中考总复习之-直角三角形复习
- 格式:docx
- 大小:125.10 KB
- 文档页数:3
解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
中考解直角三角形知识点整理复习解直角三角形是中考数学中的一个重要内容,考查学生对于三角函数的理解和运用能力。
下面是对于中考解直角三角形知识点的整理复习。
一、基本概念1.直角三角形:一个内角为直角(90°)的三角形。
2.角的三要素:角的名称、角的度数、角的符号(顺时针为负,逆时针为正)。
二、特殊角度的三角函数值1.0°和90°的三角函数值:正弦函数sin:sin0° = 0,sin90° = 1;余弦函数cos:cos0° = 1,cos90° = 0;正切函数tan:tan0° = 0,tan90° 不存在。
2.30°和60°的三角函数值:正弦函数sin:sin30° = 1/2,sin60° = √3/2;余弦函数cos:cos30° = √3/2,cos60° = 1/2;正切函数tan:tan30° = 1/√3,tan60° = √3三、三角函数在特定角度的性质1. 正弦函数sin的性质:当角A的终边经过点(x,y)时sinA = y/r其中r是点(x,y)到原点(0,0)的距离。
2. 余弦函数cos的性质:当角A的终边经过点(x,y)时cosA = x/r其中r是点(x,y)到原点(0,0)的距离。
3. 正切函数tan的性质:当角A的终边经过点(x,y)时tanA = y/x其中x不等于0。
4.三角函数的周期性:三角函数sin、cos、tan均是周期函数,其中sin和cos的周期是360°或2π弧度,tan的周期是180°或π弧度。
四、特殊角的三角函数值的计算1.特殊角度的三角函数值:根据三角函数在标准位置上的定义,可以计算出不同角度的三角函数值。
2.夹角的三角函数值:两个夹角相等的三角函数值相等,例如sin(A+B)=sinC。
23. 直角三角形和勾股定理➢ 知识过关1.直角三角形性质梳理: 1. 从边与角的角度来考虑①直角三角形两锐角_______,且任一直角边长小于_______.②勾股定理:直角三角形两直角边的______等于斜边的____; 勾股定理逆定理:如果三角形两边的______等于__________,那么这个三角形是_______三角形.2. 添加一些特殊的元素(中线或30°角)①直角三角形斜边上的中线等于______________;如果一个三角形____________________________,那么这个三角形是直角三角形.②30°角所对的直角边是_____________________;在直角三角形中,如果一条直角边等于斜边的一半,那么这 条直角边所对的锐角等于_____________.3. 特殊的直角三角形➢ 考点分类考点1直角三角形的性质例117.如图,在△ACD 中,BC ⊥AD 于B ,AC =AD =3,AB =2,则CD =( )A .6B .√6C .√5D .4ACB 45°1130°234211BCABCA BCAa 2+b 2=c2CBAC B A A BC ABC C BA2mm AB C 30°考点2勾股定理及其逆定理例2如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2﹣MB 2等于( )A .29B .32C .36D .45例3等面积法例3若直角三角形两条直角边的长分别为7和24,在这个三角形内有一点P 到各边的距离都相等,则这个距离是( )A .4B .3C .2D .1➢ 真题演练1.如图,在边长为1的正方形网格中,A 、B 、C 均在正方形格点上,则C 点到AB 的距离为( )A .3√1010B .2√105C .5√104D .4√1052.如图,AB =AC =13,BP ⊥CP ,BP =8,CP =6,则四边形ABPC 的面积为( )A .48B .60C .36D .723.如图,在Rt △ABC 中,∠ACB =90°,AB =6,若以AC 边和BC 边向外作等腰直角三角形AFC 和等腰直角三角形BEC .若△BEC 的面积为S 1,△AFC 的面积为S 2,则S 1+S 2=( )A .36B .18C .9D .44.如图,在△ABC 中,∠ACB =90°,AC =6,BC =8,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为F ,与BC 交于点E ,则BE 的长是( )A .3B .5C .163D .65.如图,△ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,则BC 边长的高为( )A .√302B .85√5 C .45√5 D .√1326.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE =5,AB =13,则EF 的值是( )A .7B .2√3C .√13D .7√27.如图,∠ABC =∠ADB =90°,DA =DB ,AB 与CD 交于点E ,若BC =2,AB =4,则点D 到AC 的距离是( )A.5√56B .6√55C .4√55D .5√548.如图,将一副直角三角尺重叠摆放,使得60°角的顶点与等腰直角三角形的直角顶点重合,且DE⊥AB于点D,与BC交于点F,则∠FCE的度数为()A.60°B.65°C.75°D.85°9.如图,AC=AB=BD,∠ABD=90°,BC=8,则△BCD的面积为()A.8B.12C.14D.1610.如图,四边形ABCD中,连接BD,O为BD中点,∠BAD=∠BCD=90°,∠BDA=30°,∠BDC=45°,则∠CAO=()A.15°B.18°C.22.5°D.30°➢课后练习1.如图,等边△ABD和等边△BCE中,A、B、C三点共线,AE和CD相交于点F,下列结论中正确的个数是()①△ABE≌△DBC②BF平分∠AFC③AF=DF+BF④∠AFD=60°A.1B.2C.3D.42.如图,△ABC中,∠ACB=60°,AG平分∠BAC交BC于点G,BD平分∠ABC交AC 于点D,AG、BD相交于点F,BE⊥AG交AG的延长线于点E,连接CE,下列结论中正确的有()①若∠BAD=70°,则∠EBC=5°;②BF=2EF;③BE=CE;④AB=BG+AD;⑤S△BFGS△AFD =BFAF.A.5个B.4个C.3个D.2个3.在△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F,给出以下四个结论:当∠EPF在△ABC内绕P旋转时(点E不与A、B重合),①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④S四边形AEPF= 12S△ABC;⑤EF的最小值为√2;⑥BE2+CF2=EF2.