6.3生日相同的概率(2)
- 格式:doc
- 大小:45.50 KB
- 文档页数:2
灵宝市第四初级中学呼梦阳审核人常青预习提示自学课本174——177页内容,回答下列问题。
1.400个同学中,一定有2个同学的生日相同(可以不同年)吗?2.300个同学中,一定有2个同学的生日相同吗?3.有人说:50个同学中,就很可能有2个同学的生日相同。
你认为这句话正确吗?4.如果我们班50个同学中有2 个人的生日相同,那么能说明50个同学中有2个同学生日相同的概率是1吗?如果我们班没有2个同学生日相同,那么能说明其相应概率是0吗?5.通过调查,我们估计了6个人中有2个人生肖相同的概率。
要想使这种估计尽可能精确,就需要尽可能多地增加调查对象,而这样做既费时又费力。
能不能不用调查即可估计出这一概率呢?请同学们在小组里交流,思考总结具体方案。
6._________________称为模拟试验。
7.使用计数器产生随机数的大体步骤是:_________________________.一、学习目标:1.经历实验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。
2.能用实验的方法估计一些复杂的随机事件发生的概率。
3.能利用计算器或计算机等进行模拟试验,估计一些复杂的随机事件发生的概率。
二、能力目标:经历试验统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。
三、情感目标:1.通过有趣的生日问题的试验统计,提高学生的学习兴趣。
2.鼓励学生积极参与数学活动,形成实事求是、敢于质疑和独立思考的习惯。
3.在数学活动中获得成功的体验,锻炼克服困难的意志。
四、教学重点难点:1.用实验的方法或计算机计算器等进行模拟实验,估计一些复杂的随机事件发生的概率。
2.经历用实验频率估计理论概率的过程,并初步感受到50个同学中有2个同学生日相同的概率较大。
五、教学过程:[用试验的方法估计概率大小]1.引例:12个苹果放入10个抽屉里,则一定有一个抽屉放进了至少2个苹果吗?2.创设问题情景,引入新课有一次,美国数学家伯格米尼去观看世界杯足球赛,在看台上随意挑选了22名观众,叫他们报出自己的生日,结果竟然有两个人的生日是相同的,使在场的球迷们感到吃惊。
一、操作感知、建立表象1.提出问题:平面上画着一些平行线,相邻的两条平行线之间的距离都为a,向此平面任投一长度为l(l<a)的针,该针可能与其中某一条平行线相交,也可能与它们都不相交。
相交和不相交的可能性相同吗?你能通过列表或画树状图求出该针与平行线相交的概率吗?2.建立实验方案:实验用具:(1)桌子,(2)铁针若干枚,长度要求相同,粗细一致,表格。
注意:每位同学的针都一样。
实验方法:(1)将学生分成两人一组,利用课堂上的桌子,用粉笔画出等距离a的7条平行线。
(2)要求学生从一定高度随意抛针,保证投针的随意性;组内同学分工如下:一位投针,一位记录。
注意问题:在实验中有时针与线是否相交较难判断,采取的方法:(1)忽略这次实验;(2)认为相交、不相交各计半次,等等。
(3)每个小组投针200次,而后将各数据填入表格。
(4)将各组数据进行累加,估计该事件发生的概率。
学生安上述实验方案进行实验。
自主合作交流,汇总数据,探究问题的结果。
二、随堂练习课本随堂练习 1三、课堂总结1.在开展本节课实验中,你能得出哪些结论?2.联系前几节的实验,你得到哪些启示?3.你对在实验中的合作交流,动手操作,用何实践体会?有什么建议?【作业设计】课本习题6.3 1. 试一试【板书设计】【教学内容】生日相同的概率(一)【教学目标】1.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。
2.能用实验的方法估计一些复杂的随机事件发生的概率。
3.体会统计、实验、研讨活动的应用价值。
【教学重点】掌握实验方法估计一些复杂的随机事件发生的概率。
【教学难点】对复杂事件发生的概率的体验。
【教学用具】)铁针若干枚【教学方法】合作交流法【教学过程】一、创设情境、激趣揭题情境导入:1.找出班上今天生日的学生,为他过个生日,将课堂气氛浓厚起来。
2.导入主题:400个同学中,一定有2个学生的生日相同(可以不同年)吗?300个同学呢?学生为班上过生日的同学唱“生日之歌”,活动后进入主题思考。
辛二七数下导学案—49 6.3等可能事件的概率(二)教学目标:1、通过面积、体积计算事件发生的概率。
2、设计符合要求的简单事件发生的概率模型。
教学重点:通过面积、体积计算事件发生的概率。
教学难点:设计符合要求的简单事件发生的概率模型。
教学方法:导学法。
