[2019·陕西联考]已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )AB .2CD .512.[2019·临川一中]若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数:①()()10f x x x x=+>;②()()ln 0e f x x x =<<;③()cos f x x =;④()21f x x =-.其中为“柯西函数”的个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·江门一模]已知a 、b 、c 是锐角ABC △内角A 、B 、C 的对边,S 是ABC △的面积,若8a =,5b =,S =,则c =_________.14.[2019·景山中学]已知a ,b 表示直线,α,β,γ表示不重合平面. ①若a αβ=I ,b α⊂,a b ⊥,则αβ⊥;②若a α⊂,a 垂直于β内任意一条直线,则αβ⊥; ③若αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥;④若a α⊥,b β⊥,a b ∥,则αβ∥.上述命题中,正确命题的序号是__________.15.[2019·林芝二中]某传媒大学的甲、乙、丙、丁四位同学分别从影视配音、广播电视、公共演讲、播音主持四门课程中选修一门,且这四位同学选修的课程互不相同.下面是关于他们选课的一些信息:①甲同学和丙同学均不选播音主持,也不选广播电视;②乙同学不选广播电视,也不选公共演讲;③如果甲同学不选公共演讲,那么丁同学就不选广播电视.若这些信息都是正确的,依据以上信息可推断丙同学选修的课程是_______(填影视配音、广播电视、公共演讲、播音主持)16.[2019·河南联考]若一直线与曲线eln y x =和曲线2y mx =相切于同一点P ,则实数m =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)[2019·长郡中学]设正项数列{}n a 的前n 项和为n S n a 与1n a +的等比中项,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)设()11211n n n n n a b a a +++=-⋅,记数列{}n b 的前n 项和为n T ,求证:21n T <.18.(12分)[2019·维吾尔一模]港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取100件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[)55,65,[)65,75,[]75,85内的频率之比为4:2:1.(1)求这些桥梁构件质量指标值落在区间[]75,85内的频率;(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取3件,记这3件桥梁构件中质量指标值位于区间[)45,75内的桥梁构件件数为X ,求X 的分布列与数学期望.19.(12分)[2019·淄博模拟]如图,在四棱锥P ABCD -中,AB CD ∥,1AB =,3CD =,2AP =,23DP =,60PAD ∠=︒,AB ⊥平面PAD ,点M 在棱PC 上.(1)求证:平面PAB ⊥平面PCD ;(2)若直线PA ∥平面MBD ,求此时直线BP 与平面MBD 所成角的正弦值.20.(12分)[2019·泰安期末]已知椭圆()22122:10x y C a b a b+=>>的离心率为2,抛物线22:4C y x =-的准线被椭圆1C 截得的线段长为2.(1)求椭圆1C 的方程;(2)如图,点A 、F 分别是椭圆1C 的左顶点、左焦点直线l 与椭圆1C 交于不同的两点M 、N (M 、N 都在x 轴上方).且AFM OFN ∠=∠.证明:直线l 过定点,并求出该定点的坐标.21.(12分)[2019·衡水中学]已知函数()23ln f x x ax x =+-,a ∈R . (1)当13a =-时,求函数()f x 的单调区间;(2)令函数()()2x x f x ϕ'=,若函数()x ϕ的最小值为32-,求实数a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·揭阳一模]以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a ∈R ,a 为常数)),过点()2,1P 、倾斜角为30︒的直线l 的参数方程满足32x t =+,(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且2PA PB ⋅=,求a 和PA PB -的值.23.(10分)【选修4-5:不等式选讲】[2019·汕尾质检]已知()221f x x x =++-的最小值为t .求t 的值;若实数a ,b 满足2222a b t +=,求221112a b +++的最小值.2019届高三第三次模拟考试卷理 科 数 学(二)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】∵()2i i i 1i 2i 2i 22a a a z -++===--的实部等于虚部,∴122a=-,即1a =-.故选C . 2.【答案】A【解析】由题意,集合{}31,A x x n n ==-∈N ,{}6,8,10,12,14B =, ∴{}8,14A B =I ,∴集合A B I 中元素的个数为2.故选A . 3.【答案】A【解析】()()()1,12,312,31m m m m m +=-+-=--a b ,结合向量垂直判定,建立方程,可得12310m m --+=,解得25m =,故选A . 4.【答案】B【解析】根据题意,圆C :()()22128x y -+-=,P 的坐标为()3,0, 则有()()2231028-+-=,则P 在圆C 上,此时20113CP K -==--,则切线的斜率1k =, 则切线的方程为3y x =-,即30x y --=,故选B . 5.【答案】B【解析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11210C C 20⋅=,若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,∴共有11310C C 30⋅=,∴共有203050+=种.故选B . 6.