高考物理专题物理方法知识点分类汇编附解析
- 格式:doc
- 大小:546.00 KB
- 文档页数:19
高考物理总知识点归纳总结在高考物理中,总结和归纳各个知识点非常重要。
下面是对高考物理主要知识点的归纳总结,以供参考。
一、力学篇1. 运动和力- 运动的描述和描写- 牛顿第一定律- 牛顿第二定律- 牛顿第三定律- 万有引力定律2. 力的合成与分解- 力的合成- 力的分解- 平衡条件3. 平抛运动- 平抛运动的基本概念- 平抛运动的轨迹方程- 平抛运动的相关公式4. 物体的运动规律 - 匀速直线运动 - 匀变速直线运动5. 动能和动能定理 - 动能的定义- 动能定理- 动能与功的关系6. 力的功和功率- 功的概念- 功的计算方法 - 功率的概念- 功率的计算方法7. 力和运动的应用 - 简单机械原理 - 斜面运动- 吊球运动二、热学篇1. 温度和热量- 温度和温标- 热平衡和温度计- 热量的传递2. 物质的内能和热力学第一定律- 定义和计算- 内能和热量的关系- 热力学第一定律的表达式和应用3. 热量传递- 热传导- 热对流- 热辐射4. 理想气体状态方程- 理想气体的性质和状态方程- 摩尔气体的状态方程- 理想气体的内能变化5. 热力学第二定律及熵增原理- 热力学第二定律的表述 - 热机的热效率- 熵增原理及其应用6. 热力学循环- 热力学循环的基本概念 - 卡诺循环- 热泵和制冷机三、光学篇1. 光现象的基本规律- 光传播的直线性- 光的反射和折射- 光的干涉和衍射2. 光的成像- 薄透镜成像规律- 物镜和目镜成像规律- 显微镜和望远镜成像规律3. 几何光学- 球面反射和折射定律- 薄透镜成像公式- 镜面成像和透镜成像的应用4. 光波的特性和光的粒子性- 光的波动性质- 光的粒子性质5. 光的干涉和衍射- 干涉的基本概念和条件- 杨氏实验和干涉条纹- 衍射的基本概念和条件- 衍射的应用四、电磁篇1. 电场和电势- 电场强度和电场线- 电势的概念和电势差- 等势面和电场力线2. 电容- 电容和电容器的基本概念 - 并联和串联电容器- 电容的充放电过程3. 电流和电阻- 电流强度和电流的方向 - 电阻和电阻器- 电阻与电路的基本关系4. 简单电路和恒定电流- 并联和串联电路- 恒定电流和欧姆定律- 电功和功率的计算5. 磁场和磁性材料- 磁场的产生和性质- 磁感强度和磁场强度- 磁性材料的分类和特性6. 电磁感应- 磁场对电流的影响- 法拉第电磁感应定律- 自感和互感总结:以上总结了高考物理的主要知识点,包括力学、热学、光学和电磁等篇章。
高考物理题型知识点归纳总结大全物理是高中阶段的一门重要科目,也是高考中的一项必考科目。
在高考物理考试中,各种不同类型的题目都可能出现。
为了帮助考生更好地备考,本文将对高考物理题型的知识点进行全面归纳总结,以便考生能够更好地掌握各个题型的解题技巧和注意事项。
一、选择题选择题是高考物理考试中常见的题型之一,主要测试考生对基本物理概念和常识的掌握情况。
下面是高考物理选择题的主要知识点归纳总结:1. 力学知识点:1.1 牛顿运动定律:包括一、二、三定律的内容和应用。
1.2 动能和功:对动能和功的概念理解,以及两者之间的关系。
1.3 机械能守恒定律:机械能守恒定律的表述和应用。
1.4 质点系的平衡:质点系平衡的条件和相关问题的解决思路。
2. 热学知识点:2.1 热力学第一定律:热力学第一定律的表述和应用。
2.2 热传导和传热:关于热传导和传热的基本概念和计算方法。
3. 光学知识点:3.1 光的折射和反射:光的折射和反射规律的应用,特别是空气和介质之间的折射问题。
3.2 光的波动性和粒子性:光的波动性和粒子性的基本概念和相互转化关系。
二、计算题计算题是高考物理考试中的重点和难点,需要考生对所学的物理理论进行深入理解,并能够熟练运用相关公式进行计算。
下面是高考物理计算题的主要知识点归纳总结:1. 力学计算题:1.1 牛顿定律:对质点所受合力进行分析,运用牛顿定律进行计算。
1.2 动能、功和机械能守恒:利用动能和功的关系以及机械能守恒定律进行计算。
1.3 重力和弹力:关于重力和弹力的计算问题。
2. 热学计算题:2.1 热力学第一定律:对热力学第一定律的应用进行计算。
2.2 热传导和传热:关于热传导和传热的计算问题。
3. 光学计算题:3.1 光的折射和反射:对光的折射和反射问题进行计算。
3.2 光的波动性和粒子性:对光的波动性和粒子性的计算问题。
三、解答题解答题是高考物理考试中的较为综合性和应用性的题型,主要测试考生对物理知识的深入理解和能力的综合运用。