教学工具:电子白板,多媒体课堂教学过程设计:一、回顾旧知:请将下列事件发生的概率标在图上:① 从三个红球中摸出一个红球②从三个红球中摸出一个白球③从一红一白两球中摸出一个红球④从红、白、蓝三个球中摸出一个红二、自学探究:【活动一】通过面积、体积计算事件发生的概率。
(几何概率)1、事件A 发生的概率等于此事件A 发生的可能结果所组成的面积(用S A 表示)除以所有可能结果组成图形的面积(用S 全表示),所以几何概率公式可表示为P (A )=S A /S全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:(1)首先分析事件所占的 与总 的关系;(2)然后计算出各部分的 ;(3)最后代入公式求出 。
●尝试练习:如图是一个小方块相间的长方形,自己在方块上涂上黑色。
(1)用一个小球在上面随意滚动,落在黑色方块(各方块的大小相同)的概率是(2)对你刚刚设计的游戏中,小球落在黑色方块的概率大还是落在白色方块的概率大? 【活动二】转盘游戏的设计及概率计算。
如图是一个可以自由转动的转盘,转动转盘,指针停在深色区域和白色区域的概率分别是多少?【活动三】设计概率模型(游戏或事件)1、设计符合要求的简单概率模型(游戏或事件)是对概率计算的逆向运用。
2、设计通常分四步:(1)首先分析设计应符合什么 ;(2)其次确定选用什么 表示更合理;(3)然后再按一定要求和操作经验来设计模型;(4)最后再通过计算或其他方法来验证设计的模型是否符合 。
●尝试练习:1、设计一个转盘,使它停止转动时,指针落在白色区域的概率是落在深色区域的概率的2倍。
三、课堂检测:1.某商店举办有奖销售活动,办法如下:凡购货满100元得奖券一张, 多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则1 张奖券中一等奖的概率是___.2.有7张卡片,分别写有0、1、2、3、4、5、6、7、8七个数字, 将它们的背面朝上洗匀后,任意抽出一张:(1)P(抽到数字7)=________; (2)P(抽到数字3)=________; (3)P(抽到一位数)=______;(4)P(抽到三位数)=_____; (5)P(抽到的数大于4)=____; (6)P(抽到的数不大于4)=___;(7)P(抽到奇数)=__________3.如图是一个转盘,若转到红色则小明胜,转到黑色则小东胜,这个游戏对双方是否公平?并说明理由。
生日相同的概率(2)练习目标导航能利用计算器或计算机等进行模拟实验,估计一些复杂的随机事件发生的概率.基础过关1.有400位同学,其中一定有至少两人生日相同吗?若有367位同学呢?说说你的理由.2.某单位共有30名员工,现有6张音乐会的门票,领导决定分给6名员工,为了公平起见,他将员工按1~30进行编号,用计算器随机产生 ~ 之间的整数,随机产生的 个整数所对应的编号去听音乐会.3.某彩票的中将率是1%,则下列说法正确的是( )A.买一张一定不会中奖B.买100张一定会中奖C.买1张和100张中奖的概率相同D.能否中奖与中奖率的大小无关,全赁运气4.一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上,则A 与B 不相邻而坐的概率是( )A.13 B.23C.1D.05.某电视台举行歌手大奖赛,每场比赛都有编号为1~10,共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手分别抽走了2号、7号题,第3位选手抽中8号题的概率是( ) A.110 B.19 C.18 D.176.在抛一枚均匀的硬币试验中,如果没有硬币,则下列试验可作替代物的是( )A.一颗均匀的骰子B.瓶盖C.图钉D.两张扑克(一张黑桃,一张红桃)7.李老师要在班上选8名学生去观看电影,请人帮助老师设计一个公正的选派方案.8.一个袋子里装有除颜色外其他都相同的红、黄、绿三个球,小明想知道一次就能摸到红球的概率是多少?若现在没有布袋和球,只有一个计算器,你能帮助小明找到答案吗?能力提升9.在物理试验中,当电流在一定时间段内正常通过电子元件时,每个电子元件的状态有两种可能:通电或断开,并且这两种状态的可能性相等.(1)如图(1)所示,当只有一个电子元件时,P、Q之间电流通过的概率是. (2)如图(2)当有两个电子元件a、b并联时,请你用树状图(或列表法)表示图中P、Q 之间电流能否通过的所有可能情况,求出P、Q之间电流通过的概率.(3)如图(3),当有三个电子元件并联时,请你猜想P、Q之间电流通过的概率是.聚沙成塔你哪一天过生日?你们班同学中一定有2个人同日(不论月份)过生日吗?为什么?15个同学中一定有2个人同日(不论月份)过生日吗?开展调查,看看15个人中有2个人同日过生日的概率大约是多少.。
