数学选修4-5第一讲检测题不等式
- 格式:doc
- 大小:210.50 KB
- 文档页数:4
一、选择题1.下列结论不正确的是( ) A .若a b >,0c >,则ac bc > B .若a b >,0c >,则c c a b> C .若a b >,则a c b c +>+D .若a b >,则a c b c ->-2.若存在实数x 使得不等式2113x x a a +--≤-成立,则实数a 的取值范围为( )A .3317,22⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭B .(][) ,21,-∞-+∞C .[]1,2D .(][),12,-∞+∞3.两个正实数a ,b 满足3a ,12,b 成等差数列,则不等式2134m m a b+≥+恒成立时实数m 的取值范围是( ) A .[]4,3-B .[]2,6-C .[]6,2-D .[]3,4-4.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .25.若a 、b 、R c ∈,且a b >,则下列不等式中一定成立的是( )A .11a b<B .ac bc ≥C .20c a b >-D .()20a b c -≥6.已知log e a π=,ln eb π=,2e lnc π=,则( ) A .a b c << B .b c a <<C .b a c <<D .c b a <<7.若112a b <<<,01c <<,则下列不等式不成立...的是( ) A .log log a b c c < B .log log b a a c b c < C .c c ab ba <D .c c a b <8.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b >D .若a b >, 则22ac bc >9.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y-> D .ln x +ln y >010.不等式5310x x -++≥的解集是( )A .[-5,7]B .[-4,6]C .(][),57,-∞-+∞ D .(][),46,-∞-+∞11.已知,a b ∈R ,且2a bP +=,222a b Q +=,则P ,Q 的关系是( ) A .P Q ≥B .P Q >C .P Q ≤D .P Q <12.若a b >,则下列不等式成立的是( ) A .22a b >B .11a b< C .a b >D .a b e e >二、填空题13.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 14.已知平面向量a ,b ,c 满足1a =,||1b =,()c a b a b -+≤-,则||c 的最大值为___________.15.若不等式2240x x m +--≥的解集为R ,则实数m 的取值范围是_______.16.已知函数,若关于的不等式的解集为,则实数的取值范围是_______.17.若110a b>>有下列四个不等式①33a b <;②21log 3log 3a b ++>;b a b a -④3322a b ab +>.则下列组合中全部正确的为__________ 18.关于x 的不等式12x x m +--≥恒成立,则m 的取值范围为________19.已知正实数x ,y 满足40x y xy +-=,若x y m +≥恒成立,则实数m 的取值范围为_____________.20.若函数()f x 满足:对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有函数值()()(),,f a f b f c 也是某个三角形的三边长.则称函数()f x 为保三角形函数,下面四个函数:①()()20f x x x =>;②())0f x x x =>;③()sin 02f x x x π⎛⎫=<< ⎪⎝⎭;④()cos 02f x x x π⎛⎫=<<⎪⎝⎭为保三角形函数的序号为___________.三、解答题21.已知函数()36f x x =+,()3g x x =-. (Ⅰ)求不等式()()f x g x >的解集;(Ⅱ)若()3()f x g x a +≥对于任意x ∈R 恒成立,求实数a 的最大值. 22.函数()212f x x x =-++.(1)求函数()f x 的最小值;(2)若()f x 的最小值为M ,()220,0a b M a b +=>>,求证:141213a b +≥++. 23.(1)设1≥x ,1y ≥,证明:111x y xy xy x y++≤++; (2)设1a b c ≤≤≤,证明:log log log log log log a b c b c a b c a a b c ++≤++. 24.已知()13f x x x =++-.(1)求直线8y =与函数()y f x =的图象所围图形的面积; (2)若()211f x a a ≥++-对一切实数x 成立,求a 的取值范围. 25.已知()|1||21|f x x x =+--. (1)求不等式()0f x >的解集;(2)若x ∈R ,不等式()23f x x a ≤+-恒成立,求实数a 的取值范围. 26.已知0a >,0b >,函数()|||2|f x x a x b =++-的最小值为1. (1)求2a b +的值;(2)若2a b tab +≥恒成立,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据不等式的性质,对选项逐一分析,由此得出正确选项. 【详解】对于A 选项,不等式两边乘以一个正数,不等号不改变方程,故A 正确.对于B 选项,若2,1,1a b c ===,则c ca b<,故B 选项错误.对于C 、D 选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C 、D 正确.综上所述,本小题选B. 【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.2.D解析:D 【分析】由题意可转化为()2min311a a x x -≥+--,转化为求11x x +--的最小值,解不等式,求a 的取值范围. 【详解】若存在实数x 使得不等式2113x x a a +--≤-成立,可知()2min311a a x x -≥+--当1x ≤-时,11112x x x x +--=--+-=-,当11x -<<时,11112x x x x x +--=++-=,222x -<<, 当1≥x 时,11112x x x x +--=+-+=, 所以11x x +--的最小值为-2, 所以232a a -≥-,解得:2a ≥或1a ≤. 故选:D 【点睛】本题考查不等式能成立,求参数的取值范围,重点考查转化思想,计算能力,属于基础题型,本题的关键是将不等式能成立,转化为求函数的最小值.3.C解析:C 【分析】由题意利用等差数列的定义和性质求得13a b =+,再利用基本不等式求得112ab,根据题意,2412m m +,由此求得m 的范围. 【详解】 解:两个正实数a ,b 满足3a ,12,b 成等差数列, 13a b ∴=+,123ab ∴,112ab∴,∴112ab. ∴不等式2134m m a b ++恒成立,即234a b m m ab++恒成立, 即214m m ab+恒成立. 2412m m ∴+,求得62m -,故选:C . 【点睛】本题主要考查等差数列的定义和性质,不等式的恒成立问题,基本不等式的应用,属于基础题.4.D解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解.【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤; 当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题5.D解析:D 【分析】利用不等式的性质证明,或者构造反例说明,即得解. 【详解】由题意可知,a 、b 、R c ∈,且a b > A .若1,2a b ==-,满足a b >,则11a b>,故本选项不正确; B .若1,2a b =-=-,满足,1a b c >=-,则ac bc <,故本选项不正确; C . 若0c,则20c a b=-,故本选项不成立;D .22,0,()0a b c a b c >≥∴-≥ 故选:D 【点睛】本题考查了利用不等式的性质,判断代数式的大小,考查了学生综合分析,转化与划归的能力,属于基础题.6.B解析:B 【分析】因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可.【详解】解:因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2eb ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<, 故选:B . 【点睛】 本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.7.B解析:B 【分析】根据幂函数和对数函数的图象和性质,结合不等式的基本性质,对各选项逐一判断即可. 【详解】 对于A :当112a b <<<,01c <<,由对数函数的单调性知,0log log a b c c <<,故A 正确; 对于B :当112a b <<<,01c <<,设函数log c y x =为减函数,则log log 0c c a b >>,所以log log 0b a c c >>,因112a b <<<,则log b a c 与log a b c 无法比较大小,故B 不正确; 对于C :当112a b <<<,01c <<,则10c -<,由指数函数的单调性知,11c c b a --<,将不等式11c c b a --<两边同乘ab ,得c c ab ba <,故C 正确;对于D :当112a b <<<,01c <<,由不等式的基本性质知,c c a b <,故D 正确. 