高考物理考点全面归纳,分类解析高考物理考点全面归纳,分类解析一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因.力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过力的传递作用在研究对象上.(2)按性质力的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把效果力与性质力混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F1和F2)合力大小F的取值范围为:|F1-F2|≤F≤F1+F2.(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.(3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy=0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
高考物理物理方法知识点分类汇编及答案一、选择题1.如图所示,质量为M的斜面A置于粗糙水平地面上,动摩擦因数为μ,物体B与斜面间无摩擦.在水平向左的推力F作用下,A与B一起做匀加速直线运动,两者无相对滑动.已知斜面的倾角为θ,物体B的质量为m,则它们的加速度a及推力F的大小为()A.a=g sin θ,F=(M+m)g(μ+sin θ)B.a=g cos θ,F=(M+m)g cos θC.a=g tan θ,F=(M+m)g(μ+tan θ)D.a=g cot θ,F=μ(M+m)g2.如图所示,质量为M、半径为R的半球形匀质物体A放在水平地面上,通过最高点处的钉子用水平细线拉住一质量为m、半径为r的光滑匀质球B,则A.A对地面的摩擦力方向向左B.B对A的压力大小为R rmg RC.B对A的压力大小为mgD.细线对小球的拉力大小为r mg R3.如图所示,粗糙程度均匀的绝缘空心斜面ABC放置在水平面上,∠CAB=30°,斜面内部O点(与斜面无任何连接)固定有一正点电荷,一带负电的小物体(可视为质点)可以分别静止在M、N、MN的中点P上,OM=ON,OM∥AB,则下列判断正确的是()A.小物体分别在三处静止时所受力的个数一定都是4个B.小物体静止在P点时受到的支持力最大,静止在M、N点时受到的支持力相等C.小物体静止在P点时受到的摩擦力最大D.当小物体静止在N点时,地面给斜面的摩擦力为零4.在物理学的重大发现中科学家们创造出了许多物理学方法,如理想实验法、控制变量法、极限思想法、类比法和科学假说法、建立物理模型法等等.以下关于所用物理学研究方法的叙述不正确的是A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法B.根据速度定义式x vt∆=∆,当⊿t非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思想法C.引入重心﹑合力与分力的概念时运用了等效替代法D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法5.如图所示,质量为M的直角劈B放在水平面上,在劈的斜面上放一质量为m的物体A,用一沿斜面向上的力F作用于A上,使其沿斜面匀速上滑,在A上滑的过程中直角劈B 相对地面始终静止,则关于地面对劈的摩擦力F f及支持力F N,下列说法正确的是()A.F f向右,F N<Mg+mg B.F f向左,F N<Mg+mgC.F f=0,F N=Mg+mg D.F f向左,F N=Mg+mg6.物块A、B的质量分别为m和2m,用轻弹簧连接后放在光滑的水平面上,对B施加向右的水平拉力F,稳定后A、B相对静止在水平面上运动,此时弹簧长度为l1;若撤去拉力F,换成大小仍为F的水平推力向右推A,稳定后A、B相对静止在水平面上运动,弹簧长度为l2,则下列判断正确的是()A.弹簧的原长为122I I+B.两种情况下稳定时弹簧的形变量相等C.两种情况下稳定时两物块的加速度不相等D.弹簧的劲度系数为12FI I-7.如图所示,三个形状不规则的石块a、b、c在水平桌面上成功地叠放在一起静止不动,下列说法正确的是()A.c与水平桌面间的动摩擦因数μ=0B.c对b的作用力一定竖直向上C.b对a的支持力是由于a物体发生形变产生的D.a对b的压力就是a物体的重力8.如图所示,质量为m的物体A放在倾角为θ=37°的斜面上时,恰好能匀速下滑,现用细线系住物体A ,并平行于斜面向上绕过光滑的定滑轮,另一端系住物体B ,物体A 恰好能沿斜面匀速上滑,(g 取10m/s 2,sin37°=0.6,cos37°=0.8)则( )A .μ=0.65B .μ=0.5C .m B =1.2mD .m B =1.6m9.