“生日相同的概率”教案北师大版《义务教育课程标准实验教科书数学》九年级上册第六章“频率”与“概率”第三节“生日相同的概率”(第二课时)。
教材分析:学生已经了解了可以通过试验,用试验频率来估计随即事件发生的概率,上节课提出了求:50个同学中有2个同学生日相同“的概率,用的是真实试验的方法,即让学生进行大量的抽样调查。
本节课紧随上节课,是学生已经体会到用调查的方法既麻烦又费时,有时甚至难以实施的前提下提出问题:是否可以用替他方法代替试验(调查)?从而引入“模拟试验”。
教材首先给出了一种模拟方案,并引导学生通过对模拟试验的设计和操作强化对概率意义的理解。
随后,根据计算器可以产生随机数的功能,教材提出了以计算器为工具的模拟试验,这为学生较大量地收集和分析数据提供了可能性,使学生进一步体会到只有大量的实验数据才能更接近于真实结果。
同时计算器和计算机的使用,让学生从对具体的随即机实验的形象思维提高到可以用“数”来代替的抽象思维水平。
教学目标1.理解用模拟试验代替实际实验的意义,认识几种简单常用的模拟试验方法。
能运用计算器或计算机产生随机整数的方法进行模拟试验,并会由模拟试验的结果估计随机事件发生的概率。
2.经历从实际问题出发,探索解决问题方法和策略的过程,进一步理解概率的意义,发展随机观念。
3.通过让学生设计模拟试验方案并实施操作等教学,进一步发展自主学习与合作交流的意识和能力。
4.体会教学思想方法的魅力,体验科学探索的艰苦和乐趣,培养刻苦钻研的精神。
教学重点:理解模拟试验的意义和方法,会用模拟试验的方法估计随机事件发生的概率。
教学难点:对模拟试验合理性的理解。
教学过程:一、引入(1)上节课我们提出了这样一个问题:估计6个人中有2个人生肖相容的概率。
请同学们说一说,对这个问题你们是用什么方法调查、收集数据的?求得的概率估计值是多少?(2)提出问题:能不能找出一种替代方法,不用进行实际调查也可以估计这个问题的概率?【设计意图】让学生通过回忆实际调查收集数据的过程,感受到这种方法既费时又费力,意识到引入模拟试验的必要性。
北师大版初中七-九年级数学目录数学北师大版七年级上册第一章丰富的图形世界1.1生活中的立体图形1.2展开与折叠1.3截一个几何体1.4从不同方向看1.5生活中的平面图形本章综合第二章有理数及其运算2.1数怎么不够用了2.2数轴2.3绝对值2.4有理数的加法2.5有理数的减法2.6 有理数的加减混合运算2.7水位的变化2.8有理数的乘法2.9有理数的除法2.10有理数的乘方2.11有理数的混合运算2.12计算器的使用本章综合第三章字母表示数3.1字母能表示什么3.2代数式3.3代数式求值3.4合并同类项3.5去括号3.6探索规律本章综合第四章平面图形及其位置关系4.1线段、射线、直线4.2比较线段的长短4.3角的度量与表示4.4角的比较4.5平行4.6垂直4.7有趣的七巧板本章综合第五章一元一次方程5.1你今年几岁了5.2解方程5.3日历中的方程5.4我变胖了5.5打折销售"希望工程"义演5.7能追上小明吗5.8教育储蓄本章综合第六章生活中的数据6.1认识100万6.2科学记数法6.3扇形统计图6.4你有信心吗6.5统计图的选择本章综合第七章可能性7.1一定摸到红球吗7.2转盘游戏"四位数"大本章综合数学北师大版七年级下册第一章整式的运算1.1整式1.2整式的加减1.3同底数幂的乘法1.4幂的乘方与积的乘方1.5同底数幂的除法1.6整式的乘法1.7平方差公式1.8完全平方公式1.9整式的除法本章综合第二章平行线与相交线2.1余角与补角2.2探索直线平行的条件2.3平行线的特征2.4用尺规作线段和角本章综合第三章生活中的数据3.1认识百万分之一3.2近似数和有效数字3.3世界新生儿图本章综合第四章概率4.1游戏公平吗4.2摸到红球的概率4.3停留在黑砖上的概率本章综合第五章三角形5.1认识三角形5.2图形的全等5.3全等三角形5.4探索三角形全等的条件5.5作三角形5.6利用三角形全等测距离5.7探索直角三角形全等的条件本章综合第六章变量之间的关系6.1小车下滑的时间6.2变化中的三角形6.3温度的变化6.4速度的变化本章综合第七章生活中的轴对称7.1轴对称现象7.2简单的轴对称图形7.3探索轴对称的性质7.4利用轴对称设计图案7.5镜子改变了什么7.6镶边与剪纸本章综合数学北师大版八年级上册第一章勾股定理1.1 探索勾股定理1.2 能得到直角三角形吗1.3 蚂蚁怎样走最近本章综合第二章实数2.1 数怎么又不够用了2.2 平方根2.3 立方根2.4 公园有多宽2.5 用计算器开方2.6实数本章综合第三章图形的平移与旋转3.1 