故选: B 【点睛】本题考查了幂函数和对数函数的图象和性质,不等式的基本性质,属于基础题.8.D解析:D 【分析】根据不等式的性质、对数函数和指数函数的单调性,对选项逐一分析,由此得出正确选项. 【详解】对于A 选项,根据不等式传递性可知,A 选项命题正确.对于B 选项,由于ln y x =在定义域上为增函数,故B 选项正确.对于C 选项,由于2x y =在定义域上为增函数,故C 选项正确.对于D 选项,当0c 时,命题错误.故选D.【点睛】本小题主要考查不等式的性质,考查指数函数和对数函数的单调性,属于基础题.9.A解析:A 【分析】结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析: 对于选项A ,0x y ->,110y x x y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确; 对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.10.D解析:D 【分析】零点分段后分类讨论求解不等式的解集即可. 【详解】 分类讨论:当5x ≥时,不等式即:5310x x -++≥,解得:6x ≥; 当35x -<<时,不等式即5310x x ---≥,此时不等式无解; 当3x ≤-时,不等式即:5310x x -+--≥,解得:4x ≤-; 综上可得,不等式的解集为(][),46,-∞-⋃+∞. 本题选择D 选项. 【点睛】本题主要考查绝对值不等式的解法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.11.C解析:C 【解析】分析:因为P 2﹣Q 2=﹣2()4a b -≤0,所以P 2≤Q 2,则P≤Q ,详解:因为a ,b ∈R ,且P=2a b +,,所以P 2=2224a b ab ++,Q 2=222a b +,则P 2﹣Q 2=2224a b ab ++﹣222a b +=2224ab a b --=﹣2()4a b -≤0, 当且仅当a=b 时取等成立,所以P 2﹣Q 2≤0,即P 2≤Q 2,所以P≤Q , 故选:C .点睛:比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. (4)借助第三量比较法12.D解析:D 【解析】分析:根据不等式的性质,通过举例,可判定A 、B 、C 不正确,根据指数函数的性质,即可得到D 是正确的.详解:当1,2a b ==-时,满足a b >,此时2211,,a b a b a b<,所以A 、B 、C 不正确;因为函数x y e =是单调递增函数,又由a b >,所以a b e e >,故选D.点睛:本题主要考查了不等式的性质的应用和指数函数的单调性的应用,其中熟记不等式的基本性质和指数函数的单调性是解答本题的关键,着重考查了分析问题和解答问题的能力.二、填空题13.【分析】先去绝对值转化为再转化为求的最大值与最小值得到答案【详解】由得又由则则的最大值为的最小值为则故答案为:【点睛】本题考查了绝对值不等式的解法对数函数的值域的求法还考查了将恒成立问题转化为求最值 解析:()1,7-【分析】先去绝对值,转化为22log 5log 5x a x -<<+,再转化为求2log ,[4,16]y x x =∈的最大值与最小值,得到答案. 【详解】由2log 5x a -<,得22log 5log 5x a x -<<+,又由2log ,[4,16]y x x =∈, 则[2,4]y ∈,则25log x -的最大值为1-,2log 5x +的最小值为7,则17a -<<. 故答案为:()1,7- 【点睛】本题考查了绝对值不等式的解法,对数函数的值域的求法,还考查了将恒成立问题转化为求最值问题,转化与化归思想,属于中档题.14.【分析】只有不等号左边有当为定值时相当于存在的一个方向使得不等式成立适当选取使不等号左边得到最小值且这个最大值不大于右边【详解】当为定值时当且仅当与同向时取最小值此时所以因为所以所以所以当且仅当且与解析:【分析】只有不等号左边有c ,当||c 为定值时,相当于存在c 的一个方向使得不等式成立. 适当选取c 使不等号左边得到最小值,且这个最大值不大于右边. 【详解】当||c 为定值时,|()|c a b -+当且仅当c 与a b +同向时取最小值, 此时|()|||||||c a b c a b a b -+=-+-,所以||||||c a b a b ++-.因为||||1a b ==,所以2222()()2()4a b a b a b ++-=+=,所以22222(||||)()()2||||2[()()]8a b a b a b a b a b a b a b a b ++-=++-++-++-= 所以||||||22c a b a b ++-,当且仅当a b ⊥且c 与a b +同向时取等号.故答案为 【点睛】本题考察平面向量的最值问题,需要用到转化思想、基本不等式等,综合性很强,属于中档题.15.【分析】构造函数得出函数表示为分段函数的形式并求出函数的最小值可得出实数的取值范围【详解】构造函数由题意得当时当且仅当时等号成立;当时此时函数单调递增则所以函数的最小值为因此故答案为【点睛】本题考查 解析:3m ≤【分析】构造函数()224f x x x =+-,得出()min m f x ≤,函数()y f x =表示为分段函数的形式,并求出函数()y f x =的最小值,可得出实数m 的取值范围. 【详解】构造函数()224f x x x =+-,由题意得()min m f x ≤.当2x ≤时,()()2224133f x x x x =-+=-+≥,当且仅当1x =时,等号成立; 当2x >时,()()222415f x x x x =+-=+-,此时,函数()y f x =单调递增,则()()24f x f >=.所以,函数()y f x =的最小值为()min 3f x =,因此,3m ≤,故答案为3m ≤. 【点睛】本题考查不等式恒成立问题,考查参变量分离与分类讨论思想,对于这类问题,一般转化为最值来求解,考查化归与转化思想,考查运算求解能力,属于中等题.16.【解析】试题分析:由题意得对任意总成立即对任意总成立而当且仅当时取=则实数的取值范围是考点:基本不等式求最值 解析:()2,π-+∞【解析】试题分析:由题意得()=()f x x a x π-<对任意0x <总成立,即a x xπ>+对任意0x <总成立,而2x xππ+≤-,当且仅当x π=-时取“=”,则实数的取值范围是()2,π-+∞考点:基本不等式求最值17.①③【分析】由条件可知利用作差或是不等式的性质或是代特殊值判断不等式是否正确【详解】则正确故①正确;但不确定和的大小关系所以的正负不确定故②不正确;即故③正确;当时当时故④不正确;故答案为:①③【点解析:①③ 【分析】由条件可知0b a >>,利用作差,或是不等式的性质,或是代特殊值,判断不等式是否正确. 【详解】1100a b a b>>⇒<<,则33a b <正确,故①正确;()()()()()()33213333log 1log 211log 3log 3log 2log 1log 2log 1a b b a a b a b +++-+-=-=++++,()()33log 20,log 10a b +>+>,但不确定1b +和2a +的大小关系,所以()()33log 1log 2b a +-+的正负不确定,故②不正确;0b a >>,0>,(()22b a b a -=+---,20a =-=<<③正确; 当1,2a b ==时,33220a b ab +-> 当2,3a b ==时,33220a b ab +-<,故④不正确;故答案为:①③【点睛】方法点睛:1.利用不等式的性质判断,把要判断的结论和不等式的性质联系起来考虑,先找到与结论相近的性质,再判断.2.作差(或作商)比较法,先作差(商),变形整理,判断符号(或与1比较),最后判断大小;3.特殊值验证的方法,运用赋值法排除选项.18.【分析】由题意得由绝对值三角不等式求出函数的最小值从而可求出实数的取值范围【详解】由题意得由绝对值三角不等式得因此实数的取值范围是故答案为【点睛】本题考查不等式恒成立问题同时也考查了利用绝对值三角不 解析:(],3-∞-【分析】 由题意得()min 12m x x ≤+--,由绝对值三角不等式求出函数12y x x =+--的最小值,从而可求出实数m 的取值范围.【详解】 由题意得()min 12m x x ≤+--, 由绝对值三角不等式得()()12123x x x x +--≥-+--=-,3m ∴≤-, 因此,实数m 的取值范围是(],3-∞-,故答案为(],3-∞-.【点睛】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.19.【分析】由等式x+4y ﹣xy =0变形得将代数式x+y 与代数式相乘并展开利用基本不等式可求出x+y 的最小值从而可求出m 的取值范围【详解】由于x+4y ﹣xy =0即x+4y =xy 等式两边同时除以xy 得由基解析:9m ≤【分析】由等式x +4y ﹣xy =0,变形得411x y +=,将代数式x +y 与代数式41x y+相乘并展开,利用基本不等式可求出x +y 的最小值,从而可求出m 的取值范围.【详解】由于x +4y ﹣xy =0,即x +4y =xy ,等式两边同时除以xy 得,411x y+=,由基本不等式可得()414559y x x y x y x y x y ⎛⎫+=++=++≥=⎪⎝⎭, 当且仅当4y x x y=,即当x =2y=6时,等号成立, 所以,x +y 的最小值为9.因此,m ≤9.故答案为m ≤9.【点睛】本题考查基本不等式及其应用,解决本题的关键在于对代数式进行合理配凑,考查计算能力与变形能力,属于中等题.20.