则正确结论有()A.2个B.3个C.4个D.5个4.如图,O是正△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为8;③∠AOB=150°;④四边形AOBO′的面积是24+16√3;⑤S△AOC+S△AOB=24+9√3 4.其中正确结论有()个.A.5B.4C.3D.25.如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF ⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=74S△ABP;⑤S△APH=S△ADE,其中正确的结论是()A.①②③B.②③④C.①②④⑤D.①②⑤6.如图,O为△ABC内的一点,D为AB边上的一点,OD=OB,OA=OC,∠AOC=∠BOD =90°,连接CD.下列结论:①AB=CD;②AB⊥CD;③∠AOD+∠OCD=45°;④S △BOC=S△AOD.其中所有正确结论的序号是()A.①②B.①③C.①②③D.①②③④➢冲击A+如图1,AB为圆O的直径,C为圆O上一点,连接CB,过C作CD⊥AB于点D,过点C 作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是圆O的切线;(2)如图2,点F在圆O上,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.①求证:CF=2CD;②若CD=4,BD=2,求线段FG的长.。
中考解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半;3、直角三角形斜边上的中线等于斜边的一半4、勾股定理: 如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形;考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;3、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形;经典直角三角形:勾三、股四、弦五用它判断三角形是否为直角三角形的一般步骤是:1确定最大边不妨设为c ;2若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形其中c 为最大边; 若a 2+b 2>c 2,则此三角形为锐角三角形其中c 为最大边4. 勾股定理的作用:1已知直角三角形的两边求第三边; 2已知直角三角形的一边,求另两边的关系;3用于证明线段平方关系的问题; 4利用勾股定理,作出长为n 的线段 考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA,即b atan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值三角函数 30°45°60°sinα cos αtan α 1 cot α14、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A ; 2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4商弦切关系:tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,1正弦值随着角度的增大或减小而增大或减小;2余弦值随着角度的增大或减小而减小或增大;3正切值随着角度的增大或减小而增大或减小;4余切值随着角度的增大或减小而减小或增大 考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形; 2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为a,b,c 1三边之间的关系:222c b a =+勾股定理 2锐角之间的关系:∠A+∠B=90°3边角之间的关系:正弦sin,余弦cos,正切tan4 面积公式:h c 为c 边上的高考点五、解直角三角形 应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:1仰角:视线在水平线上方的角;俯角:视线在水平线下方的角;2坡面的铅直高度h 和水平宽度l 的比叫做坡度坡比;用字母i 表示,即hi l=;坡度一般写成1:m 的形式,如1:5i =等; 把坡面与水平面的夹角记作α叫做坡角,那么tan hi lα==; 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角;如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°;解直角三角形的基本类型及其解法公式总结2测量底部可以到达的物体的高度h =h 1+h 2=a 1tan α+tan β3测量底部不可到达的物体的高度1数学模型所用工具 应测数据 数量关系根据 理论 皮尺 侧倾器仰角α 俯角β 高度a tan α=x h 1 ,tan β=xah =a +h 1=a +a =a1+矩形的性质和直角三角形的边角关系俯角α 俯角β 高度 tan α=, tan β=xa∴x == ∴h =a -测量底部不可到达的物体的高度2数字模型 所用工具 应测距离 数量关系根据 原理皮尺侧倾器 仰角α, 仰角β 水平距离a 1 侧倾器高a 2tan α=xa h +11tan β=x h 1∴h 1=αββαtan tan tan tan 1-ah =a 2+h 1=a 2+αββαtan tan tan tan 1-a矩形的性质和直角三角形的边角关系仰角α 仰角β 高度atan α=, tan β= h =tan α=, tan β=、h =仰角α 仰角β 高度atan α=, tan β=h =第三部分 真题分类汇编详解2007-2012200719.本小题满分6分一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近参考数据:°≈925,°≈25, °≈910,°≈2200819.本小题满分6分在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米结果保留两个有效数字参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=200919.