生活中的平移3.2 简单的平移作图3.3 生活中的旋转3.4 简单的旋转作图3.5 它们是怎样变过来的3.6 简单的图案设计本章综合第四章四边形性质探索4.1 平行四边形的性质4.2 平行四边形的判别4.3 菱形4.4 矩形、正方形4.5 梯形4.6 探索多边形的内角和与外角和4.7中心对称图形本章综合第五章位置的确定5.1 确定位置5.2 平面直角坐标系5.3变化的鱼本章综合第六章一次函数6.1 函数6.2 一次函数6.3 一次函数的图象6.4 确定一次函数表达式6.5 一次函数图象的应用本章综合第七章二元一次方程组7.1谁的包裹多7.2解二元一次方程组7.3 鸡兔同笼7.4 增收节支7.5 里程碑上的数7.6 二元一次方程与一次函数本章综合第八章数据的代表8.1 平均数8.2 中位数与众数8.3 利用计算器求平均数本章综合学北师大版八年级下册第一章一元一次不等式和一元一次不等式组1.1 不等关系1.2 不等式的基本性质1.3 不等式的解集1.4 一元一次不等式1.5 一元一次不等式与一次函数1.6 一元一次不等式组本章综合第二章分解因式2.1 分解因式2.2 提公因式法2.3 运用公式法本章综合第三章分式3.1 分式3.2 分式的乘除法3.3 分式的加减法3.4 分式方程本章综合第四章相似图形4.1 线段的比4.2 黄金分割4.3 形状相同的图形4.4 相似多边形4.5 相似三角形4.6 探索三角形相似的条件4.7 测量旗杆的高度4.8 相似多边形的性质4.9 图形的放大与缩小本章综合第五章数据的收集与处理5.1 每周干家务活的时间5.2 数据的收集5.3 频数与频率5.4 数据的波动本章综合第六章证明〔一〕6.1 你能肯定吗6.2 定义与命题6.3 为什么它们平行6.4 如果两条直线平行6.5 三角形内角和定理的证明6.6 关注三角形的外角本章综合学北师大版九年级上册第一章证明〔二〕1.1你能证明它们吗1.2直角三角形1.3线段的垂直平分线1.4角平分线本章综合第二章一元二次方程2.1花边有多宽2.2配方法2.3公式法2.4分解因式法2.5为什么是0.618本章综合第三章证明〔三〕3.1平行四边形3.2特殊平行四边形本章综合第四章视图与投影4.1视图4.2太阳光与影子4.3灯光与影子本章综合第五章反比例函数5.1反比例函数5.2反比例函数的图象与性质5.3反比例函数的应用本章综合第六章频率与概率6.1频率与概率6.2投针试验6.3生日相同的概率6.4池塘有多少条鱼本章综合数学北师大版九年级下册第一章直角三角形的边角关系1.1从梯子的倾斜程度谈起1.2 30°、45°、60°角的三角函数值1.3三角函数的有关计算1.4船有触礁的危险吗1.5测量物体的高度本章综合第二章二次函数2.1二次函数所描述的关系2.2结识抛物线2.3刹车距离与二次函数2.4二次函数y=ax^2+bx+c的图象2.5用三种方式表示二次函数2.6何时获得最大利润2.7最大面积是多少2.8二次函数与一元二次方程本章综合第三章圆3.1车轮为什么做成圆形3.2圆的对称性3.3圆周角和圆心角的关系3.4确定圆的条件3.5直线和圆的位置关系3.6圆和圆的位置关系3.7弧长及扇形的面积3.8圆锥的侧面积本章综合第四章统计与概率4.150年的变化4.2哪种方式更合算4.3游戏公平吗本章综合。
初三数学第六章第3-4节生日相同的概率;池塘里有多少鱼北师大版【本讲教育信息】一、教学内容第六章第3~4节及本章的知识回顾二、教学目标1、能用实验的方法估计一些复杂的随机事件发生的概率2、进一步体会概率与统计之间的联系,用样本去估计总体的统一思想。
3、经历试验、统计等活动,在活动中进一步提高学生合作交流的意识和能力。
三、知识要点1、生日相同的概率的认识(1)此问题不能用树状图或列表法求解,只能通过试验的方法估计其概率。
(2)50个同学中有两个同学的生日相同,并不能说明50个同学中有两个同学生日相同的概率是1,而50个同学中没有两个同学生日相同,也不能说明其相应的概率为0。
2、模拟试验的两种方法:(1)用替代的实物模拟试验:替代物与被替代物形状、大小、质地可以差别很大,但是作为试验时考察的试验对象,其出现的概率应该是相同的,这样才不会影响试验结果;(2)用计算器产生随机数来模拟试验:当找不到合适的实物时,用实物替代比较麻烦,可以用计算器来模拟。
3、设计模拟试验估算概率需要注意以下几点:(1)清楚事件发生的可能性;(2)准备的替代物一定要完全相同;(3)要保证试验的随机性,摸牌或摸球放回时一定要注意摇匀;(4)要清楚地记录每一次试验(5)要重复多次试验4、已知袋中的一种颜色的球的数目,估算另一种颜色的球的数目,此问题有两种解法:(1)从袋中随意摸出一种球,记下颜色,然后将其放回袋中,重复这一过程,摸一定的次数,记录其中某颜色的球出现的次数,利用频率估算另一颜色的球的数目。