【答案】A【解析】 侧视图是直角边长为1的等腰直角三角形,圆锥的高为1,底面半径为1, 俯视图是扇形,圆心角为2π3,几何体的体积为112ππ113239⨯⨯⨯⨯=.故选A .7.【答案】C【解析】将函数()f x 横坐标缩短到原来的12后,得到()π2sin 216g x x ⎛⎫=+- ⎪⎝⎭,当π12x =-时,π112f ⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点π,112⎛⎫-- ⎪⎝⎭对称,故选项A 错误;周期2ππ2T ==,故选项B 错误; 当π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ2662x ⎛⎫+∈ ⎪⎝⎭,,∴函数()g x 在π0,6⎛⎫⎪⎝⎭上单调递增,故选项C 正确;∵函数()g x 在π0,6⎛⎫ ⎪⎝⎭上单调递增,∴()π16g x g ⎛⎫<= ⎪⎝⎭,即函数()g x 在π0,6⎛⎫⎪⎝⎭上没有最大值,故选项D 错误.故选C .8.【答案】A【解析】第一次循环,1k =,cos01S ==,112k =+=,4k >不成立; 第二次循环,2k =,π131cos 1322S =+=+=,213k =+=,4k >不成立; 第三次循环,3k =,32π31cos 12322S =+=-=,314k =+=,4k >不成立; 第四次循环,4k =,1cos π110S =+=-=,415k =+=,4k >成立, 退出循环,输出0S =,故选A . 9.【答案】C 【解析】∵()2sin 6020cos702sin80cos70cos20cos20︒+︒︒-︒-︒=︒︒2sin 60cos202cos60sin 20cos70cos20︒︒+︒︒-︒=︒2sin 60cos20sin 20cos70cos20︒︒+︒-︒=︒2sin 60cos202sin 603cos20︒︒==︒=︒.故选C .10.【答案】A【解析】∵函数()f x 为偶函数,∴()()312f x f -≥-=等价于()()32f x f -≥, ∵函数()f x 在[)0,+∞单调递减,∴32x -≤,232x -≤-≤,15x ≤≤,故选A . 11.【答案】C【解析】()2,0F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为222F P b b a ==+,即有22OP c b a =-=,由OP 为12MF F △的中位线,可得122MF OP a ==,22MF b =,可得212MF MF a -=,即为222b a a -=,即2b a =,可得221145c b e a a==+=+=.故选C .12.【答案】B【解析】由柯西不等式得:对任意实数1x ,1y ,2x ,2y ,2222121211220x x y y x y x y +-+⋅+≤恒成立, (当且仅当1221x y x y =取等号)若函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()11,A x y ,()22,B x y ,使得OA u u u r,OB u u u r 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于①,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,由图可知不存在;对于③,,由图可知存在;对于④,,由图可知存在,∴“柯西函数”的个数为2,故选B .二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】7【解析】根据三角形面积公式得到1sin sin 2S ab C C =⨯⇒=∵三角形为锐角三角形,故得到角C 为π3,再由余弦定理得到222π1cos 7322a b c c ab+-==⇒=.故答案为7.14.【答案】②④【解析】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内任意一条直线,满足线面垂直的定理,即可得到αβ⊥, 又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ=I ,b αγ=I ,则a b ⊥或a b ∥,或相交,故不正确, 对于④,可以证明αβ∥,故正确. 故答案为②④. 15.【答案】影视配音【解析】由①知甲和丙均不选播音主持,也不选广播电视; 由②知乙不选广播电视,也不选公共演讲;由③知如果甲不选公共演讲,那么丁就不选广播电视,综上得甲、乙、丙均不选广播电视,故丁选广播电视,从而甲选公共演讲,丙选影视配音, 故答案为影视配音. 16.【答案】12【解析】曲线eln y x =的导数为e'y x=,曲线2y mx =的导数为2y mx '=,由e2mx x =,0x >且0m >,得x =e 2⎫⎪⎪⎭,代入eln y x =得e 2=,解得12m =,故答案为12.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)n a n =;(2)见解析.【解析】(1)∵2n S 是n a 与1n a +的等比中项,∴()221n n n n n S a a a a =+=+, 当1n =时,21112a a a =+,∴11a =.当2n ≥时,22111222n n n n n n n a S S a a a a ---=-=+--,整理得()()1110n n n n a a a a --+--=. 又0n a >,∴()112n n a a n --=≥,即数列{}n a 是首项为1,公差为1的等差数列. ∴()()1111n a a n d n n =+-=+-=. (2)()()()1121111111n n n n b n n n n +++⎛⎫=-⋅=-+ ⎪++⎝⎭,∴21232111111111122334212221n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L11121n =-<+. 18.【答案】(1)0.05;(2)见解析.【解析】(1)设区间[]75,85内的频率为x ,则区间[)55,65,[)65,75内的频率分别为4x 和2x . 依题意得()0.0040.0120.0190.0310421x x x +++⨯+++=,解得0.05x =. ∴这些桥梁构件质量指标值落在区间[]75,85内的频率为0.05.(2)从该企业生产的该种桥梁构件中随机抽取3件,相当于进行了3次独立重复实验, ∴X 服从二项分布(),B n p ,其中3n =.由(1)得,区间[]45,75内的频率为0.30.20.10.6++=, 将频率视为概率得0.6p =.