4.流体力学观察流动-流体动力学(1)
- 格式:ppt
- 大小:1.72 MB
- 文档页数:31
(完整版)流体力学第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。
分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V) 压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变(低速流动气体不可压缩)Ev=dp/(dρ/ρ)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。
质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。
第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0 流体平衡微分方程重力场下的简化:dρ=-ρdW=-ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;=C不可压缩流体静压强基本公式z+p/ρg不可压缩流体静压强分布规律p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强-当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。
流体力学中的流体流动分析流体力学是研究流体静力学和流体动力学的学科,其在物理学、工程学和地质学等领域中有着广泛的应用。
本文将着重讨论流体力学中的流体流动分析。
1. 流体的特性在进行流体流动分析之前,我们首先需要了解流体的特性。
流体是一种能够流动的物质,包括液体和气体。
流体的特点有两个重要参数:密度和粘度。
密度是描述流体质量分布的物理量,通常用符号ρ表示。
密度越大,表示单位体积内所含质量越大,流体的惯性也就越大。
粘度是流体流动阻力大小的度量,通常用符号μ表示。
粘度越大,表示流体越黏稠,流动阻力也就越大。
粘度决定了流体内部分子之间的摩擦力。
2. 流体流动的描述为了研究流体的流动行为,我们需要借助一些物理量和描述方法。
速度是描述流体流动的基本物理量,通常用符号v表示。
速度场描述了流体某一时刻某一位置的速度大小和方向。
压力是描述流体静态和动态平衡的物理量,通常用符号p表示。
压力场表示了流体内部各点的压力分布。
流体的流动可以分为稳定流动和非稳定流动。
稳定流动指的是流体在时间和空间上都保持不变的流动状态,而非稳定流动则表示流体中存在时间和空间上的变化。
3. 流体流动方程在流体力学中,有两个基本的流体流动方程,即连续性方程和动量方程。
连续性方程描述了流体流动的质量守恒。
它表明,在一个封闭的流体系统内,质量的流入量必须等于流出量。
动量方程描述了流体流动的动量守恒。
它可以分为水平方向和垂直方向的动量守恒方程组成。
4. 流体流动的模拟与分析为了更好地理解和预测流体流动的行为,工程师和科学家们常常使用数值模拟和实验方法来进行分析。
数值模拟是指利用计算机数值计算的方法模拟流体流动行为。
它可以通过对流体运动方程的离散化,以及应用数值计算方法求解得到流体流动的速度、压力分布等信息。
实验方法是指利用实验设备和仪器对流体流动行为进行直接观测和测量的方法。
通过实验可以获取流体流动的实际数据,进而验证数值模拟的准确性。
5. 应用领域流体力学的研究成果在各个领域都有广泛的应用。
流体运动的动力学定律流体运动是自然界中一种常见的现象,它涉及到许多物理定律和原理。
在流体力学领域,有一些基本的动力学定律可以帮助我们理解和描述流体运动的规律。
本文将介绍一些重要的流体力学定律,并探讨其应用。
1. 质量守恒定律质量守恒定律是流体力学中最基本的定律之一。
它表明在任何封闭系统中,质量是不会被创造或者消失的,只会发生转移或者转化。
在流体运动中,质量守恒定律可以用以下公式表示:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是单位体积内的质量,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示散度运算符。
这个方程表明质量的变化率等于流入和流出的质量之差。
2. 动量守恒定律动量守恒定律是描述流体运动中动量守恒的重要定律。
它可以用以下公式表示:ρ(∂v/∂t + v·∇v) = -∇P + ∇·τ + ρg其中,P是压力,τ是应力张量,g是重力加速度。
这个方程表明流体的动量变化率等于压力梯度、应力梯度和重力之和。
3. 能量守恒定律能量守恒定律是描述流体运动中能量守恒的基本定律。
它可以用以下公式表示:ρC(∂T/∂t + v·∇T) = ∇·(k∇T) + Q其中,C是比热容,T是温度,k是热导率,Q是单位体积内的热源。
这个方程表明流体的能量变化率等于热传导、热源产生和流体运动对温度的影响之和。
4. 流体静力学定律流体静力学定律描述了静止流体中的压力分布和压力的传递规律。
根据这个定律,静止流体中的压力在任何方向上都是相等的,并且压力沿着流体中的任意路径传递。
这个定律可以用来解释液体中的浮力现象和液体的压强。
5. 流体动力学定律流体动力学定律描述了流体运动中的压力分布和流速的关系。
根据这个定律,流体中的压力随着流速的增加而减小,在流速较大的地方压力较低,在流速较小的地方压力较高。
这个定律可以用来解释流体在管道中的流动、喷泉的原理等。
综上所述,流体运动的动力学定律是研究流体力学的基础。