(2)利用抽样调查,从袋中一次摸出10个球,求出其中某一颜色的球数与10的比值,再把球放回袋中,重复上述过程,摸一定的次数,求出这一颜色的球数与10的比值的平均数,即平均概率,利用平均概率来估算另一颜色的球的数目。
5、估算袋中单一色球的数目向口袋中再放另一种颜色相同的球若干个,也可以从口袋中取出几个并将它们染成一样的其他颜色或作上标记,方法与4相同6、如何估计池塘有多少条鱼可设计如下方案:一次从鱼塘中捞出100条鱼,作上记号,然后放回去,待鱼完全混合于鱼群后,再一次从鱼塘中捕捞100条鱼,数出有记号的鱼的数目,利用,100100鱼的总数有记号的鱼的数目 即可得出鱼塘里鱼的数量。
频率与概率(1)宁阳十中 孔新华一、选择题1、掷一枚骰子,下列说法正确的是( )A 、1点或6点朝上的概率最小,3点或4点朝上的概率最大;B 、2点或5点朝上的概率小于3点或4点朝上的概率;C 、各点朝上的概率都相同;D 、各点朝上的概率因人而异,无法确定2、已知某种彩票的中奖率为60%,下列说法正确的是( )A 、购买10张彩票,必有6张中奖;B 、10人去买彩票,必有6人中奖;C 、购买10次彩票,必有6次中奖;D 、买得越多,中奖的概率越接近60%二、填空题1.检查某工厂一批产品的质量, 从中分别抽取10件、20件、50件、100件、150件、200件、300件检查, 检查结果及次品频率列入下表053.0055.0047.0050.0060.0050.00/161175310300200150100502010n n μμ次品频率次品数抽取产品总件数请你根据次品频率稳定的趋势估计该产品是次品的概率是2、 从数字1,2,3,4,5中任取两个不同的数,构成一个两位数,则这个数大于40的概率是________.频率与概率(1)宁阳十中 孔新华一、选择题1、从1,2,…,9共九个数字中任取一个数字,取出数字为偶数的概率为( )A 、0B 、1C 、91D 、942、接连三次抛掷一枚硬币,则正反面轮番出现的概率是( )A 、81B 、41C 、21D 、23二、填空题将4个球随机地放入4个盒中,则恰有一个盒子空着的概率为________.三、解答题两人做掷硬币猜正反面的游戏。
在已进行的9次游戏中,都出现正面朝上,那么第10次猜的时候,你会怎么猜?为什么?数学九年级上册第六章第一节第1课时(C 卷)频率与概率(1)宁阳十中 孔新华一、选择题1.下列说法正确的是 ( )A. 某事件发生的概率为21,这就是说:在两次重复实验中,必有一次发生 B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C .两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是31 D .全年级有400名同学,一定会有2人同一天过生日2.如果采取抽签的方式决定两位选手的胜负。
第课时1.在具体情境中进一步了解概率的意义,体会概率是描述不确定现象的数学模型.2.掌握古典概型及几何概型的概率计算方法.3.能设计符合要求的简单概率模型.在分组讨论、合作探究的过程中体会事件发生的不确定性,进一步体会“数学就在我们身边”.1.进一步培养学生公平、公正的态度,使学生形成正确的人生观.2.提高学生之间的合作交流能力和学习数学的兴趣.【重点】了解另一类(几何概率)事件发生的概率的计算方法,并能进行简单计算.【难点】设计符合要求的简单数学模型.【教师准备】多媒体课件.【学生准备】复习前面课时的概率知识.导入一:一、复习回顾,铺设道路【活动内容】回顾前面学过的有关知识.1.什么是概率?2.如何计算一个事件的概率?[处理方式]1.如果一个事件有n种等可能的结果,事件A包含其中的m种结果,那么事件A发生的概率为.2.重点求公式中的m,n的值.二、创设情境,感悟问题【活动内容】出示一个带指针的转盘,这个转盘被分成8个面积相等的扇形,并标上1,2,3,…,8,若每个扇形面积为单位1,转动转盘,转盘的指针指向转盘的位置在不断地改变.问题1在转动的过程中,当转盘停止时,指针指向每一个扇形区域机会均等吗?那么指针指向每一个扇形区域是等可能的吗?问题2怎样求指针指向每一个扇形区域的概率?它们的概率分别是多少?[处理方式]首先让学生独立思考、书写答案,然后小组交流,最后全班展示,教师总结.(1)因为转盘被等分成8个扇形,所以指针指向每一个扇形区域的可能性相同.(2)P(指针指向每个扇形区域)=.[设计意图]设计情境,从而突出等可能事件发生的概率.注意在整个教学过程中要充分发挥学生的主体地位.导入二:【活动内容】回顾前面学过的有关知识.1.