∵X 的所有可能取值为0,1,2,3,且()00330C 0.60.40.064P X ==⨯⨯=,()11231C 0.60.40.288P X ==⨯⨯=,()22132C 0.60.40.432P X ==⨯⨯=,()33033C 0.60.40.216P X ==⨯⨯=.∴X 的分布列为:X P0.0640.2880.4320.216X 服从二项分布(),B n p ,∴X 的数学期望为30.6 1.8EX =⨯=.19.【答案】(1)见解析;(2219565【解析】(1)∵AB ⊥平面PAD ,∴AB DP ⊥,又∵23DP=,2AP=,60PAD∠=︒,由sin sinPD PAPAD PDA=∠∠,可得1sin2PDA∠=,∴30PDA∠=︒,90APD∠=︒,即DP AP⊥,∵AB AP A=I,∴DP⊥平面PAB,∵DP⊂平面PCD,∴平面PAB⊥平面PCD;(2)以点A为坐标原点,AD所在的直线为y轴,AB所在的直线为z轴,如图所示,建立空间直角坐标系,其中()0,0,0A,()0,0,1B,()0,4,3C,()0,4,0D,)3,1,0P.从而()0,4,1BD=-u u u r,)3,1,0AP=u u u r,()3,3,3PC=-u u u r,设PM PCλ=u u u u r u u u r,从而得()33,31,3Mλλλ+,()33,31,31BMλλλ=+-u u u u r,设平面MBD的法向量为(),,x y z=n,若直线PA∥平面MBD,满足BMBDAP⎧⋅=⎪⎪⋅=⎨⎪⋅=⎪⎩u u u u ru u u ru u u rnnn,即)()()31313104030x y zy zx yλλλ-+++-=-=⎨+=,得14λ=,取()3,3,12=--n,且()3,1,1BP=-u u u r,直线BP与平面MBD所成角的正弦值等于33122sin195651565BPBPθ⋅-+===⨯⋅u u u ru u u rnn20.【答案】(1)2212xy+=;(2)直线l过定点()2,0.【解析】(1)由题意可知,抛物线2C的准线方程为1x=,又椭圆1C2,∴点2⎛⎝⎭在椭圆上,∴221112a b+=,①又2cea==,∴222212a bea-==,∴222a b=,②,由①②联立,解得22a=,21b=,∴椭圆1C的标准方程为2212xy+=.(2)设直线:l y kx m =+,设()11,M x y ,()22,N x y ,把直线l 代入椭圆方程,整理可得()222214220k x km m +++-=,()()222222164212216880k m k m k m ∆=-+-=-+>,即22210k m -+>,∴122421kmx x k +=-+,21222221m x x k -=+,∵111FM y k x =+,221FN yk x =+,M 、N 都在x 轴上方,且AFM OFN ∠=∠,∴FM FN k k =-,∴121211y yx x =-++,即()()()()122111kx m x kx m x ++=-++, 整理可得()()1212220kx x k m x x m ++++=,∴()2222242202121m km k k m m k k -⎛⎫⋅++-+= ⎪++⎝⎭,即22224444420km k k m km k m m ---++=,整理可得2m k =, ∴直线l 为()22y kx k k x =+=+,∴直线l 过定点()2,0. 21.【答案】(1)见解析;(2)56-.【解析】(1)13a =-时,()2ln f x x x x =--,则()()()221121x x x x f x x x +---'==, 令()'0f x =,解得12x =-或1x =,而0x >,故1x =,则当()0,1x ∈时,()0f x '<,即()f x 在区间内递减, 当()1,x ∈+∞时,()0f x '>,即()f x 在区间内递增. (2)由()23ln f x x ax x =+-,()123f x x a x'=+-, 则()()23223x x f x x ax x ϕ'==+-,故()2661x x ax ϕ'=+-, 又()()264610a ∆=-⨯⨯->,故方程()0x ϕ'=有2个不同的实根,不妨记为1x ,2x ,且12x x <, 又∵12106x x =-<,故120x x <<,当()20,x x ∈时,()0x ϕ'<,()x ϕ递减, 当()2,x x ∈+∞时,()0x ϕ'>,()x ϕ递增, 故()()322222min 23x x x ax x ϕϕ==+-,①又()20x ϕ'=,∴2226610x ax +-=,即222166x a x -=,②将222166x a x -=代入式,得2222222222222233316112323622x x x x x x x x x x x -+⋅⋅-=+--=--, 由题意得3221322x x --=-,即322230x x +-=,即()()222212230x x x -++=,解得21x =, 将21x =代入式中,得56a =-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)222x y a -=,3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数);(2)2a =±,432. 【解析】(1)由22cos 2a ρθ=得()2222cos sin a ρθθ-=,又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=, ∵过点()2,1P 、倾斜角为30︒的直线l 的普通方程为)321y x =-+, 由32x =得112y t =+,∴直线l 的参数方程为3212x t y =+=+⎧⎪⎪⎨⎪⎪⎩(t 为参数). (2)将3212x t y ==+⎧⎪⎪⎨⎪⎪⎩代入222x y a -=,得()()222231230t t a ++-=, 依题意知()()222231830a ∆⎡⎤=-->⎣⎦,则上方程的根1t 、2t 就是交点A 、对应的参数,∵()21223t t a ⋅=-,由参数t 的几何意义知1212PA PB t t t t ⋅=⋅=⋅,得122t t ⋅=, ∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即()2232a -=-,解得24a =(满足0∆>),∴2a =±, ∵1212PA PB t t t t -=-=+,又()122231t t +=-, ∴432PA PB -=. 23.【答案】(1)2;(2)1.【解析】(1)()31,12213,1131,1x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,故当1x =-时,函数()f x 有最小值2,∴2t =. (2)由(1)可知22222a b +=,故22124a b +++=,∴2222222222212111112121121244b a a b a b a b a b +++++++⎛⎫+++=+⋅=≥ ⎪++++⎝⎭, 当且仅当22122a b +=+=,即21a =,20b =时等号成立,故221112a b +++的最小值为1.。