本小题满分6分在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰D DC BβC GEFhα β x h xaα βhAa x α βhaxαβ hx α β角37CGE ∠=°,已知测倾器高米,请你根据以上数据计算出古塔CD 的高度. 参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈ 201019.本小题满分6分小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.结果保留整数参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,解:201119.6分某商场准备改善原有楼梯的安全性能, 原来的40o 减至35o .已知原楼梯AB 长为5m,调整后的楼梯所占地 面CD 有多长结果精确到0.1m .参考数据:sin40o ≈,cos40o ≈≈,tan35o ≈ 201220.8分附历年真题标准答案:200719.本小题满分6分解:过C 作AB 的垂线,交直线AB 于点D,得到Rt△ACD 与Rt△BCD.设BD =x 海里,在Rt△BCD 中,tan∠CBD=CDBD,∴CD=x ·°.在Rt△ACD 中,AD =AB +BD =60+x 海里,tan∠A=CDAD,∴CD= 60+x ·°. ∴x·°=60+x·°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近. …………………………6′ 200819.本小题满分6分解:设CD 为x ,在Rt△BCD 中, 6.18==∠αBDC ,∵CDBCBDC =∠tan ,∴x BDC CD BC 34.0tan =∠⋅=. ········· 2′ 在Rt△ACD 中, 5.64==∠βADC , ∵CDACADC =∠tan ,∴x ADC CD AC 1.2tan =∠⋅=. ∵BC AC AB -=,∴x x 34.01.22-=. 1.14x ≈. 答:CD 长约为米. 200919.本小题满分6分B CD A CG EDBAF B37° 48°DC A 第19题图40o 35o ADBC解:由题意知CD AD ⊥,EF AD ∥, ∴90CEF ∠=°,设CE x =,在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CE CGE GE ∠=,则4tan tan 373CE x GE x CGE ===∠°∵EF FG EG =+,∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=米.答:古塔的高度约是39米. ························ 6分 201019.本小题满分6分解:设CD = x .在Rt △ACD 中,tan37ADCD︒=, 则34AD x =,∴34AD x =. 在Rt△BCD 中,tan48° = BD CD,则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分201119.本小题满分6分 201220.8分第19题图。
中考数学总复习《解直角三角形》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.已知∠A 是锐角,sin A =35,则tan A 的值是 ( )A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 ( )A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 ( )A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A测得该楼顶部点C的仰角为60°,测得底部点B的俯角为45°,点A与楼BC的水平距离AD=50 m,则这栋楼的高度为m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 ( ) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 ( )A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m至点Q处,测得教学楼顶端点B的俯角为45°,则教学楼AB的高度约为m.(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=.C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.,β=30°,求该介质的(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√74折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.参考答案A 层·基础过关1.(2024·潍坊寿光市二模)已知∠A 是锐角,sin A =35,则tan A 的值是 (B)A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 (A)A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.(2024·泸州中考)宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 (A)A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 105° .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60°,测得底部点B 的俯角为45°,点A 与楼BC 的水平距离AD =50 m,则这栋楼的高度为 (50+50√3) m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为11.5米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.【解析】(1)∵AD⊥BC,AB=10,AD=6∴BD=√AB2-AD2=√102-62=8;∵tan∠ACB=1,∴CD=AD=6∴BC=BD+CD=8+6=14;(2)∵AE 是BC 边上的中线,∴CE =12BC =7,∴DE =CE -CD =7-6=1,∵AD ⊥BC∴AE =√AD 2+DE 2=√62+12=√37∴sin ∠DAE =DEAE =√37=√3737.