如图所示,MON 是固定的光滑绝缘直角杆,MO 沿水平方向,NO 沿竖直方向,A 、B 为两个套在此杆上的带有同种电荷的小球.用一指向竖直杆的力F 作用在A 球,使两球均处于静止状态,现将A 球沿水平方向向右缓慢拉动一小段距离后,A 、B 两小球可以重新平衡.则后一种平衡状态与前一种平衡状态相比较,下列判断正确的是A .A 、B 两小球间的库仑力变大,A 球对MO 杆的压力变大B .A 、B 两小球间的库仑力变小,A 球对MO 杆的压力变小C .A 、B 两小球间的库仑力变小,A 球对MO 杆的压力不变D .A 、B 两小球间的库仑力变大,A 球对MO 杆的压力不变.10.如图所示,三个物块A 、B 、C 叠放在斜面上,用方向与斜面平行的拉力F 作用在B 上,使三个物块一起沿斜面向上做匀速运动.设物块C 对A 的摩擦力为A f ,对B 的摩擦力为B f ,下列说法正确的是( )A .如果斜面光滑, A f 与B f 方向相同,且A B f f >B .如果斜面光滑, A f 与B f 方向相反,且A B f f >C .如果斜面粗糙, A f 与B f 方向相同,且A B f f >D .如果斜面粗糙, A f 与B f 方向相反,且A B f f <11.关于物理学思想方法,下列叙述不正确...的是( ) A .演示微小形变时,运用了放大法B .将物体看成质点,运用了理想模型法C .将很短时间内的平均速度看成瞬时速度,运用了等效替代法D .探究弹性势能表达式用F-L 图象下梯形的面积代表功,运用了微元法12.在物理学的重大发现中科学家们创造出了许多物理学方法和思路,以下关于所用研究方法或思路的叙述正确的是( )A .在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法B.根据速度定义式xvt∆=∆,当△t非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思想方法C.伽利略对落体问题的研究思路是:问题→猜想→实验验证→数学推理→合理外推→得出结论D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了类比法13.关于物理学的研究方法,下列说法中不正确的是()A.伽利略开创了运用逻辑推理和实验相结合进行科学研究的方法B.卡文迪许在利用扭秤实验装置测量引力常量时,应用了放大法C.由牛顿运动定律可知加速度Fam=,该公式体现了比值定义法D.“总电阻”“交流电的有效值”等用的是等效替代的方法14.用控制变量法,可以研究影响电荷间相互作用力的因素,如图所示, O是一个带电的物体,若把系在丝线上的带电小球先后挂在横杆上的P1,P2,P3等位置,可以比较小球在不同位置所受带电物体的作用力的大小,这个力的大小可以通过丝线偏离竖直方向的角度θ显示出来。
高考物理知识点归类总结
一、运动学
1. 运动的基本概念
2. 运动的描述
3. 牛顿运动定律
4. 运动的快慢、远近和大小
5. 匀速直线运动
6. 斜抛运动
7. 圆周运动
8. 相对运动
二、力学
1. 力的基本概念
2. 牛顿第一定律
3. 牛顿第二定律
4. 牛顿第三定律
5. 动量定理和冲量定理
6. 地球上的重力和万有引力定律
7. 弹性碰撞和完全非弹性碰撞
三、热学
1. 温度和热量
2. 热传递方式
3. 热力学第一定律和第二定律
4. 理想气体状态方程
四、机械振动
1. 单摆运动
2. 简谐振动
3. 机械波的传播和特性
五、光学
1. 光的本质和光的传播
2. 光的反射和折射
3. 光的干涉和衍射
4. 光的偏振和电磁波理论
六、电学
1. 电荷和电场
2. 静电场和电势差
3. 电容和电容器
4. 电流和电阻
5. 欧姆定律和基尔霍夫定律
6. 磁场的概念和磁场的作用力
7. 电磁感应和电磁感应定律
8. 交流电和变压器
以上是高考物理知识点的分类总结,如果能够熟记这些知识点并能够灵活应用,相信你在高考中的物理成绩一定能够取得不错的成绩。
高考物理复习资料汇编资料目录高考物理知识及解题模型概要警记:固步自封是进步的最大障碍,欢迎同行交流教学学好物理要记住:最基本的知识、方法才是最重要的;学好物理重在理解概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件 最基础的概念、公式、定理、定律 最重要 每一题弄清楚对象、条件、状态、过程是解题关健力的种类:13个性质力 说明:凡矢量式中用“+”号都为合成符号 “受力分析的基础”重力: G = mg 弹力:F= Kx 滑动摩擦力:F滑= N静摩擦力: O f 静f m浮力: F浮= gV 排压力: F= PS = ghs万有引力: F引=G221r m m 