《流体力学》第三章流体动力学基础例题
- 格式:ppt
- 大小:51.05 KB
- 文档页数:6
第三章 流体动力学基础3-1 已知速度场为k z x j y x i y x u)()()(2-+-++= (m/s),求(2,3,1)点的速度和加速度。
已已知知::z x u y x u y x u -=-=+=z y x )(2,, 解析:(1) (2,3,1)点的速度为m/s 1m/s 1m/s 10)(2z y x =-=-=-==+=z x u y x u y x u ,, s /m 10.101)1(102222z 2y 2x =+-+=++=u u u u (2) (2,3,1)点的加速度为2x z x y x x x x m/s 1832262602)(2)(20=⨯+⨯=+=+⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zuu y u u x u u u a τ2y zy yy xy y m/s 1133230)1()(1)(20=⨯+=+=+-⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zu u yu u xu u u a τ2z z z y z x z z m/s 913222)1()(01)(20=+⨯+=++=-⨯-++⨯++=∂∂+∂∂+∂∂+∂∂=z y x z x y x zu u y u u x u u u a τ22222z 2y 2x s /m 93.2291118=++=++=a a a a3-2 已知速度场为k z y j y i x u )34()(2)3(2-+-++=ττ (m/s),求τ=2秒时,位于(2,2,1)点的速度和加速度。
已已知知::z y u y u x u )34()(23z 2y x -=-=+=,,ττ解析:(1) τ=2秒、位于(2,2,1)点的速度为m/s 5)34(m/s 4)(2m/s 83z 2y x =-=-=-==+=z y u y u x u ,,ττ s /m 25.105)4(82222z 2y 2x =+-+=++=u u u u (2) τ=2秒、位于(2,2,1)点的加速度为2x z x y x x x x m/s 251)223(31)3(3003)3(1=++⨯⨯=++=++⨯++=∂∂+∂∂+∂∂+∂∂=τττx x zuu y u u x u u u a2222y zy yy xy y m/s 342)22(282)(80)4()(202=+-⨯⨯=+-=+-⨯-++=∂∂+∂∂+∂∂+∂∂=τττy y y y zu u yu u xu u u a2222222z z z y z x z z m/s 91)324()22(18)34()(8)34(4)(200=⨯-⨯+-⨯⨯=-+-=-+⨯-++=∂∂+∂∂+∂∂+∂∂=z y y z zy z y zuu y u u x u u u a τττ22222z 2y 2x s /m 15.4393425=++=++=a a a a3-3 已知二维流场的速度分布为j x y i x y uττ)96()64(-+-= (m/s)。
第三章 流体运动学3-1粘性流体平面定常流动中是否存在流函数? 答:对于粘性流体定常平面流动,连续方程为:()()0=∂∂+∂∂yv x u ρρ; 存在函数:v t y x P ρ-=),,(和()u t y x Q ρ=,,,并且满足条件:()()yP x Q ∂∂=∂∂。
因此,存在流函数,且为:()()()dy u dx v Qdy Pdx t y x ρρψ+-=+=⎰⎰,,。
3-2轴对称流动中流函数是否满足拉普拉斯方程?答:如果流体为不可压缩流体,流动为无旋流动,那么流函数为调和函数,满足拉普拉斯方程。
3-3 就下面两种平面不可压缩流场的速度分布分别求加速度。
(1)22222 ,2yx ym v y x x m u +⋅=+⋅=ππ (2)()()()222222222 ,yxKtxyv yxx y Kt u +-=+-=,其中m ,K 为常数。
答:(1)流场的加速度表达式为:yv v x v u t v a y u v x u u t u a x ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=y ,。
由速度分布,可以计算得到:0 ,0=∂∂=∂∂tvt u ,因此: ()222222y x x y m x u +-⋅=∂∂π,()22222y x xy m y u +-⋅=∂∂π;()22222y x xy m x v +-⋅=∂∂π,()222222y x y x m y v +-⋅=∂∂π。
代入到加速度表达式中:()()()22222222222222222222220y x x m y x xym y x y m y x x y m y x x m a x +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ()()()22222222222222222222220y x y m y x y x m y x y m y x xym y x x m a y +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ(2)由速度分布函数可以得到:()()()322222222 ,y x Kxyt v y x x y K t u +-=∂∂+-=∂∂ ()()3222232y x y x Ktx x u +-⋅=∂∂,()()3222232y x y x Kty y u +-⋅=∂∂; ()()3222232y x x y Kty x v +-⋅-=∂∂,()()3222232yx y x Ktx y v +-⋅-=∂∂。