游戏的公平性.2.概率及其计算方法.[处理方式]第1题学生独立思考后回答,由于问题较简单,学生回答踊跃;第2题是第1题的继续,学生回答的方法较多,小组间的竞争提高了学习热情,使学生产生自信和竞争意识,开始在不知不觉中集中精力,走入数学殿堂.[设计意图]“学生原有的知识和经验是教学活动的起点”,通过复习古典概型、几何概型的计算方法,使学生在学习本节知识前扫清障碍,并起到承上启下的作用.探究活动1探究问题,感悟问题思路一问题1如图所示的是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?[处理方式]学生独立思考,书写答案,然后小组交流,最后全班展示,教师总结.以下三种答案:答案一:指针不是落在白色区域就是落在红色区域,落在白色区域和红色区域的概率相等,所以P(落在白色区域)=P(落在红色区域)=.答案二:先把白色区域等分成2份,这样转盘被分成3个扇形区域,其中1个是红色,2个是白色,所以P(落在红色区域)=,P(落在白色区域)=.答案三:利用圆心角度数计算,所以P(落在红色区域)==,P(落在白色区域)==.结论:转盘应被等分成若干份.各种结果出现的可能性务必相同.[设计意图]苏霍姆林斯基说过:“应该让我们的学生在每一节课上都感到热烈的、沸腾的、多姿多彩的精神生活.”课堂上,只有让学生真正“动”“活”起来,学生的学习热情才会高涨,创造力才会加强.问题2转动如图所示的转盘,当转盘停止时,指针落在白色区域和红色区域的概率分别是多少?[处理方式]利用圆心角度数计算,所以P(落在红色区域)==,P(落在白色区域)==.[设计意图]巩固利用圆心角度数计算概率.思路二【活动内容1】如图所示的是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?小明做法:指针不是落在红色区域就是落在白色区域,落在红色区域和白色区域的概率相等,所以P(落在红色区域)=P(落在白色区域)=.小颖做法:先把白色区域等分成2份,这样转盘被分成3个扇形区域,其中1个是红色,2个是白色,所以P(落在红色区域)=,P(落在白色区域)=.你认为谁做得对?说说你的理由,你是怎样做的?[处理方式]让学生独立思考先分析出小明的做法不正确,因为转盘中红色区域和白色区域的面积不同,因而指针落在这两个区域的可能性不同.小明把可能性不同的情况当成等可能的情况处理,这是不对的.小颖的做法是正确的.红色区域和白色区域出现的可能性不同,因此不能当做等可能的情况处理.引导学生继续思考,除了小颖的这种做法还有其他的做法吗?有提前预习的同学会想到还可以利用圆心角度数计算,P(落在红色区域)==.P(落在白色区域)==.书写答案,然后小组交流,最后全班展示,教师总结.[设计意图]把可能性不同的情况当成等可能的情况处理,这是学生容易犯的错误.这一问题意在纠正一些学生的错误想法.课堂上,只有让学生真正“动”“活”起来,学生的学习热情才会高涨,创造力才会加强.【活动内容2】如果换成转动如图所示的转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?你有什么方法?与同伴交流.类似于转盘问题的概率计算方法是什么?[处理方式]这是一个比较有趣的问题,教师可以先让学生独立思考,然后组织学生进行交流.对于这一问题可以类比上一例子,出现多种解答方式.根据小颖的做法,可以把白色区域等分成25份,红色区域等分成11份,这样转盘被等分成36个扇形区域,其中11个是红色,25个是白色,所以P(落在红色区域)=,P(落在白色区域)=.利用圆心角度数计算,所以P(落在红色区域)==,P(落在白色区域)==.进而总结出类似于转盘问题的处理公式:P=或.[设计意图]通过上一环节学生已经了解了几何概型公式计算的前提是各种结果出现的可能性务必相同.此时出示这两道例题,是让学生达到学以致用的目的.注意在此环节仍需给学生充分的时间解决问题.探究活动2例题讲解某路口南北方向红绿灯的设置时间为:红灯20秒、绿灯60秒、黄灯3秒.小明的爸爸随机地由南往北开车经过该路口,则:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到红灯的概率是多少?[处理方式]由一个学生板书答案,其余学生在练习本上独立完成.解:(1)因为P(遇到红灯)==,P(遇到绿灯)==,因为<,所以遇到绿灯的概率大.(2)P(遇到红灯)=,所以他遇到红灯的概率是.在教学时,教师可以引导学生举出与本例叙述不同但本质相同的概率模型,使学生从中体会到概率模型的思想.例如,有一个由83个小方块组成的区域,其中有20个红色方块,60个绿色方块,3个黄色方块,每个小方块除颜色外完全相同,一个小球在地面上自由地滚动,并随机地停留在某方块上,它最终停留在红色小方块上的概率是多少?