电场力: F 电=q E =q d u库仑力: F=K 221r q q 真空中、点电荷磁场力:1、安培力:磁场对电流的作用力; 公式: F= BIL BI 方向:左手定则2、洛仑兹力:磁场对运动电荷的作用力;公式: f=BqV BV 方向:左手定则分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快;核力:只有相邻的核子之间才有核力,是一种短程强力;运动分类:各种运动产生的力学和运动学条件、及运动规律重点难点高考中常出现多种运动形式的组合 匀速直线运动 F合=0 V 0≠0 静止匀变速直线运动:初速为零,初速不为零,匀变速直曲线运动决于F 合与V 0的方向关系 但 F 合= 恒力只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等 圆周运动:竖直平面内的圆周运动最低点和最高点; 匀速圆周运动是什么力提供作向心力简谐运动;单摆运动; 波动及共振;分子热运动; 类平抛运动;带电粒子在f 洛作用下的匀速圆周运动物理解题的依据:力的公式 各物理量的定义 各种运动规律的公式 物理中的定理定律及数学几何关系θCOS F F F F 2122212F ++= F 1-F 2 F ∣F 1 +F 2∣、三力平衡:F 3=F 1 +F 2非平行的三个力作用于物体而平衡,则这三个力一定共点,按比例可平移为一个封闭的矢量三角形 多个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力的合力一定等值反向匀变速直线运动:基本规律: V t = V 0 + a t S = v o t +12a t 2几个重要推论: 1 推论:V t2-V 02 = 2as 匀加速直线运动:a 为正值 匀减速直线运动:a 为正值2 A B 段中间时刻的即时速度:3 AB 段位移中点的即时速度:V t/ 2 =V =V V t 02+=s t =T S S NN 21++= V N V s/2 = v v o t 222+4 S 第t 秒 = S t -S t-1= v o t +12 a t 2 -v o t -1 +12 a t -12= V 0 + a t -125 初速为零的匀加速直线运动规律①在1s 末 、2s 末、3s 末……ns 末的速度比为1:2:3……n ; ②在1s 、2s 、3s ……ns 内的位移之比为12:22:32……n 2;③在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为1:3:5……2n-1; ④从静止开始通过连续相等位移所用时间之比为1:()21-:32-)……n n --1)⑤通过连续相等位移末速度比为1:2:3……n6 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.7 通过打点计时器在纸带上打点或照像法记录在底片上来研究物体的运动规律初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数;匀变速直线运动的物体 中时刻的即时速度等于这段的平均速度⑴是判断物体是否作匀变速直线运动的方法;s = aT 2⑵求的方法 V N =V =s t =T S S NN 21++ 2Ts s t s 2v v v v n 1n t 0t/2+==+==+平⑶求a 方法 ① s = a T2②3+N S 一N S =3 a T 2 ③ S m 一S n = m-n a T 2 m.>n④画出图线根据各计数点的速度,图线的斜率等于a ; 识图方法:一轴、二线、三斜率、四面积、五截距、六交点研究匀变速直线运动实验:右图为打点计时器打下的纸带;选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O ,然后每5个点取一个计数点A 、B 、C 、D …;测出相邻计数点间的距离s 1、s 2、s 3 … 利用打下的纸带可以: ⑴求任一计数点对应的即时速度v :如Tss v c 232+=其中T =5×=⑵利用“逐差法”求a :()()23216549T s s s s s s a ++-++=⑶利用上图中任意相邻的两段位移求a :如223Ts s a -=⑷利用v -t 图象求a :求出A 、B 、C 、D 、E 、F 各点的即时速度,画出v-t 图线,图线的斜率就是加速度a ; 注意:a 纸带的记录方式,相邻记数间的距离还是各点距第一个记数点的距离;b 时间间隔与选计数点的方式有关50Hz,打点周期,常以打点的5个间隔作为一个记时单位c 注意单位,打点计时器打的点和人为选取的计数点的区别竖直上抛运动:速度和时间的对称上升过程匀减速直线运动,下落过程匀加速直线运动.