一元流体动力学基础1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=⇒→//A Qv ρ=得:s m v /57.1=2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v =由连续性方程知2211A v A v = 得:s m v /5.122=3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性方程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。
设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。
第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。
解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。
解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。
题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。
在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。
(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dy τμ=得du(1250y 50)dyτμρν==-+ y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。
第三章流体动力学基础习题一、单选题1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是〔〕 A .加速运动 B .减速运动 C .匀速运动 D .不能确定2、血管中血液流动的流量受血管内径影响很大。
如果血管内径减少一半,其血液的流量将变为原来的〔〕倍。
A .21B .41C .81D .1613、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2m ,已知血液的粘度η =3.0×10-3 Pa·S ,密度ρ=1.05×103 kg/m 3,则此时主动脉中血液的流动形态处于〔〕状态。
A .层流B .湍流C .层流或湍流D .无法确定4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为〔〕m/s 。
A .30B .40C .45D .605、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为〔〕。
A .1m /sB .2m /sC .3 m /sD .4 m /s6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为〔 〕。
A .1×10-3 m 3/sB .2×10-3 m 3/sC .1×10-4 m 3/sD .2×10-4 m 3/s7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为〔〕mm 。
A .4B .3C .2D .18、正常情况下,人的血液密度为1.05×103kg/m 3,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差〔〕Pa 。
第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。
解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。
解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。
题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。
在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。
(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dy τμ=得du(1250y 50)dyτμρν==-+ y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。
第3章 流体动力学基础3.1 解: zuu y u u x u u t u a x z x y x x x x ∂∂+∂∂+∂∂+∂∂=()()342246222222222=++++=+-++++=++=z y x t z y t y x t u u y xzu u yu u xu u tu a y zy yy xy y ∂∂+∂∂+∂∂+∂∂=()()32111=-++=-+++--=+-=z y x z x t z y t u u x yzu u y u u x u u t u a z z z y z x z z ∂∂+∂∂+∂∂+∂∂=()()112122211=++++=-+-+++=-+=z y x t z y t y x t u u z x222286.35s m a a a a z y x =++=3.2 解:(1)3235623=-=+=xy xy u xy y u a y x x222527310.3333231s m a a a y u y a y x y y =+===-=(2)二元流动(3)恒定流 (4)非均匀流 3.3 解:bh u y h u bdy h y u udA Q h hA m ax 07871m ax 071m ax 8787==⎪⎭⎫ ⎝⎛==⎰⎰ m ax 87u A Q v ==3.4 解:s m dd v v 02.011.02221221=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛= 