2019年高考理科数学模拟试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )()31-, (B )()13-, (C )()1,∞+ (D )()3∞--,2.已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =(A ){}1(B ){12},(C ){}0123,,, (D ){10123}-,,,, 3.已知向量(1,)(3,2)a m b =-,=,且()a b b +⊥,则m = (A )8- (B )6- (C )6 (D )84.圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43- (B )34- (C )3 (D )25. 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9 6.右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π 7.若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈8. 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 ( D )349.若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin2α=(A )725 (B )15(C )15-(D )725-10. 从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为 (A )4n m (B )2n m (C )4m n (D )2m n11. 已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (A )2 (B )32(C )3 (D )2 12. 已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点 为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m第Ⅱ卷二、填空题:本题共4小题,每小题5分。
13. ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = .14. α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)15. 有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 16. 若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 三、解答题:解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin ∠Bsin ∠C; (2)若∠BAC =60°,求∠B .18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数0 1 2 3 4 5≥保 费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5≥概 率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.19. (本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置10OD '=.(I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.20. (本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.21. (本小题满分12分)(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;x x x -++> (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22. (本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F . (I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.23. (本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,10AB =,求l 的斜率.24. (本小题满分10分),选修4—5:不等式选讲 已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab+<+.2019年高考理科数学模拟试卷答案及解析1.【解析】A∴30m +>,10m -<,∴31m -<<,故选A . 2.【解析】C()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B =,,,,故选C . 3.【解析】D()42a b m +=-,,∵()a b b +⊥,∴()122(2)0a b b m +⋅=--= 解得8m =, 故选D . 4.【解析】A圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d ==,解得43a =-,故选A . 5.【解析】BE F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法故选B . 6.【解析】C几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l ==,21π2S r ch cl =++表4π16π8π=++28π=,故选C . 7.