[知识拓展]1.概率的求法有两种:一是类似于摸球,用结果数的比求概率;二是类似于转盘用面积的比求概率.2.求概率时要注意各结果可能性是否相等,如果不相等,不能简单地用结果数相比,而应划分为各结果等可能的情况,再来计算.1.公式总结.2.各种结果出现的可能性务必相同.3.在生活中要善于应用数学知识.1.一位汽车司机准备去商场购物,然后他随意把汽车停在某个停车场内,如图所示,停车场分A,B两区,停车场内一个停车位置正好占一个格且每一个格除颜色外完全一样,则汽车停在A区深色区域的概率是,停在B区深色区域的概率是.解析:A,B两区共有13个格,A区中颜色深的区域有2个,则汽车停在A区深色区域的概率是,B区中深色区域有4个,则汽车停在B区深色区域的概率是.答案:2.如图所示,当转盘转动停止时.①指针落在红色区域的概率比落在绿色区域的概率;②指针落在绿色区域的概率与落在黄色区域的概率;③指针落在黄色区域的概率比落在蓝色区域的概率;④指针落在绿色区域的概率比落在蓝色区域的概率.答案:①大②相等③小④小3.如图所示,把一个圆形转盘按1∶2∶3∶4的比例分成A,B,C,D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为.答案:4.如图所示的是一个可以自由转动的转盘,转盘被分成了6个扇形,其中标有数字1的扇形的圆心角为90°;标有数字2,4及6的扇形的圆心角均为60°;标有数字3,5的扇形的圆心角均为45°.利用这个转盘甲、乙两人开始做下列游戏:自由转动转盘,转盘停止时,指针指向奇数则甲获胜,而指针指向偶数则乙获胜,你认为这个游戏对甲、乙双方公平吗?为什么?解:公平.因为标有数字1的扇形的圆心角为90°,标有数字2,4及6的扇形的圆心角均为60°,标有数字3,5的扇形的圆心角均为45°,所以标有奇数的圆心角度数为90°+45°+45°=180°,标有偶数的圆心角度数为60°+60°+60°=180°,所以P(甲获胜)=P(乙获胜)=,所以这个游戏对甲、乙双方公平.第4课时探究活动1探究问题,感悟问题探究活动2例题讲解一、教材作业【必做题】教材第155页习题6.7知识技能第1,2,3题.【选做题】教材第155页习题6.7数学理解第4题.二、课后作业【基础巩固】1.某商场为促销开展抽奖活动,让顾客转动一次转盘,当转盘停止后,只有指针指向阴影区域时,顾客才能获得奖品,下列有四个大小相同的转盘可供选择,使顾客获得奖品可能性最大的是()2.如图所示,有三个同心圆,由里向外的半径依次是2 cm,4 cm,6 cm,将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是.【能力提升】3.“五一”期间,张先生驾驶汽车从甲地经过乙地到丙地旅游,甲地到乙地有2条公路,乙地到丙地有3条公路,每条公路的长度如图所示(单位:km),张先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率为 ()A. B. C. D.【拓展探究】4.如图所示的是没有涂色的且可以自由转动的转盘,该转盘被分成6个相等的扇形区域.(1)请你在转盘的适当地方涂上不同的颜色,使得自由转动这个转盘,当它停止转动后,指针落在涂有颜色的区域的概率是.(2)如果利用你涂好颜色的转盘来决定甲、乙两位同学谁今天值日,你认为公平吗?若认为公平,请简要说明理由;若认为不公平,请提出公平合理的涂色方案.【答案与解析】1.A(解析:由题意可知,A中阴影部分占整个圆的;B中阴影部分占整个圆的;C中阴影部分占整个圆的;D中阴影部分占整个圆的.故选A.)2.(解析:因为有三个同心圆,由里向外的半径依次是2 cm,4 cm,6 cm,将圆盘分为三部分,所以阴影部分的面积为π(42- 22)=12π,大圆的面积为36π,所以飞镖落在阴影圆环内的概率是=.)3.A(解析:从甲地到丙地的路线可以有6种选择,分别是80+100(上),80+80,80+100(下),50+100(上),50+80,50+100(下),最短的是50+80这条路线,故这条路线正好是最短路线的概率为.故选A.)4.解:(1)如图所示.(答案不唯一)(2)不公平,因为概率不相等.建议平均分成两份,分别涂色即可.1.探究发现法.把教的过程变成学生发现问题,发现方法的过程,本课时通过创设情境,诱导学生通过独立思考、主动探索、小组讨论、全班展示、主动建构,完成知识的转化.2.直观教学法.结合直观演示法和多媒体展示,引导学生在轻松、愉快的氛围中学习数学,并且积极调动学生观察、动手操作、动脑思考,多种感官参与,体现数学来源于生活、应用于生活的真谛.