3.5 解:Hd v d 1v 1q 1q 2223d 3v Dv 1dv 2(1)s m v d Q 332330785.04==πs m q Q Q 32321.0=+= s m Q q Q 321115.0=+=(2)s m d Q v 12.242111==πs m d Q v 18.342222==π 3.6 解:渠中:s m m m s m bh v Q 311612/3=⨯⨯==管中:2231242.1d v s m Q Q Q ⨯⨯==-=πm v Q d 0186.1422==π 3.7 解: s m d d v v ABB A62.04.05.1442222=⨯=⋅=ππ以过A 点的水平面为等压面,则OmH g v g p h H OmH g v g p H B B B A A A 2222226964.58.925.18.9405.128980.48.9268.9302=⨯++=++==⨯+=+=ρρ可以看出:A B H H >,水将从B 点流向A 点。
第一章:绪论例1-1 200 ºC体积为的2.5m3水,当温度升至800ºC时,其体积增加多少?解: 200 ºC时:ρ1=998.23kg/m3 800CºC时:ρ2=971.83kg/m3即:则:例1-2使水的体积减小0.1%及1%时,应增大压强各为多少?(K=2000MPa)d V/V =-0.1%=-2000×106×(-0.1%)=2×106Pa=2.0MPad V /V = -1%= -2000×106×(-1%)=20 MPa例1-3输水管l=200m,直径d=400mm,作水压试验。
使管中压强达到55at后停止加压,经历1小时,管中压强降到50at。
如不计管道变形,问在上述情况下,经管道漏缝流出的水量平均每秒是多少?水的体积压缩率κ =4.83×10-10m2 /N 。
解水经管道漏缝泄出后,管中压强下降,于是水体膨胀,其膨胀的水体积水体膨胀量5.95 l 即为经管道漏缝流出的水量,这是在1小时内流出的。
设经管道漏缝平均每秒流出的水体积以Q 表示,则例1-4:试绘制平板间液体的流速分布图与切应力分布图。
设平板间的液体流动为层流,且流速按直线分布,如图1-3所示。
解:设液层分界面上的流速为u,则:切应力分布:图1-3上层下层:在液层分界面上:--流速分布:上层:下层:例1-5:一底面积为40 ×45cm2,高为1cm的木块,质量为5kg,沿着涂有润滑油的斜面向下作等速运动,如图1-4所示,已知木块运动速度u =1m/s,油层厚度d =1mm,由木块所带动的油层的运动速度呈直线分布,求油的粘度。
解:∵等速∴αs =0由牛顿定律:∑F s=mαs=0m gsinθ-τ·A=0(呈直线分布)图1-4∵ θ=tan-1(5/12)=22.62°例1-6: 直径10cm的圆盘,由轴带动在一平台上旋转,圆盘与平台间充有厚度δ=1.5mm的油膜相隔,当圆盘以n =50r/min旋转时,测得扭矩M =2.94×10-4 N·m。
第三、四章 流体动力学基础习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流?解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。
求流线方程并画出若干条流线。
解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。
z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。
解:(1)110 ()()22yx x y z u u a a a xy ωωω∂∂===-=+=∂∂有旋流动 xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形 (2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。
第三章流体动力学基础一、复习思考题二、习题1、选择题2、计算题一、复习思考题1.比较拉格朗日法和欧拉法,两种方法及其数学表达式有何不同?2.什么是流线?流线有哪些重要性质,流线和迹线有无重合的情况?3.总流连续性方程的物理意义是什么?4.何谓均匀流及非均匀流?以上分类与过流断面上流速分布是否均匀有无关系?5.何谓渐变流,渐变哪些有哪些重要性质?引入渐变流概念,对研究流体运动有什么实际意义?6.动能校正系数及动量校正系数的物理意义是什么?7.说明总流伯努力利方程各项的物理意义和几何意义。
8.应用总流伯努力利方程解题时,在所取过流断面上,不同点单位重量液体具有的机械能是否相等?9.结合公式的推导,说明总流伯努力利方程的适用条件。
10.结合公式推导,说明总流动量方程适用条件。
二、习题1、选择题3-1 恒定流是:(a)流动随时间按一定规律变化;(b)流场中任意空间点的运动要素不随时间变化;(c)各过流断面的流速分布不同;(d)各过流断面的压强相同。
3-2 非恒定流是:(a)əu/ət=0;(b)əu/ət≠0;(c)əu/əS=0;(d)əu/əS≠0。
3-3 一元运动是:(a)均匀流;(b)速度分布按直线变化;(c)运动参数是一个空间坐标和时间变量的函数;(d)限于直线运动。
3-4 均匀流是:(a)当地加速度为零;(b)迁移加速度为零;(c)向心加速度为零;(d)合加速度为零。
3-5 变直径管的直径d1=320mm,d2=160mm,流速v1=1.5m/s,v2为:(a)3 m/s;(b)4 m/s;(c)6m/s;(d)9 m/s。
3-6 一等直径水管,A-A为过流断面,B-B为水平面,1、2、3、4为面上各点,各点的运动物理量有以下关系:(a)p1=p2;(b)p3= p4;(c)z1+(p1/ρg)= z2+(p2/ρg);(d)z3+(p3/ρg)= z4+(p4/ρg)。