②③【分析】欲判断函数是不是保三角形函数只需要任给三角形设它的三边长分别为则不妨设判断是否满足任意两数之和大于第三个数即任意两边之和大于第三边即可【详解】任给三角形设它的三边长分别为则不妨设①可作为 解析:②③【分析】欲判断函数()f x 是不是保三角形函数,只需要任给三角形,设它的三边长分别为a b c ,,,则a b c +>,不妨设a c ≤,b c ≤,判断()()()f a f b f c ,,是否满足任意两数之和大于第三个数,即任意两边之和大于第三边即可【详解】任给三角形,设它的三边长分别为a b c ,,,则a b c +>,不妨设a c ≤,b c ≤,①()()20f x x x =>,335,,可作为一个三角形的三边长,但222335+<,则不存在三角形以222335,,为三边长,故此函数不是保三角形函数②())0f x x =>,b c a +>>>())0f x x =>是保三角形函数 ③()02f x sinx x π⎛⎫=<< ⎪⎝⎭,02a b c π>+>>,()()()sin sin sin f a f b a b c f c +=+>=()02f x sinx x π⎛⎫∴=<< ⎪⎝⎭是保三角形函数 ④()02f x cosx x π⎛⎫=<< ⎪⎝⎭,当512a b π==,12c π=时,55 121212cos cos cos πππ+<,故此函数不是保三角形函数综上所述,为保三角形函数的是②③【点睛】要想判断()f x 是保三角形函数,要经过严密的论证说明()f x 满足保三角形函数的概念,但要判断()f x 不是保三角形函数,仅需要举出一个反例即可三、解答题21.(Ⅰ)93,,24⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭;(Ⅱ)15. 【分析】(1)两边平方,再利用一元二次不等式的解法即可求出不等式的解集;(2)转化为min (3633)x x a ++-≥对于任意x ∈R 恒成立,利用绝对值三角不等式求出min (3633)15x x ++-=,进而可得答案.【详解】(Ⅰ)由()()f x g x >,得363x x +>-,平方得()()22363x x +>-, 得2842270x x ++>,即()()29430x x ++>,解得92x <-或34x >-. 故不等式()()f x g x >的解集是93,,24⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭. (Ⅱ)若()()3f x g x a +≥恒成立,即3639x x a ++-≥恒成立. 只需min (3633)x x a ++-≥即可. 而()3639363915x x x x ++-≥+--=,所以15a ≤故实数a 的最大值为15.【点睛】不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在y g x 上方即可);③ ()min 0f x ≥或()max 0f x ≤恒成立22.(1)52;(2)证明见解析. 【分析】 (1)采用零点分段的方法将定义域分为三段:(],2-∞-、12,2⎛⎫- ⎪⎝⎭、1,2⎡⎫+∞⎪⎢⎣⎭,由此求解出每一段定义域对应的()f x 的值域,由此确定出()f x 的最小值;(2)由(1)确定出M 的值,采用常数代换的方法将14213a b +++变形并利用基本不等式完成证明.【详解】解:(1)()31,212123,22131,2x x f x x x x x x x ⎧⎪--≤-⎪⎪=-++=-+-<<⎨⎪⎪+≥⎪⎩, 当2x -≤时,()5f x ≥; 当122x -<<时,()552f x <<; 当12x ≥时,()52f x ≥. 所以()f x 的最小值为52. (2)由(1)知52M =,即25a b +=, 又因为0a >,0b >, 所以()()141142132139213a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭ ()4211359213a b a b +⎛⎫+=++ ⎪++⎝⎭1519⎛ ≥+= ⎝ 当且仅当()253221a b b a +=⎧⎨+=+⎩,即1a =,3b =时,等号成立, 所以141231a b +≥++. 【点睛】本题考查绝对值函数的最值以及运用基本不等式证明不等式,难度一般.(1)求解双绝对值函数的最值常用的方法:零点分段法、图象法、几何意义法;(2)利用基本不等式完成证明或者求解最值时,要注意说明取等号的条件.23.(1)证明见详解;(2)证明见详解.【分析】(1)根据题意,首先对原不等式进行变形,()()21xy x y x y xy ++≤++,再做差,通过变形、整理化简,利用已知条件判断可得结论,从而不等式得到证明;(2)首先换元,设log ,log a b b x c y ==,利用换底公式转化为关于,x y 的式子,即为111x y xy xy x y++≤++,借助(1)的结论,可得证明. 【详解】证明:(1)由于1≥x ,1y ≥, 则111x y xy xy x y++≤++()()21xy x y x y xy ⇔++≤++, 将上式中的右边式子减左边式子得:()()21x y xy xy x y ⎡⎤++-++⎡⎤⎣⎦⎣⎦ ()()()()111xy xy x y xy =+--+-()()11xy xy x y =---+()()()111xy x y =---,又由1≥x ,1y ≥,则1xy ≥;即()()()1110xy x y ---≥,从而不等式得到证明.(2)设log ,log a b b x c y ==,则1,1x y ≥≥, 由换底公式可得:111log ,log ,log ,log b c a c a b c xy a x y xy====, 于是要证明的不等式可转化为111x y xy xy x y ++≤++, 其中log 1,log 1a b b x c y =≥=≥,由(1)的结论可得,要证明的不等式成立.【点睛】本题主要考查了不等式的证明,要掌握不等式证明常见的方法,如做差法、放缩法;其次注意(2)证明在变形后用到(1)的结论.属于中档题.24.(1)24;(2)4433a -≤≤. 【分析】(1)利用零点分段法将()f x 表示为分段函数的形式,由此画出直线8y =与函数()y f x =的图象.根据等腰梯形面积公式求得所围图形的面积.(2)先求得()f x 的最小值,由此得到4211a a ≥++-,由零点分段法进行分类讨论,由此求得a 的取值范围.【详解】(1)因为()22,14,1322,3x x f x x x x -+≤-⎧⎪=-<≤⎨⎪->⎩,如图所示:直线8y =与函数()y f x =的图象所围图形是一个等腰梯形,令228x -+=,得3x =-;令228x -=,得5x =, 所以等腰梯形的面积()1484242S =⨯+⨯=. (2)要使()211f x a a ≥++-对一切实数x 成立,只须()min 211f x a a ≥++-,而()13134f x x x x x =++-≥+-+=,所以()min 4f x =,故4211a a ≥++-.①由122114a a a ⎧<-⎪⎨⎪---+≤⎩,得4132a -≤<-; ②由1122114a a a ⎧-≤≤⎪⎨⎪+-+≤⎩,得112a -≤≤; ③由12114a a a >⎧⎨++-≤⎩,得413a <≤, 故4433a -≤≤.【点睛】本小题主要考查含有绝对值的不等式的解法,考查不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于中档题.25.(1)(0,2);(2)[2,)+∞【分析】(1)把()|1||21|f x x x =+--分段表示,后解不等式(2)不等式()23f x x a ≤+-恒成立等价于()23f x x a -≤-恒成立,则max 23[()]a f x x -≥-,2,11()()2,12122,2x g x f x x x x x x ⎧⎪-<-⎪⎪=-=-≤≤⎨⎪⎪->⎪⎩,求其最大值即可. 【详解】解:(1)2,11()1213,1212,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=-≤≤⎨⎪⎪->⎪⎩当1x <-时,由20x ->得2x >,即解集为∅, 当112x ≤≤-时,由30x >得0x >,解集为1(0]2,, 当12x >时,由20x ->得2x <,解集为1,22⎛⎫ ⎪⎝⎭, 综上所述,()0f x >的解集为(0,2)(2)不等式()23f x x a ≤+-恒成立等价于()23f x x a -≤-恒成立,则max 23[()]a f x x -≥-, 令2,11()()2,12122,2x g x f x x x x x x ⎧⎪-<-⎪⎪=-=-≤≤⎨⎪⎪->⎪⎩, 则max 1()12g x g ⎛⎫==⎪⎝⎭,即2312a a -≥⇒≥ 所以实数a 的取值范围是[2,)+∞ 【点睛】考查含两个绝对值号的不等式解法以及不等式恒成立求参数的范围,中档题. 26.(1)22a b +=(2)92t ≤【分析】(1)用分段函数表示()f x ,分析单调性,得到min ()122b b f x f a ⎛⎫==+= ⎪⎝⎭,即得解(2)原式转化为2a b t ab+≤,结合22a b +=,252a b a b ab b a +=++利用均值不等式即得解【详解】 (1)令0x a +=得x a =-,令20x b -=得2b x =, ∵0a >0b >,∴2b a -<, 则3,(),23,2x a b x a b f x x a b a x b x a b x ⎧⎪--+≤-⎪⎪=-++-<<⎨⎪⎪+-≥⎪⎩, ∴()f x 在,2b ⎛⎤-∞ ⎥⎝⎦上单调递减,在,2b ⎛⎫+∞ ⎪⎝⎭上单调递增, ∴min ()122b b f x f a ⎛⎫==+= ⎪⎝⎭,22a b +=; (2)∵2a b tab +≥恒成立,∴2a b t ab +≤恒成立, ∵22a b +=,∴112a b +=, ∴1212255922222a b a b a b a b ab b a b a b a +++=+=+=++≥+=,(当且仅当a b =时取等号) ∴2a b ab +的最小值为92, ∴92t ≤. 【点睛】 本题考查了绝对值函数的最值问题和均值不等式的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题。