全过程是初速度为V 0加速度为g 的匀减速直线运动;1上升最大高度:H = V g o 22 2上升的时间:t= V g o 3从抛出到落回原位置的时间:t = 2Vgo4上升、下落经过同一位置时的加速度相同,而速度等值反向t/s5上升、下落经过同一段位移的时间相等; 6 适用全过程S = V o t -12g t 2 ; V t = V o -g t ; V t 2-V o 2= -2gS S 、V t的正、负号的理解 几个典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动牛二:F合= m a 理解:1矢量性 2瞬时性 3独立性 4同体性 5同系性 6同单位制万有引力及应用:与牛二及运动学公式1思路:卫星或天体的运动看成匀速圆周运动, F心=F 万 类似原子模型2方法:F 引=G 2rMm = F 心= m a 心= m ωm R v =2 2 R= m 422πT R =m42πn 2R 地面附近:G2RMm = mg ⇒GM=gR 2黄金代换式 轨道上正常转:G 2rMm= m R v 2 ⇒ rGMv =讨论v 或E K与r 关系,r 最小时为地球半径,v 第一宇宙=s 最大的运行速度、最小的发射速度;T 最小==G 2r Mm =m 2ωr = m r T 224π ⇒ M=2324GT r π ⇒ T 2=2324gR r π⇒ 2T 3G πρ=M=ρV 球=ρπ34r 3 s 球面=4πr 2 s=πr 2光的垂直有效面接收,球体推进辐射 s 球冠=2πRh3理解近地卫星:来历、意义 万有引力≈重力=向心力、 r 最小时为地球半径、 最大的运行速度=v第一宇宙=s 最小的发射速度;T 最小==4同步卫星几个一定:三颗可实现全球通讯南北极有盲区轨道为赤道平面 T=24h=86400s 离地高h=x104km 为地球半径的倍 V=s ﹤V 第一宇宙=s =15o/h 地理上时区 a =s 25运行速度与发射速度的区别 6卫星的能量:r 增⇒v 减小E K 减小<E p 增加,所以 E 总增加;需克服引力做功越多,地面上需要的发射速度越大应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径x103km 表面重力加速度g= m/s 2月球公转周期30天典型物理模型:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组;解决这类问题的基本方法是整体法和隔离法;整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体考虑分受力情况,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用如求相互间的压力或相互间的摩擦力等时,把某物体从连接体中隔离出来进行分析的方法;两木块的相互作用力N=212112m m F m F m ++讨论:①F 1≠0;F 2=0N=F m m m 212+ 与运动方向和接触面是否光滑无关保持相对静止② F 1≠0;F 2=0 N=212112m m F m F m ++F=211221m m g)(m m g)(m m ++F 1>F 2 m 1>m 2 N 1<N 2为什么N 5对6=F Mmm 为第6个以后的质量 第12对13的作用力 N 12对13=F nm12)m-(n水流星模型竖直平面内的圆周运动竖直平面内的圆周运动是典型的变速圆周运动研究物体通过最高点和最低点的情况,并且经常出现临界状态;圆周运动实例①火车转弯 ②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力;④物体在水平面内的圆周运动汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转和物体在竖直平面内的圆周运动翻滚过山车、水流星、杂技节目中的飞车走壁等;⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、关健要搞清楚向心力怎样提供的1火车转弯:设火车弯道处内外轨高度差为h,内外轨间距L,转弯半径R;由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力;①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=mv 2/R ③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=mv 