3-7 伯努利方程中z+(p/ρg)+(αv2/2g)表示:(a)单位重量流体具有的机械能;(b)单位质量流体具有的机械能;(c)单位体积流体具有的机械能;(d)通过过流断面流体的总机械能。
第三章流体运动学与动力学基础主要内容●基本概念●欧拉运动微分方程●连续性方程——质量守恒*●伯努利方程——能量守恒** 重点●动量方程——动量守恒** 难点●方程的应用第一节研究流体运动的两种方法●流体质点:物理点。
是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。
●空间点:几何点,表示空间位置。
流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。
拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。
一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。
2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。
3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t)z = z(a,b,c,t)4、适用情况:流体的振动和波动问题。
5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。
缺点:不便于研究整个流场的特性。
二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。
2、欧拉变数:空间坐标(x,y,z)称为欧拉变数。
3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。
位置:x = x(x,y,z,t)y = y(x,y,z,t)z = z(x,y,z,t)速度:u x=u x(x,y,z,t)u y=u y(x,y,z,t)u z=u z(x,y,z,t)同理:p=p(x,y,z,t),ρ=ρ(x,y,z,t)说明: x 、y 、z 也是时间t 的函数。
第一章:绪论例1-1 200 ºC体积为的2.5m3水,当温度升至800ºC时,其体积增加多少?解: 200 ºC时:ρ1=998.23kg/m3 800CºC时:ρ2=971.83kg/m3即:则:例1-2使水的体积减小0.1%及1%时,应增大压强各为多少?(K=2000MPa)d V/V =-0.1%=-2000×106×(-0.1%)=2×106Pa=2.0MPad V /V = -1%= -2000×106×(-1%)=20 MPa例1-3输水管l=200m,直径d=400mm,作水压试验。
使管中压强达到55at后停止加压,经历1小时,管中压强降到50at。
如不计管道变形,问在上述情况下,经管道漏缝流出的水量平均每秒是多少?水的体积压缩率κ =4.83×10-10m2 /N 。
解水经管道漏缝泄出后,管中压强下降,于是水体膨胀,其膨胀的水体积水体膨胀量5.95 l 即为经管道漏缝流出的水量,这是在1小时内流出的。
设经管道漏缝平均每秒流出的水体积以Q 表示,则例1-4:试绘制平板间液体的流速分布图与切应力分布图。
设平板间的液体流动为层流,且流速按直线分布,如图1-3所示。
解:设液层分界面上的流速为u,则:切应力分布:图1-3上层下层:在液层分界面上:--流速分布:上层:下层:例1-5:一底面积为40 ×45cm2,高为1cm的木块,质量为5kg,沿着涂有润滑油的斜面向下作等速运动,如图1-4所示,已知木块运动速度u =1m/s,油层厚度d =1mm,由木块所带动的油层的运动速度呈直线分布,求油的粘度。
解:∵等速∴αs =0由牛顿定律:∑F s=mαs=0m gsinθ-τ·A=0(呈直线分布)图1-4∵ θ=tan-1(5/12)=22.62°例1-6: 直径10cm的圆盘,由轴带动在一平台上旋转,圆盘与平台间充有厚度δ=1.5mm的油膜相隔,当圆盘以n =50r/min旋转时,测得扭矩M =2.94×10-4 N·m。
第三章 流体运动学及动力学基础练习题一、 单项选择题1. 定常流动中,流体质点的加速度等于( )A .等于零 B. 等于常量 C 随时间变化而变化 D 与时间无关2. 一维流动的连续性方程C VA =成立的必要条件是( )A 理想流体B 黏性流体C 可压缩流体D 不可压缩流体3. 均匀流是( )A 当地加速度为零B 迁移加速度为零C 向心加速度为零D 合加速度为零4. 均匀流过流断面上各点的( )等于常数A. PB. g p z ρ+C. g V g p 22+ρ D gV g p z 22++ρ 5. 用欧拉法研究流体运动时,流体质点的加速度a=( )A. 22dtr d B. t ∂∂U C )u u.∇( D )u u.U ∇+∂∂(t 6. 控制体是指相对于某个坐标系来说( )A 由确定的流体质点所组成的流体团B 有流体流过的固定不变的任何体积C 其形状、位置随时间变化的任何体积D 其形状不变而位置随时间变化的任何体积7. 恒定总流的连续方程、伯努利方程、动量方程中的流速为( )A 断面平均流速B 断面上的最大流速C 断面形心处的流速D 断面上压力中心处的流速8. 关于水流流向的正确说法是( )A 水一定是从高处往低处流B 水一定是从流速大处往流速小处流C 水一定是从机械能大处往机械能小处流D 水一定是从测压管水头高处往测压管水头低处流9. 非恒定流动中,流线与迹线( )A 一定重合B 一定不重合C 特殊情况下可能重合D 一定正交10. 在应用恒定总流的动量方程∑-=)(1122v v q F v ββρ解体时,∑F 中不应该包括( )A 重力B 压力C 阻力D 惯性力二 、思考题1. “均匀流和渐变流必为恒定流,急变流必为非恒定流”,这种说法对否?为什么?2. 在河道中,为什么自由航行的船只总是向水流较急的一侧河岸靠拢?三.计算题1.2.3.4.。