不等式选讲 选修4-51.已知函数(其中).(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.2.设函数()241f x x =-+. (1)画出函数()y f x =的图象;(2)若不等式()f x a x ≤的解集非空,求a 的取值范围.3.已知函数f (x )=|2x +1|+|2x -3|. (1)求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )<|a -1|的解集不是空集,求实数a 的取值范围. 4.已知函数()2123f x x x =++-,(Ⅰ)若关于x 的不等式()13f x a >-恒成立,求实数a 的取值范围;(Ⅱ)若关于t 的一次二次方程()20t f m -=有实根,求实数m 的取值范围. 5.选修4—5:不等式选讲已知函数ƒ(x)=|2x -a|+ |x -1|.(Ⅰ)当a=3时,求不等式ƒ(x)≥2的解集;(Ⅱ)若ƒ(x)≥5-x 对V.r6 R 恒成立,求实数a 的取值范围. 6.已知函数()()12f x x x m m R =-++∈ (1)若m=2时,解不等式()3f x ≤;(2)若关于x 的不等式()[]230,1f x x x ≤-∈在上有解,求实数m 的取值范围。
7.已知m ,n ∈R +,f (x )=|x +m |+|2x -n |. (1)当m =n =1时,求f (x )的最小值; (2)若f (x )的最小值为2,求证122m n +≥.8.选修4-5:不等式选讲已知函数()11f x m x x =---+.(1)当5m =时,求不等式()2f x >的解集;(2)若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.9.已知函数()312f x x x =-+-的最小值为m . (1)求m 的值;(2)设实数,a b 满足222a b m +=,证明: 2a b +≤10.设函数()2f x x a a =++.(1)若不等式()1f x ≤的解集为{|24}x x -≤≤,求实数a 的值;(2)在(1)的条件下,若不等式()24f x k k ≥--恒成立,求实数k 的取值范围. 11.(导学号:05856266)[选修4-5:不等式选讲] 设函数f (x )=|2x -1|-|x +2|. (Ⅰ)解不等式f (x )>0;(Ⅱ)若∃x 0∈R,使得f ()0x +2m 2<4m ,求实数m 的取值范围. 12.设函数()3f x x =+, ()21g x x =-. (1)解不等式()()f x g x <;(2)若()()24f x g x a x +>+对任意的实数x 恒成立,求a 的取值范围. 13.已知函数()2321f x x x =+-- (1)求不等式()2f x <的解集;(2)若存在x R ∈,使得()32f x a >-成立,求实数a 的取值范围. 14.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m . (1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值. 15.设函数()2f x x x a =-+-. (Ⅰ)若2a =-,解不等式;(Ⅱ)如果当x R ∈时, ()3f x a ≥-,求a 的取值范围.参考答案1.(1);(2).【解析】试题分析:(1)方法一:分类讨论去掉绝对值,转化为一般的不等式,即可求解不等式的解集;方法二:去掉绝对值,得到分段函数,画出函数的图象,结合图象即可求解不等式的解集.(2)不等式即关于的不等式恒成立,利用绝对值不等式,得,进而求解实数的取值范围.试题解析:(1)当时,函数,则不等式为,①当时,原不等式为,解得:;②当时,原不等式为,解得:.此时不等式无解;③当时,原不等式为,解得:,原不等式的解集为.方法二:当时,函数,画出函数的图象,如图:结合图象可得原不等式的解集为.(2)不等式即为,即关于的不等式恒成立.而,所以, 解得或,解得或.所以的取值范围是.2.(1)见解析(2)()1,2,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭【解析】试题分析:(1)先讨论x 的范围,将函数f x ()写成分段函数,然后根据分段函数分段画出函数的图象即可;(II )根据函数y f x =()与函数y ax =的图象可知先寻找满足f x a x ≤()的零界情况,从而求出a 的范围.试题解析: (1)由于()25,2{23,2x x f x x x -+<=-≥,则()y fx =的图象如图所示:(2)由函数()y f x =与函数y ax =的图象可知,当且仅当12a ≥或2a <-时,函数()y f x =与函数y ax =的图象有交点,故不等式()f x a x ≤的解集非空时, a 的取值范围是()1,2,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭.3.(1){|12}x x -≤≤;(2)()(),35,-∞-⋃+∞ 【解析】试题分析:(1)由题意结合不等式的性质零点分段可得不等式的解集为{}|12x x -≤≤.(2)由绝对值三角不等式的性质可得()4f x ≥,结合集合关系可得关于实数a 的不等式14,a ->求解绝对值不等式可得实数a 的取值范围为()(),35,-∞-⋃+∞.试题解析:(1)原不等式等价于()()3{221236x x x >++-≤或()()13{2221236x x x -≤≤+--≤或()()1{ 221236x x x <--+--≤,解得322x <≤或1322x -≤≤或112x -≤<-.∴原不等式的解集为{}|12x x -≤≤. (2)()()()212321234fx x x x x =++-≥+--=,14,3a a ∴->∴<-或5a >,∴实数a 的取值范围为()(),35,-∞-⋃+∞.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.4.(Ⅰ)51,3⎛⎫- ⎪⎝⎭;(Ⅱ)35{|}22m m -≤≤. 【解析】试题分析:(1)由题意结合绝对值三角不等式可得()f x 的最小值为4,据此可得134a -<,则实数a 的取值范围为51,3⎛⎫- ⎪⎝⎭;(2)方程的判别式()32421230m m ∆=-++-≥,即21238m m ++-≤,零点分段可得实数m 的取值范围是35{|}22m m -≤≤.试题解析: (Ⅰ)因为()2123f x x x =++-≥()()21234x x +--=,所以134a-<,即513a -<<,所以实数a 的取值范围为51,3⎛⎫- ⎪⎝⎭;(Ⅱ)()32421230m m ∆=-++-≥,即21238m m ++-≤,所以不等式等价于()()3{221238m mm >++-≤或13{2221238m m m -≤≤+-+≤或()()1{221238m m m <--+--≤,所以3522m <≤,或1322m -≤≤,或3122m -≤<-,所以实数m 的取值范围是35{|}22mm -≤≤.5.(Ⅰ){x|x≤32或x≥2}.(Ⅱ)[6,+∞).【解析】试题分析:(Ⅰ) 3a =时,即求解2312x x -+-≥,分33,1,122x x x ≥<<≤三种情况,分别去掉绝对值得不等式的解集即可;(Ⅱ)根据题设条件得251x a x x -≥---恒成立,令()62,151{ 4,1x x g x x x x -≥=---=<,再根据再根据数形结合可求得a 的范围.试题解析:(Ⅰ)当3a =时,即求不等式2312x x -+-≥的解集. 33,1,122x x x ≥<<≤①当32x ≥时, 2312x x -+-≥,解得2x ≥;②当312x <<时, 3212x x -+-≥,解得0x ≤,此时无解;③当1x ≤时, 3212x x -+-≥,解得23x ≤.综上,原不等式的解集为2{ 3x x ≤或}2x ≥.(Ⅱ)由题设得不等式251x a x x -≥---对x R ∀∈恒成立.令()62,151{ 4,1x x g x x x x -≥=---=<,作出函数()g x 和2y x a =-的图象(如图所示),则只需满足32a ≥,即6a ≥.故所求实数a 的取值范围是[)6,+∞.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向. 6.(1)4{|0}3x x -≤≤;(2)32m -≤≤. 【解析】试题分析:(1)当2m =时,不等式为1223x x -++≤,根据分类讨论解不等式即可.(2)由题意可得当[]0,1x ∈时, 22x m x +≤-有解,即[]2230,1x m x x --≤≤-∈在上有解,故只需(()m in m ax 2)23x m x --≤≤-,由此可得结论. 试题解析:(1)当2m =时,不等式为1223x x -++≤,若1x ≤-,则原不等式可化为412233x x x -+--≤≥-,解得,所以413x -≤≤-;若11x -<<,则原不等式可化为12230x x x -++≤≤,解得,所以10x -<≤; 若1x ≥,则原不等式可化为212233x x x -++≤≤,解得,所以x ∈Φ.综上不等式的解集为4{|0}3x x -≤≤.(2)当[]0,1x ∈时,由()23f x x ≤-,得1232x x m x -++≤- 即22x m x +≤-故222223x x m x x m x -≤+≤---≤≤-,解得, 又由题意知(()m in m ax 2)23x m x --≤≤-, 所以32m -≤≤.故实数m 的取值范围为[]3,2-. 7.(1)32. (2)见解析.【解析】试题分析:(1)代入m =n =1,却掉绝对值,得到分段函数,判定分段函数的单调性,确定函数的最小值;(2)由题意得,函数的最小值为2,得22n m += ,利用基本不等式求解最值,即可证明.试题解析:(1)∵f (x )=∴f (x )在(-∞,)是减函数,在(,+∞)是增函数,∴当x =时,f (x )取最小值.(2)∵f (x )=,∴f (x )在(-∞,)是减函数,在(,+∞)是增函数, ∴当x =时,f (x )取最小值f ()=m +.∵m ,n ∈R,∴+= (+)(m +) = (2++)≥2点晴:本题主要考查了绝含有绝对值的函数的最小值问题及分段函数的图象与性质、基本不等式的应用,属于中档试题,着重考查了分类讨论思想与转化与化归思想的应用,本题的解答中,根据绝对值的概念合理去掉绝对值号,转化为分段函数,利用分段函数的图象与性质,确定函数的最小值,构造基本不等式的条件,利用基本不等式是解答问题的关键. 【答案】(1) 3322x x ⎧⎫-<<⎨⎬⎩⎭(2) 4m ≥ 【解析】试题分析:(1)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由二次函数y=x 2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f (x )在x=﹣1处取得最大值m ﹣2,故有m ﹣2≥2,由此求得m 的范围. 试题解析:(1)当5m =时, ()()()()521{311 521x x f x x x x +<-=-≤≤->,由()2f x >得不等式的解集为3322x x ⎧⎫-<<⎨⎬⎩⎭. (2)由二次函数()222312y x x x =++=++, 知函数在1x =-取得最小值2,因为()()()()21{211 21m x x f x m x m x x +<-=--≤≤->,在1x =-处取得最大值2m -,所以要是二次函数223y x x =++与函数()y f x =的图象恒有公共点. 只需22m -≥,即4m ≥. 9.(1)53;(2)见解析【解析】试题分析: ()1写出分段函数,求得()f x 在1,3⎡⎫+∞⎪⎢⎣⎭上单调递增,在1,3⎛⎫-∞ ⎪⎝⎭上单调递减,即可求出m 的值; ()2计算()22a b +,利用基本不等式即可得出结论。