2/R 即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道;2无支承的小球,在竖直平面内作圆周运动过最高点情况:①临界条件:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力为向心力,恰能通过最高点;即mg=mv 临2/R结论:绳子和轨道对小球没有力的作用可理解为恰好转过或恰好转不过的速度,只有重力作向心力,临界速度V 临=gR②能过最高点条件:V ≥V 临当V ≥V 临时,绳、轨道对球分别产生拉力、压力 ③不能过最高点条件:V<V 临实际上球还未到最高点就脱离了轨道 最高点状态: mg+T 1=mv 高2/L 临界条件T 1=0, 临界速度V临=gR , V ≥V 临才能通过最低点状态: T 2- mg = mv 低2/L 高到低过程机械能守恒: 1/2mv 低2= 1/2mv 高2+ mghT 2- T 1=6mg g 可看为等效加速度半圆:mgR=1/2mv2T-mg=mv 2/R ⇒ T=3mg3有支承的小球,在竖直平面作圆周运动过最高点情况:①临界条件:杆和环对小球有支持力的作用知)(由RU m N mg 2=- 当V=0时,N=mg 可理解为小球恰好转过或恰好转不过最高点恰好过最高点时,此时从高到低过程 mg2R=1/2mv 2低点:T-mg=mv 2/R ⇒ T=5mg注意物理圆与几何圆的最高点、最低点的区别以上规律适用于物理圆,不过最高点,最低点, g 都应看成等效的2.解决匀速圆周运动问题的一般方法1明确研究对象,必要时将它从转动系统中隔离出来; 2找出物体圆周运动的轨道平面,从中找出圆心和半径; 3分析物体受力情况,千万别臆想出一个向心力来;4建立直角坐标系以指向圆心方向为x 轴正方向将力正交分解; 5⎪⎩⎪⎨⎧=∑===∑02222y x F R Tm R m R v mF )(建立方程组πω 3.离心运动在向心力公式F n =mv2/R 中,F n是物体所受合外力所能提供的向心力,mv 2/R 是物体作圆周运动所需要的向心力;当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动;其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心;斜面模型斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面μ< tg θ物体沿斜面加速下滑a=gsin θ一μcos θ 搞清物体对斜面压力为零的临界条件超重失重模型 系统的重心在竖直方向上有向上或向下的加速度或此方向的分量a y向上超重加速向上或减速向下;向下失重加速向下或减速上升 难点:一个物体的运动导致系统重心的运动1到2到3过程中 绳剪断后台称示数 13除外超重状态 系统重心向下加速 斜面对地面的压力 铁木球的运动地面对斜面摩擦力 用同体积的水去补充 导致系统重心如何运动轻绳、杆模型绳只能承受拉力,杆能承受沿杆方向的拉、压、横向及任意方向的力杆对球的作用力由运动情况决定只有θ=arctga/g 时才沿杆方向 最高点时杆对球的作用力最低点时的速度,杆的拉力换为绳时:先自由落体,在绳瞬间拉紧沿绳方向的速度消失有能量损失,再下摆机械能守恒假设单B 下摆,最低点的速度V B =R 2g ⇐mgR=221Bmv 整体下摆2mgR=mg 2R +'2B '2A mv 21mv 21+'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'BV 2V ==gR 256> V B=R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功若 V 0<gR ,运动情况为先平抛,绳拉直沿方向的速度消失即是有能量损失,绳拉紧后沿圆周下落;不能够整个过程用机械能守恒; 求水平初速及最低点时绳的拉力动量守恒:内容、守恒条件、不同的表达式及含义:列式形式:'p p=;0p =∆;21p -p ∆=∆实际中的应用:m 1v 1+m 2v 2='22'11v m v m +;0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=m 1+m 2v 共注意理解四性:系统性、矢量性、同时性、相对性解题步骤:选对象,划过程;受力分析;所选对象和过程符合什么规律用何种形式列方程;有时先要规定正方向求解并讨论结果; 碰撞模型:特点和注意点:①动量守恒;②碰后的动能不可能比碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度;m 