确保学生的主体、中心地位,教师充当指挥员,调动学生的积极性,明白如何思考,课堂上通过运用各种启发、激励的语言,帮助学生形成积极主动的求知态度.没留给学生充分的交流讨论时间,错题纠正不够到位.学生以实践者的身份去观察、思考、讨论、创新,体验建构知识的过程,弄清来龙去脉,调动起学生的主动性和学习的热情,体现学生学习的个性化、自主化.引导学生在小组交流和讨论中学习,相互启发,相互交流解决问题的策略,提高思维水平.通过学生自己动手、动脑,主动解决问题的教学方法,培养学生通过观察、思考发现问题,从而产生想要解决问题的欲望,通过自己动手操作、完成任务、解决问题,获得成功的喜悦,树立了自信心.这样教给学生的不单单是知识和技能,而且还教给了学生获取知识的方法.注意留给学生充足的思考时间,不要让个别思维活跃的学生的回答,掩盖其他学生的思维活动.11/ 11。
6.3生日相同的概率(2)
学习目标:1能利用计算器或计算机等进行模拟实验,估计一些复杂的随机事件发生的概率. 2经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力. 3鼓励学生的思维多样化,避免思维的单一性.
学习重点:利用计算机或计算器等进行模拟实验。
估计一些复杂的随机事件发生的概率. 学习难点:用模拟实验代替实际凋查,估计一些随机事件的概率.
一、学前准备
我们上节课利用全班的调查数据设计了不同方案。
估计6个人中有2个人生肖相同的概率.要想使这种估计尽可能精确,就要尽可能多地增加调查对象,而这样做既费人力又费物力.能不能不用调查即可估计出这一概率呢?请同学们在小组内交流,思考具体方案.
二、问题探究
探究1
不同的生肖有12个,而我们要估计的是6个人中有2个人生肖相同的概率.可以设计一个自由转动的转盘,并将其等分成面积相等的十二个扇形.分别在每个扇形区域标出相应的生肖或绘出相应的生肖图,然后自由转动转盘6次,记下每次转出的生肖,为一次实验.重复多次实验,即可估计出6个人中有2个人生日相同的概率。
探究2
可以取扑克牌中任何一种花色12张分别代表12个生肖.这样每个人的生肖都对应着一张扑克牌.6个人中有两个人生肖相同.就意味着6张扑克牌中有2张扑克牌完全相同.因此,我们充分“洗”过这12张扑克牌后,从中抽取一张,记下它的牌面数字,放回去;再重新“洗”牌,从中抽取一张,记下它的牌面数字,放回去……直至重新“洗”牌后.从中抽取一张,记下第6个牌面数字。
为一次实验.重复多次实验,即可估计6个人中有2个人生肖相同的概率.
探究3
还可以用12个编有号码的,大小相同的球代替12种不同的生肖.这样每个人的生肖都对应着一个球.6个人中有2个人生肖相同,就意味着6个球中有2个球的号码相同.因此,可在口袋中放入这样的12个球,从中摸出1个球,记下它的号码,放回去;再从中摸出1个球,记下它的号码.放回去……直至摸出第6个球,记下第6个号码,为一次实验.重复多次实验,即可估计6个人中有2个人生日相同的概率.
思考:为什么每次摸出球后都要放回去呢?
模拟试验:上面的方法是用摸球实验代替实际调查,类似这样的实验称为模拟实验.
事实上,还可以利用计算器产生的随机数进行模拟实验.
三、随堂练习
1、从人群中任意抽取2人星座相同的概率是( )
A 、1441
B 、721
C 、36
1 D 、121 2、小明让欢欢猜他是几月份的生日,欢欢一次猜中的概率是 。
3、2009年是牛年,贝贝的爸爸让贝贝猜他的属相,贝贝一次猜对的概率是 。
4、如果手头没有硬币,那么你能用什么办法模拟掷硬币的实验?你能用计算器模拟该实验吗?做一做,看看结果如何?
四、学习体会
1、你学到了什么
2、你还有哪些疑惑
五、自我检测
1、在李咏主持的“幸运52”栏目中,曾于一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻,有一位观众一翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )
A 、51
B 、41
C 、92
D 、18
5 2、老师有5张电影票,现在要将他们随机分给班上的5个同学,为了保证公正,你能利用计算器帮老师作出决定吗?
六、直击中考
1. (2011福建泉州)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .
(1)用列表法或画树状图表示出(x ,y )的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数4y x =
的图象上的概率; (3)求小明、小华各取一次小球所确定的数x 、y 满足4y x
<
的概率.。