一、选择题1.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b ++<<<++ C .b b m a a n a a m b b n++<<<++ D .b a a n b m a b b n a m++<<<++ 2.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞ B .(0,)+∞ C .[0,)+∞ D .(1,)+∞3.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+4.已知x ,y ∈R ,且0x y >>,则( ) A .11x y> B .11()()22xy<C .1122x y <D .sin sin x y >5.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,则ac 2>bc 2 D .若a >b ,c >d ,则ac >bd 6.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b > D .若a b >, 则22ac bc > 7.若a >b ,c 为实数,下列不等式成立是()A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc8.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y->D .ln x +ln y >09.不等式536x x -++≥的解集是 ( ) A .[]5,7- B .(),-∞+∞C .()(),57,-∞-+∞ D .[]4,6-10.已知a ,b R ∈,且a b >,则下列不等式恒成立的是( )A .22a b >B .lg()0a b ->C .11()()22ab<D .1a b> 11.若,则下列结论不正确的是A .B .C .D .12.实数,a b 满足0a b >>,则下列不等式成立的是( ) A .1a b< B .1133a b<C a b a b <-.2a ab <二、填空题13.已知实数a ,b ,c 满足a >c ﹣2且1333abc++<,则333a bc-的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接) 17.已知ln ln x y <,则21x y y x-++的最小值为___________________. 18.设5x >,45P x x --23Q x x --,则P 与Q 的大小关系是P ______Q .19.设()f x x a x =-+,且|()|2f x ≤在[1,1]x ∈-上恒成立,则实数a 的取值范围为_________.20.定义运算x ·y ,,1,,x x y m y x y ≤⎧=-⎨>⎩若·m=|m-1|,则m 的取值范围是_____. 三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.(1)解不等式:1|1||2|2x x --->; (2)设集合P 表示不等式121x x a -+->对任意x ∈R 恒成立的a 的集合,求集合P ; (3)设关于x 的不等式22||200ax x a +--<的解集为A ,试探究是否存在a ∈N ,使得不等式.220x x +-<与|212x x -<+的解都属于A ,若不存在,说明理由.若存在,请求出满足条件的a 的所有值.23.(1)已知a <b <c ,且a +b +c =0,证明:a a a cb c--<. (224.已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ; (2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 25.比较log (1) n n +与()*(1)log (2),2n n n N n ++∈≥大小,并证明.26.(1)若0a >,0b >,求证:11()4a b a b ⎛⎫++≥ ⎪⎝⎭; (2【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a m b b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>,所以()()0-<+b a m a a m ,所以b b m a a m+<+, ()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()0+-+-+<++b a b a b a n m a m b n ,所以++<++b m a na mb n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n ,所以()()0-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。
第一讲 不等式和绝对值不等式1.1 不等式1.1.2 基本不等式A 级 基础巩固一、选择题1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( )A .a +b ≥2abB.a b +b a ≥2C.⎪⎪⎪⎪⎪⎪⎪⎪a b +b a ≥2 D .a 2+b 2>2ab解析:当a ,b 都是负数时,A 不成立;当a ,b 一正一负时,B 不成立;当a =b 时,D 不成立,因此只有C 是正确的.答案:C2.下列各式中,最小值等于2的是( )A.x y +y xB.x 2+5x 2+4 C .tan θ+1tan θD .2x +2-x解析:因为2x >0,2-x >0,所以2x +2-x ≥22x 2-x =2.当且仅当2x =2-x ,即x =0时,等号成立.答案:D3.设x ,y ∈R ,且x +y =5,则3x +3y 的最小值是( )A .10B .6 3C .4 6D .18 3 解析:3x +3y ≥23x ·3y =23x +y =235=183, 当且仅当x =y =52时,等号成立. 答案:D4.设x ,y 为正数,则(x +y)⎝ ⎛⎭⎪⎪⎫1x +4y 的最小值为( ) A .6B .9C .12D .15解析:x ,y 为正数,(x +y)⎝ ⎛⎭⎪⎪⎫1x +4y =1+4+y x +4x y ≥9,当且仅当y x =4x y ,即y =2x 时,等号成立,选B.答案:B5.(2015·福建卷)若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5解析:因为直线x a +y b =1过点(1,1),所以1a +1b=1. 又a ,b 均大于0,所以a +b =(a +b) ⎝ ⎛⎭⎪⎪⎫1a +1b =1+1+b a +a b ≥2+2b a ·a b =2+2=4,当且仅当a =b 时,等号成立.答案:C二、填空题6.设x >0,则函数y =3-3x -1x的最大值是________. 解析:y =3-⎝⎛⎭⎪⎪⎫3x +1x ≤3-23, 当且仅当3x =1x ,即x =33时,等号成立. 所以y max =3-23. 答案:3-2 37.已知函数f(x)=2x ,点P(a ,b)在函数y =1x (x >0)的图象上,那么f(a)·f(b)的最小值是________.解析:点P(a ,b)在函数y =1x(x >0)的图象上,所以有ab =1. 因为a >0,b >0,所以f(a)·f(b)=2a ·2b =2a +b ≥22ab =4, 当且仅当a =b =1时,等号成立.答案:4。