【解析】B平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B . 8.【解析】C第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=, 故选C . 9.【解析】D∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D . 10. 【解析】C由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn =,故选C .11. 【解析】A离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====---故选A . 12. 【解析】B由()()2f x f x =-得()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +, ∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B . 13. 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B AC A C A C =+=+=, 由正弦定理得:sin sin b a B A =解得2113b =. 14. 【解析】②③④ 15. 【解析】 (1,3) 由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3), 16. 【解析】 1ln2- ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++∴()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x =212x =- ∴1ln 11ln 2b x =+=-.17. 【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,; 当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.18. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯0.2550.150.250.30.1750.1 1.23a a a a a a a =+++++=, ∴平均保费与基本保费比值为1.23. 19. 【解析】⑴证明:∵54AE CF ==, ∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF DH ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==,∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OHEF H =,∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =,,,()'133AD =-,,,()060AC =,,,设面'ABD 法向量()1n x y z =,,,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-,,.同理可得面'AD C 的法向量()2301n =,,,∴12129cos52n n n n θ⋅==, ∴sin θ. 20. 【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+=++因为AM AN ⊥,所以21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM ==所以3AN k k=+因为2AM AN =所以23k k=+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.21. 【解析】⑴证明:()2e 2xx f x x -=+ ()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞,时,()0f x '>∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+ ∴()2e 20x x x -++>⑵ ()()()24e 2e x x a x x ax a g x x ----'=()4e 2e 2x x x x ax a x -++=()322e 2x x x a x x -⎛⎫+⋅+⎪+⎝⎭= [)01a ∈,由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2t t a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1e e 1e 22t t tt t t a t t h a t t t -++⋅-++===+ 记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,. 22. 【解析】(Ⅰ)证明:∵DF CE ⊥∴Rt Rt DEF CED △∽△∴GDF DEF BCF ∠=∠=∠DF CF DG BC= ∵DE DG =,CD BC = ∴DF CF DG BC= ∴GDF BCF △∽△∴CFB DFG ∠=∠∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒∴180GFB GCB ∠+∠=︒.∴B ,C ,G ,F 四点共圆.(Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =,连接GB ,Rt Rt BCG BFG △≌△, ∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.23. 【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,即22369014k k =+,整理得253k =,则k =. 24. 【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-; 当1122x -≤≤时,()111222f x x x =-++=<恒成立; 当12x >时,()2f x x =,若()2f x <,112x <<. 综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+, 即1a b ab +<+,证毕.。