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 (A) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 (A)A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m 至点Q 处,测得教学楼顶端点B 的俯角为45°,则教学楼AB 的高度约为 17 m .(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至或AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=274.7C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√7,β=30°,求该介质的4折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.【解析】(1)∵cos α=√74∴如图设b=√7x,则c=4x,由勾股定理得,a=√(4x)2-(√7x)2=3x∴sin α=ac =3x4x=34,又∵β=30°∴sin β=sin 30°=12∴折射率为sinαsinβ=3412=32.(2)根据折射率与(1)的材料相同,可得折射率为32∵α=60°∴sinαsinβ=sin60°sinβ=32,∴sin β=√33.∵四边形ABCD是矩形,点O是AD中点∴AD=2OD,∠D=90°又∵∠OCD=β∴sin∠OCD=sin β=√33在Rt△ODC中,设OD=√3x,OC=3x由勾股定理得,CD=√(3x)2-(√3x)2=√6x∴tan β=ODCD =√3x√6x=√2.又∵CD=10 cm∴OD10=√2∴OD=5√2cm∴AD=10√2cm,∴截面ABCD的面积为:10√2×10=100√2cm2.。
初中数学总复习资料7——直角三角形①.直角三角形中两锐角 ;②.直角三角形斜边上的中线等于斜边的 ; ③.直角三角形中30°角所对的直角边等于斜边的 ;④直角三角形的三条边a ,b ,c(斜边)满足 定理,即 。
二、直角三角形的判定①有一个 角的三角形是直角三角形②三条边a ,b ,c 满足 ,那么这个三角形是直角三角形。
三、解直角三角形1、在Rt △ABC 中,∠C =90゜,AB =c ,BC =a ,AC =b , 1)、三边关系(勾股定理): 2)、锐角间的关系:∠ +∠ = 90°3)、边角间的关系:sin A = ; sin = ; cos A = ; cos B = ; tan A = ; tan B = ; 2、填表3、图中角 可以看作是点A 的 角;∠B 可看作是点B 的 角;; 9、(1)坡度(或坡比)是坡面的垂直距离(h )和水平距离(l )的比。
记作i ,即i = ;(2)坡角——坡面与水平面的夹角。
记作α,有i = = α(1)中,∠C = 90°,∠A = 30°,BC = 4cm ,则AB = 2、已知直角三角形两直角边分别为6和8,则斜边上的中线长是 。
3、直角三角形的两个锐角的平分线所交成的角的度数是( ) A 、45°B 、135°C 、45°或135°D 、以上答案都不对 4、等腰直角三角形中,若斜边和斜边上的高的和是6cm ,则斜边长是 cm 。
5、三角形三个角的度数之比为1:2:3,它的最大边长等于16cm ,则最小边长是 cm 6、如图,△ABC 中,AB =AC ,∠BAC =120度,AD ⊥AC ,DC =5,则BD = 。
(4) (5)7、如图,△ABC 中,AB =AC ,DE 是AB 的中垂线,ΔBCE 的周长为14cm, BC =5cm ,则AB= 。
中考总复习之--------直角三角形复习 航标单
【书中学道】——知识扫描·导图梳理
【做中习道】
航标1:利用直角三角形的有关概念,性质及进行计算
例1. 如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,∠ACD=2∠ACB .若DG=3,EC=1,则DE 的长为( )
A. 32
B. 10
C. 22
D. 6
例2.
如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,H 是AF 的中点,
那么CH 的长是( )
A. 2.5
B. 5
C.
22
3
D. 2
航标2:利用勾股定理求线段长
例3.(2015湖南株洲)如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 等于
变式题:(2015贵州遵义)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称
其为“赵爽弦图”(如图(1)),图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3= .
例4. (2015江苏徐州)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C 落在第二象限.其斜边两端点A 、B 分别落在x 轴、y 轴上,且AB =12cm. (1)若OB=6cm. ①求点C 的坐标;
②若点A 向右滑动的距离与点B 向上滑动的距离相等,求滑动的距离.
航标3:直角三角板在翻折及旋转变化问题中的运用
例5.如图,一副三角板拼在一起,O 为AD 的中点,AB = 22.将△ABO 沿BO 对折于△A ′BO ,M 为BC 上一动点,则A ′M 的最小值为 .
【省中悟道】 以简单图文的形式记录你本节课的学习所获吧!
1.如图,在 Rt △ABC,∠B=90°.ED 是AC 的垂直平分线,交AC 于点D,交BC 于点E,已知∠BAE=30°,则∠C 的度数为 .
45︒
60︒
A ′
B M
A
O
D
C
2.如图,在Rt △ABC 中,∠ACB = 90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD = 5cm ,则EF = _________cm
3.如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是( ) (A )3.5 (B )
4.2 (C )
5.8 (D )7
(第1题)
4.如图,将Rt △ABC 绕点A 按顺时针旋转一定的角度得到Rt △ADE ,点B 的对应点D 恰好落在BC 边上,若
∠B=60º,则CD 的长为 ( )
A .0.5
B .1.5 C
D .1
5.如图,已知AB =12,AB ⊥BC 于B ,AB ⊥AD 于A ,AD =5,BC =10,点E 是CD 的中点,则AE 的长是_______.
A
C
B
E
F
(第2题)
(第3题)
图1C
A
B
D
E
(第5题)。