1.若,a b 是任意的实数,且a b >,则( )(A)22b a > (B)1<a b (C) lg()0a b -> (D)b a )21()21(< 2.不等式32->x的解集是( ) (A ) )32,(--∞ (B) )32,(--∞),0(+∞Y (C) )0,32(-),0(+∞Y (D) )0,32(-3.不等式125x x -++≥的解集为( )(A) (][)+∞-∞-,22,Y (B) (][)+∞-∞-,21,Y (C) (][)+∞-∞-,32,Y (D) (][)+∞-∞-,23,Y 4.若0n >,则232n n+的最小值为 ( ) (A) 2 (B) 4 (C) 6 (D) 85.若A=(3)(7)x x ++,B=(4)(6)x x ++,则A ,B 的大小关系为__________. 6.设a ,b ,c 是不全相等的正数,求证: 1)()()()8a b b c c a abc +++>;2)a b c ab bc ca ++>++.7..已知x ,y R ∈,求证222x y +≥2()2x y +8.如图1,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折转作成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?9.已知a ,b ,0c >,且不全相等,求证222222()()()6a b c b a c c a b abc +++++>.10. 已知1a ,2a ,…,+∈R a n ,且121=n a a a Λ,求证n n a a a 2)1()1)(1(21≥+++Λ.11.已知x ,0>y ,且2>+y x .试证:yx +1,xy +1中至少有一个小于2.12.求函数x x y 21015-+-=的最大值.13. 已知122=+b a ,求证θθsin cos b a +≤1.14. 已知12=+y x ,求22y x +的最小值.15. 已知10432=++z y x ,求222z y x ++的最小值.16. 已知a ,b ,c 是正数,求证2229a b b c c a a b c++≥+++++.17.证明:)(53+∈+N n n n 能够被6整除.18. 设,,a b c R +∈,求证:32a b c b cc aa b++≥+++.6.提示:2a b ab +≥Q ,2b c bc +≥Q ,2c a ca +≥Q 分别将以上三式相乘或相加即可; 7.提示:222222222()()2()2442x y x y x y x y xy x y +++++++=≥=; 8.提示: 设切去的正方形边长为x ,无盖方底盒子的容积为V ,则2(2)V a x x=-3311(2)(2)42(2)(2)4[]44327a x a x x a a x a x x -+-+=--⨯≤=当且仅当224a x a x x -=-=,即当6ax =时,不等式取等号,此时V 取最大值3227a .即当切去的小正方形边长是原来正方形边长的16时,盒子容积最大.9.分析:观察欲证不等式的特点,左边3项每一项都是两个数的平方之和与另一个数之积,右边是三个数的积的6倍.这种结构特点启发我们采用如下方法.证明:因为22b c +≥2bc ,0a >,所以22()a b c +≥2abc . ① 因为22c a +≥2ac ,0b >,所以22()b c a +≥2abc . ② 因为22a b +≥2ab ,0c >,所以22()c a b +≥2abc . ③由于a ,b ,c 不全相等,所以上述①②③式中至少有一个不取等号,把它们相加得222222()()()6a b c b a c c a b abc +++++>.12. 提示:利用不等式解决极值问题,通常设法在不等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为bd ac +的形式就能利用柯西不等式求其最大值.解:函数的定义域为[]5,1,且0>y .x x y -⨯+-⨯=521522225(2)(1)(5)x x ≤+⨯-+-36427=⨯= 当且仅当x x -⨯=-⨯5512时,等号成立,即27127=x 时函数取最大值36. 13.提示: 2cos sin (cos sin )a b a b θθθθ+=+222222()(cos sin )1a b a b θθ≤++=+= 14.提示: 22222221(2)(12)()5()x y x y x y =+≤++=+Q 2215x y ∴+≥.15.提示: 2222222100(234)(234)()x y z x y z =++≤++++Q 222100.29x y z ∴++≥16.提示:111[2()]()a b c a b b c c a+++++++ 2111[()()()]()(111)9.2229.a b b c c a a b b c c aa b b c c a a b c=+++++++≥++=+++∴++≥+++++ 17. 提示:这是一个与整除有关的命题,它涉及全体正整数,若用数学归纳法证明,第一步应证1=n 时命题成立;第二步要明确目标,即在假设k k 53+能够被6整除的前提下,证明)1(5)1(3+++k k 也能被6整除.。
第一讲等式和绝对值不等式单元检测(B)一、选择题(本大题共10小题,每小题5分,共50分)1.函数y =x 2+3x (x >0)的最小值是( ).A B .32 C D 2.设6<a <10,2a≤b ≤2a ,c =a +b ,那么c 的取值范围是( ).A .9<c <30B .0≤c ≤18C .0≤c ≤30D .15<c <303.若对任意x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ).A .a <-1B .|a |≤1C .|a |<1D .a ≥14.下列四个命题:①若a >b ,c >1,则a lg c >b lg c;②若a >b ,c >0,则a lg c >b lg c ;③若a >b ,则a ·2c >b ·2c ;④若a <b <0,c >0,则>cca b .其中,正确命题的个数是( ).A .1B .2C .3D .45.函数2y 的最小值是( ).A .2B .4C .1D .6.若不等式|ax +2|<6的解集为(-1,2),则实数a 等于( ).A .8B .2C .-4D .-87.当π0<<2x 时,函数21cos28sin ()sin2x xf x x ++=的最小值为( ).A .2B .C .4D .8.若正实数a ,b 满足ab =a +b +3,则a +b 的取值范围是( ).A .[9,+∞)B .[6,+∞)C .(6,+∞)D .(9,+∞)9.不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为(). A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)10.设a >0,b >0是3a 与3b 的等比中项,则11a b +的最小值为( ).A .8B .4C .1D .14二、填空题(本大题共4小题,每小题5分,共20分)11.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,则实数a 的取值范围是__________.12.定义运算:x x y x y y x y ≤⎛⋅ >⎝,,=,,若|m -1|·m =|m -1|,则m 的取值范围是________. 13.函数422331x x y x ++=+的最小值为__________. 14.不等式|1|1|2|x x ≥++的解集为________. 三、解答题(本大题共4小题,15,16,17小题每小题12分,18小题14分,共50分)15.设a 1,a 2,a 3均为正数,且a 1+a 2+a 3=m ,求证:1231119a a a m≥++. 16.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2.17.已知m ∈R ,解关于x 的不等式:1-x ≤|x -m |≤1+x .18.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.参考答案1. 答案:A解析:2233322y x x x x x ≥=+=++,当232x x=,即x 时,等号成立. 2. 答案:A解析:因为2a ≤b ≤2a ,所以32a ≤a +b ≤3a. 又因为6<a <10,所以32a >9,3a <30. 所以9<32a ≤a +b ≤3a <30,即9<c <30. 3. 答案:B解析:当x >0时,a ≤||x x =1,当x <0时,a ≥||x x=-1. 4. 答案:C解析:①正确,因为c>1,lg c>0;②不正确,因为0<c<1时,lg c<0;③正确,因为2c>0;④正确,因为由a<b<0,得110>>a b.5.答案:B解析:设tt≥,于是21 y tt++,因为当t≥时,函数1y tt=+单调递增,所以miny=.6.答案:C解析:由|ax+2|<6⇒-8<ax<4.当a>0时,84<<xa a-.∵解集是(-1,2),∴8142.aa⎧--⎪⎪⎨⎪⎪⎩=,=解得82aa⎧⎨⎩=,=,两值矛盾.当a<0时,48<<xa a-.由4182aa⎧--⎪⎪⎨⎪-⎪⎩=,=解得a=-4.7.答案:C解析:∵π0<<2x,∴tan x>0.∴2222cos8sin14tan1 ()4tan 42sin cos tan tanx x xf x xx x x x≥++===+,当且仅当14tantanxx=,即1tan2x=时,等号成立.8.答案:B解析:∵a>0,b>0,ab=a+b+3,∴a+b=ab-3≤232a b⎛⎫⎪⎝⎭+-,即(a +b )2-4(a +b )-12≥0.∴a +b ≥6,当且仅当a =b =3时,等号成立,∴a +b 的取值范围[6,+∞).9. 答案:A解析:因为-4≤|x +3|-|x -1|≤4,且|x +3|-|x -1|≤a 2-3a 对任意x 恒成立, 所以a 2-3a ≥4,即a 2-3a -4≥0,解得a ≥4,或a ≤-1.10. 答案:B解析:因为3a ·3b =3,所以a +b =1,1111()a b a b a b ⎛⎫ ⎪⎝⎭+=++2224b a baa b a b ≥⋅=+++=,当且仅当baa b =,即12a b ==时,“=”号成立.11. 答案:(-1,+∞)解析:∵||x -3|-|x -4||≤|x -3+4-x |=1,∴|x -3|-|x -4|的最小值是-1.∴a >-1.12. 答案:12m ≥解析:依题意,有|m -1|≤m ,∴-m ≤m -1≤m .∴12m ≥.13. 答案:3解析:42222223311111x x x x y x x ()()++++++==++=x 2+1+211x ++1≥2+1=3.当且仅当x 2+1=211x +,即x =0时,等号成立.14. 答案:322x x x ⎧⎫≤-≠-⎨⎬⎭⎩,且解析:|1|1|2|x x ≥++|1||2|20x x x ≥⎧⎨≠⎩+++22122x x x ⎧()≥()⎨≠-⎩++,322.x x ⎧≤-⎪⎨⎪≠-⎩,∴原不等式的解集为322x x x ⎧⎫≤-≠-⎨⎬⎭⎩,且 15. 证明:123111a a a ++ 1231231111()a a a m a a a ⎛⎫ ⎪⎝⎭=++++ 33122121323113a a a a a a m a a a a a a ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦=++++++ ≥1m (3+2+2+2)=9m, 当且仅当a 1=a 2=a 3=3m 时,等号成立. 16. 证明:3a 3+2b 3-(3a 2b +2ab 2)=3a 2(a -b )+2b 2(b -a )=(3a 2-2b 2)(a -b ). 因为a ≥b >0,所以a -b ≥0,3a 2-2b 2>0.从而(3a 2-2b 2)(a -b )≥0.即3a 3+2b 3≥3a 2b +2ab 2.17. 解:原不等式等价于11x m x x m x m x ≥⎧⎪≤⎨⎪≤⎩,--,-+或11x m x m x m x x <⎧⎪≤⎨⎪≤⎩,--,-+, 即121x m m x m ≥⎧⎪⎪≥⎨⎪≥-⎪⎩,+,①或121.x m m x m <⎧⎪⎪≥⎨⎪≥⎪⎩,-,② 由①得1m x <⎧⎨∈∅⎩,,或1112m m x -≤<⎧⎪⎨≥⎪⎩,+,或1.m x m ≥⎧⎨≥⎩, 由②得1m x <-⎧⎨∈∅⎩,,或11.2m m x m ≥⎧⎪⎨≤<⎪⎩,- 即1m x <-⎧⎨∈∅⎩,,或1112m m x -≤<⎧⎪⎨≥⎪⎩,+,或11.2m m x ≥⎧⎪⎨≥⎪⎩,- 综上所述,当m <-1时,解集为;当-1≤m<1时,解集为12m⎡⎫+∞⎪⎢⎣⎭+,;当m≥1时,解集为12m⎡⎫+∞⎪⎢⎣⎭-,.18.解法一:(1)由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以3135aa-⎧⎨⎩-=,+=,解得a=2.(2)当a=2时,f(x)=|x-2|. 设g(x)=f(x)+f(x+5),于是g(x)=|x-2|+|x+3|=21,3, 5,32, 21, 2.x xxx x-<-⎧⎪-≤≤⎨⎪>⎩-+所以当x<-3时,g(x)>5;当-3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].解法二:(1)同解法一.(2)当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5),则g(x)=|x-2|+|x+3|.由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].。
第一讲 不等式和绝对值不等式1.1 不等式1.1.2 基本不等式A 级 基础巩固一、选择题1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( )A .a +b ≥2abB.a b +b a ≥2C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D .a 2+b 2>2ab解析:当a ,b 都是负数时,A 不成立;当a ,b 一正一负时,B 不成立;当a =b 时,D 不成立,因此只有C 是正确的.答案:C2.下列各式中,最小值等于2的是( )A.x y +y xB.x 2+5x 2+4 C .tan θ+1tan θ D .2x +2-x解析:因为2x >0,2-x >0,所以2x +2-x ≥22x 2-x =2.当且仅当2x =2-x ,即x =0时,等号成立.3.设x ,y ∈R ,且x +y =5,则3x +3y 的最小值是( )A .10B .6 3C .4 6D .18 3解析:3x +3y ≥23x ·3y =23x +y =235=183,当且仅当x =y =52时,等号成立. 答案:D4.设x ,y 为正数,则(x +y )⎝ ⎛⎭⎪⎫1x +4y 的最小值为( ) A .6B .9C .12D .15解析:x ,y 为正数,(x +y )⎝ ⎛⎭⎪⎫1x +4y =1+4+y x +4x y ≥9,当且仅当y x =4x y,即y =2x 时,等号成立,选B. 答案:B5.(2015·福建卷)若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5解析:因为直线x a +y b =1过点(1,1),所以1a +1b=1. 又a ,b 均大于0,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =1+1+b a +a b ≥2+2b a ·a b=2+2=4,当且仅当a =b 时,等号成立.二、填空题6.设x >0,则函数y =3-3x -1x的最大值是________. 解析:y =3-⎝ ⎛⎭⎪⎫3x +1x ≤3-23, 当且仅当3x =1x ,即x =33时,等号成立. 所以y max =3-2 3.答案:3-2 37.已知函数f (x )=2x,点P (a ,b )在函数y =1x (x >0)的图象上,那么f (a )·f (b )的最小值是________.解析:点P (a ,b )在函数y =1x(x >0)的图象上,所以有ab =1. 因为a >0,b >0,所以f (a )·f (b )=2a ·2b =2a +b ≥22ab =4,当且仅当a =b =1时,等号成立.答案:48.当x >0时,f (x )=2x x 2+1的值域是________. 解析:因为x >0,所以x +1x ≥2,所以0<1x +1x ≤12. 所以0<2x +1x ≤1. 又因为f (x )=2x x 2+1=2x +1x, 所以0<f (x )≤1,当且仅当x =1时,等号成立.故f (x )的值域是(0,1].答案:(0,1]三、解答题9.已知x <0,求2x +1x的最大值. 解:由x <0,得-x >0,得-2x +1-x ≥2(-2x )⎝ ⎛⎭⎪⎫1-x =22, 所以2x +1x≤-22, 当且仅当-2x =1-x, 即x =-22时等号成立. 故2x +1x取得最大值-2 2. 10.若a ,b ,c >0,且a +b +c =1,求证:8abc ≤(1-a )·(1-b )(1-c ).证明:因为a +b +c =1,所以1-a =b +c >0,1-b =a +c >0,1-c =a +b >0.所以(1-a )(1-b )(1-c )=(a +b )(b +c )(a +c ).因为a +b ≥2ab >0,b +c ≥2bc >0,a +c ≥2ac >0,三式相乘,得(a +b )(b +c )(a +c )≥2ab ·2bc ·2ca =8abc ,当且仅当a =b =c =13时,等号成立. 所以8abc ≤(1-a )(1-b )(1-c ).B 级 能力提升1.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8解析:不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立, 则1+a +y x +ax y≥a +2a +1≥9, 所以a ≥2或a ≤-4(舍去).所以正实数a 的最小值为4.答案:B2.(2015·山东卷)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析:因为x ⊗y =x 2-y 2xy, 所以x ⊗y +(2y )⊗x =x 2-y 2xy +(2y )2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy =22xy 2xy= 2. 其中x >0,y >0,当且仅当x 2=2y 2,即x =2y 时等号成立. 答案: 23.某国际化妆品生产企业为了占有更多的市场份额,拟在2016年法国欧洲杯期间进行一系列促销活动,经过市场调查和测算,化妆品的年销售量x 万件与年促销费t 万元之间满足3-x 与t +1成反比例的关系,如果不搞促销活动,化妆品的年销量只能是1万件.已知2016年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每个促销费的一半之和,则当年生产的化妆品正好能销完.(1)若计划2016年生产的化妆品正好能销售完,试将2016年的利润y (万元)表示为促销费t (万元)的函数;(2)该企业2016年的促销费投入多少万元时,企业的年利润最大?解:(1)由题意可设3-x =k t +1,将t =0,x =1代入,得k =2. 所以x =3-2t +1. 当年生产x 万件时,年生产成本为32x +3=32×⎝ ⎛⎭⎪⎫3-2t +1+3, 当销售x 万件时,年销售收入为150%×⎣⎢⎡⎦⎥⎤32×⎝ ⎛⎭⎪⎫3-2t +1+3+12t . 由题意,生产x 万件化妆品正好销完,得年利润y =-t 2+98t +352(t +1)(t ≥0). (2)y =-t 2+98t +352(t +1)=50-⎝ ⎛⎭⎪⎫t +12+32t +1≤ 50-2 t +12·32t +1=50-216=42, 当且仅当t +12=32t +1,即t =7时,等号成立,y max =42, 所以当促销费定在7万元时,年利润最大.。
第一讲不等式和绝对值不等式
不等式
基本不等式
级基础巩固
一、选择题
.已知,∈,且≠,则下列结论恒成立的是( )
.+≥
+≥
.+>
≥
解析:当,都是负数时,不成立;
当,一正一负时,不成立;
当=时,不成立,因此只有是正确的.
答案:
.下列各式中,最小值等于的是( )
+
.θ+θ)
.+-
解析:因为>,->,
所以+-≥=.
当且仅当=-,即=时,等号成立.
答案:.设,∈,且+=,则+的最小值是( )
.
.
.
.
解析:+≥===,
当且仅当==时,等号成立.
答案:
.设,为正数,则(+)的最小值为( )
.
.
.
.
解析:,为正数,(+)=+++≥,当且仅当=,即=时,等号成立,
选.
答案:.(·福建卷)若直线+
=(>,>)过点(,),则+的最小值等于( )
.
.
.
.
解析:因为直线+=过点(,),所以+=.
又,均大于,
所以+=(+)=+++≥+=+=,当且仅当=时,等号成立.
答案:
二、填空题
.设>,则函数=--的最大值是.
解析:=-≤-,
当且仅当=,即=时,等号成立.
所以=-.
答案:-.已知函数()=,点(,)在函数=
(>)的图象上,那么()·()的最小值是.
解析:点(,)在函数=(>)的图象上,所以有=.。
一、选择题1.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .22.下列命题中,正确的是( ) A .若a b >,c d >,则a c > B .若ac bc >,则a b > C .若22a b c c <,则a b < D .若a b >,c d >,则ac bd >3.若实数a >b ,则下列结论成立的是( ) A .a 2>b 2B .11ab<C .ln 2a >ln 2bD .ax 2>bx 24.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( ) A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤5.已知函数()1f x x x a =++-,若()2f x ≥恒成立,则a 的取值范围是( ) A .(][),22,-∞-+∞B .(][),31,-∞-+∞C .(][),13,-∞-+∞D .(][),04,-∞+∞6.若,,a b c 为实数,则下列命题错误的是( ) A .若22ac bc >,则a b > B .若0a b <<,则22a b < C .若0a b >>,则11a b< D .若0a b <<,0c d >>,则ac bd < 7.若a >b ,c 为实数,下列不等式成立是() A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc8.已知0x y >> 0m <,则下列结论正确的是( ) A .mx my > B .m m x y> C .22mx my >D .22m m x y> 9.已知a b R ∈,,且a b >,则下列不等式中恒成立的是( ) A .22a b >B .()lg a b 0->C .a b 22--<D .a1b> 10.已知等差数列{a n }的前n 项和为S n ,a 2=1,则“a 3>5”是“S 3+S 9>93”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.2x ≤是11x +≤成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既非充分又非必要条件12.实数,a b 满足0a b >>,则下列不等式成立的是( ) A .1a b< B .1133a b<C .a b a b -<-D .2a ab <二、填空题13.若0x y >>,则()412x y x y +-的最小值是________.14.已知函数()21f x x x =--,若对任意的实数x 有()()()1f x t f x t R +-≤∈成立,则实数t 的取值范围是______.15.若不等式21x a x a a -++≥-+对于任意实数x 恒成立,则满足条件的实数a 的取值范围______.16.若关于x 的不等式14x x a -++<的解集是空集,则实数a 的取值范围是__________. 17.已知11()22f x x a x a x a x x =+-+--+-0x >()的最小值为32,则实数a =____. 18.(卷号)1570711643127808 (题号)1570711648378880 (题文)已知二次函数的图像为开口向下的抛物线,且对任意都有.若向量,,则满足不等式的取值范围为_____________.19.已知|a +b|<-c(a ,b ,c ∈R),给出下列不等式: ①a <-b -c ;②a >-b +c ;③a <b -c ;④|a|<|b|-c ; ⑤|a|<-|b|-c.其中一定成立的不等式是________(填序号).20.若函数()f x 满足:对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有函数值()()(),,f a f b f c 也是某个三角形的三边长.则称函数()f x 为保三角形函数,下面四个函数:①()()20f x x x =>;②())0f x x x =>;③()sin 02f x x x π⎛⎫=<<⎪⎝⎭;④()cos 02f x x x π⎛⎫=<<⎪⎝⎭为保三角形函数的序号为___________.三、解答题21.已知()|1||1|f x x x =-++,不等式()4f x <的解集为M . (1)求集合M ;(2)当,a b M ∈时,证明:2|||4|a b ab +<+. 22.已知函数()f x x x m =-. (1)若3m =,解不等式()2f x >;(2)若0m >,且()f x 在[]0,2上的最大值为3,求正实数m 的值. 23.已知函数()12f x x a x a=-++. (1)当1a =时,求不等式()4f x >的解集;(2)若不等式()2f x m m ≥-+对任意实数x 及a 恒成立,求实数m 的取值范围.24.已知函数()()30f x x x a a =-++>. (1)若1a =,求不等式()6f x ≥的解集;(2)若()221f x a a ≥--恒成立,求实数a 的取值范围.25.已知函数()||f x x a a =-+,(1)当2a =时,求不等式()6f x ≤的解集;(2)设函数()|1|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围. 26.已知0a >,0b >,函数()|||2|f x x a x b =++-的最小值为1. (1)求2a b +的值;(2)若2a b tab +≥恒成立,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解. 【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤;当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题2.C解析:C 【分析】利用不等式的基本性质进行逐项判断即可,不成立的举反例. 【详解】对于选项A:若2,3,1,2a b c d =-=-==-,满足a b >,c d >,但是a c >不成立,故选项A 错误;对于选项B :若1,3,2c a b =-=-=-,满足ac bc >,但a b >不成立,故选项B 错误; 对于选项C :因为22a b c c<,整理化简可得20a bc -<,因为20c >,所以0a b -<,即a b <成立,故选项C 正确;对于选项D:若1, 1.1,2a b c d ==-=-=-,满足a b >,c d >,但是ac bd >不成立,故选项D 错误; 【点睛】本题考查不等式与不等关系;不等式的基本性质的灵活运用是求解本题的关键;属于中档题、常考题型.3.C解析:C 【解析】 【分析】特值法排除A,B,D,单调性判断C 【详解】 由题意,可知:对于A :当a 、b 都是负数时,很明显a 2<b 2,故选项A 不正确; 对于B :当a 为正数,b 为负数时,则有11a b>,故选项B 不正确; 对于C :∵a >b ,∴2a >2b >0,∴ln 2a >ln 2b ,故选项C 正确; 对于D :当x =0时,结果不成立,故选项D 不正确; 故选:C . 【点评】本题主要考查不等式的性质应用,特殊值技巧的应用,指数函数、对数函数值大小的比较.本题属中档题.4.A解析:A 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.5.B解析:B 【分析】利用绝对值三角不等式确定()f x 的最小值;把()2f x ≥恒成立的问题,转化为其等价条件去确定a 的范围。
数学选修4-5第一讲(不等式)
一、选择题
1. 设R b a ∈,,且b a >,则( )
A.22b a >
B.1<a b
C.0)lg(>-b a
D.b a ⎪⎭
⎫ ⎝⎛<⎪⎭⎫ ⎝⎛2121 2. 下列不等式中解集为实数集R 的是( )
A. 0442>++x x
B. 02>x
C. 012≥+-x x
D. x
x 111<- 3. 不等式0)1)(1(>-+x x 的解集是( )
A .{}10<≤x x B. {}1,0-≠<x x x C. {}11<<-x x D. {}1,1-≠<x x x
4. 已知12=+y x ,则y x 42+的最小值为( )
A .8
B .6
C .22
D .23
5. 已知R b a ∈,,且0<ab ,则( )
A. b a b a ->+
B. b a b a -<+
C. b a b a -<-
D. b a b a +<-
6.下列结论正确的是 ( )
A .当2lg 1lg ,10≥+
≠>x x x x 时且 B .21,0≥+>x x x 时当 C .21,2的最小值为时当x x x +≥ D .无最大值时当x
x x 1,20-≤< 7.已知c b a <<,且0=++c b a ,则ac b 42-的值( )
A. 大于零
B. 小于零
C. 不大于零
D.不小于零
8. 不等式13
12>+-x x 的解集是( ) A. ),4(+∞ B. ),21(+∞ C. ),2
1()3,(+∞--∞ D. ),4()3,(+∞--∞ 9. 不等式04)2(2)2(2<--+-x a x a 对一切R x ∈恒成立,则实数a 的取值范围是
A. )2,(-∞
B. []2,2-
C. ]2,2(-
D.)2,(--∞
10. 已知集合{}
01032≥++-=x x x A ,{}121-≤≤+=m x m x B ,若∅≠B A ,则m 的取值范围是( )
A. ⎥⎦
⎤⎢⎣⎡4,21 B.),4()21,(+∞-∞ C. []4,2 D.)4,2( 11. 不等式b a >和b
a 11>同时成立的条件是( ) A. 0>>
b a B. 00<>b a , C. 0<<a b D.
011>>b a 12. 若a 、b 为实数,则a >b >0是a 2>b 2的 ( )
A. 充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
13. 已知A={x ︱︱2x+1︱>3},B={x ︱x 2
+x-6≤0},则A ∩B 等于 ( )
A.(]2,3--()+∞,1
B.(][)2,12,3 --
C.(][)2,12,3 --
D.(](]2,13, -∞-
二、填空题
14. 函数)2(log 221--=x x y 的单调递增区间是 .
15. 不等式221<-+-x x 的解集是 .
16. 的解集为不等式
13x 1-2x >+ 不等式 0322322<--+-x x x x 解集为
_______________ 17. 设1≥x ,则函数1
)3)(2(+++=
x x x y 的最小值是 . 三、解答题 18.如果关于x 的不等式|x-4|-|x+5|b ≥的解集为空集,则参数b 的取值范围为 .
19.若不等式0252>-+x ax 的解集是⎭
⎬⎫⎩⎨⎧<<221x x ,求不等式01522>-+-a x ax 的解集.
20.设321,,a a a 均为正数,且m a a a =++321,求证m
a a a 9111321≥++ .
4-5不等式选讲2012高考试题
1.(2012年高考(陕西理))若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是___________.
2.(2012年高考(山东理))若不等式42kx -≤的解集为{}13x x ≤≤,则实数k =__________
3.(2012年高考(江西理))在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为________
4.(2012年高考(湖南理))不等式|2x+1|-2|x-1|>0的解集为_______
5.(2012年高考(广东理))(不等式)不等式21x x +-≤的解集为__________
6.(2012年高考(新课标理))选修45-:不等式选讲 已知函数()2f x x a x =++-
(1)当3a =-时,求不等式()3f x ≥的解集;
(2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围.
7.(2012年高考(辽宁理))选修4-5:不等式选讲
已知()|1|()f x ax a R =+∈,不等式()3f x …的解集为{|2x -剎1x …}.
(Ⅰ)求a 的值; (Ⅱ)若|()2()|2
x f x f k -…恒成立,求k 的取值范围.
8.(2012年高考(江苏))(2012年江苏省10分)已知实数x,y 满足:11|||2|36x y x y +<
-<,,求证: 5||18y <.
9.(2012年高考(福建理))已知函数()|2|,f x m x m R =--∈,且(2)0f x +≥的解
集为[1,1]-。
(Ⅰ)求m 的值;
(Ⅱ)若,,a b c R ∈,且
11123m a b c
++=,求证:239a b c ++≥。
10.(2012年高考(课标文))选修4-5:不等式选讲
已知函数()f x =|||2|x a x ++-.
(Ⅰ)当3a =-时,求不等式 ()f x ≥3的解集;
(Ⅱ) 若()f x ≤|4|x -的解集包含[1,2],求a 的取值范围.。