1v 1+m 2v 2='22'11v m v m + 1 'K 2'K 1K 2k 12121E m 2E m 2E m 2E m 2+=+ '222'12221mv 21mv 21mv 21mv 21+=+ 2 2221212m P 2m P +=2'221'212m P 2m P +'1v =2112122m m )v m -(m v m 2++ '2v =2121211m m )v m -(m v m 2++一动一静的弹性正碰:即m 2v 2=0 ;222v m 21=0 代入1、2式 '1v =21121m m )v m -(m +主动球速度下限 '2v =2111m m v m 2+被碰球速度上限若m 1=m 2,则,交换速度; m 1>>m 2,则 ;m 1<<m 2,则一动一静:若v 2=0, m 1=m 2时, ; m 1>>m 2时, ;m 1<<m 2时, ;一动静的完全非弹性碰撞子弹打击木块模型重点 mv 0+0=m+M 'v 'v =Mm mv 0+主动球速度上限,被碰球速度下限 20mv 21='2M)v m (21++E 损 E 损=20mv 21一'2M)v (m 21+=M)2(m mMv 20+ 由上可讨论主动球、被碰球的速度取值范围21121m m )v m -(m +<v 主<M m mv 0+ Mm mv 0+<v 被<2111m m v m 2+讨论:①E 损 可用于克服相对运动时的摩擦力做功转化为内能E 损=fd 相=μmg ·d 相=20mv 21一'2M)v (m 21+=M)2(m mMv 2+⇒ d相=M)f2(m mMv 20+=M)g(m 2mMv 20+μ②也可转化为弹性势能; ③转化为电势能、电能发热等等人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从动量守恒mv=MV ms=MS s+S=d ⇒s=d Mm M+ M m L L m M =机械振动、机械波:基本的概念,简谐运动中的力学运动学条件及位移,回复力,振幅,周期,频率及在一次全振动过程中各物理量的变化规律; 单摆:等效摆长、等效的重力加速度 影响重力加速度有:①纬度,离地面高度②在不同星球上不同,与万有引力圆周运动规律或其它运动规律结合考查 ③系统的状态超、失重情况④所处的物理环境有关,有电磁场时的情况⑤静止于平衡位置时等于摆线张力与球质量的比值 注意等效单摆即是受力环境与单摆的情况相同 T=2πgL⇒g=22T L 4π 应用:T 1=2πgL OT 2=2πg L -L O ∆ ⇒22212T -T L4g ∆=π沿光滑弦cda 下滑时间t 1=t oa =gR2g R 2=沿ced 圆弧下滑t 2或弧中点下滑t 3: t 2=t 3=4T =g R 42π=gR 2π共振的现象、条件、防止和应用机械波:基本概念,形成条件、特点:传播的是振动形式和能量,介质的各质点只在平衡位置附近振动并不随波迁移;①各质点都作受迫振动,②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长波长的说法:①两个相邻的在振动过程中对平衡位置“位移”总相等的质点间的距离②一个周期内波传播的距离 ③两相邻的波峰或谷间的距离④过波上任意一个振动点作横轴平行线,该点与平行线和波的图象的第二个交点之间的距离为一个波长 波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别 波动与振动的区别:研究的对象:振动是一个点随时间的变化规律,波动是大量点在同一时刻的群体表现, 图象特点和意义 联系:波的传播方向⇔质点的振动方向同侧法、带动法、上下波法、平移法知波速和波形画经过∆t 后的波形特殊点画法和去整留零法波的几种特有现象:叠加、干涉、衍射、多普勒效应,知现象及产生条件热学 分子动理论:①物质由大量分子组成,直径数量级10-10m 埃A 10-9m 纳米nm ,单分子油膜法②永不停息做无规则的热运动,扩散、布朗运动是固体小颗粒的无规则运动它能反映出液体分子的运动③分子间存在相互作用力,注意:引力和斥力同时存在,都随距离的增大而减小,但斥力变化得快;分子力是指引力和斥力的合力;热点:由r 的变化讨论分子力、分子动能、分子势能的变化物体的内能:决定于物质的量、t 、v 注意:对于理想气体,认为没有势能,其内能只与温度有关,一切物体都有内能由微观分子动能和势能决定而机械能由宏观运动快慢和位置决定有惯性、固有频率、都能辐射红外线、都能对光发生衍射现象、对金属都具有极限频率、对任何运动物体都有波长与之对应德布罗意波长内能的改变方式:做功转化外对其做功E 增;热传递转移吸收热量E 增;注意符合法则 热量只能自发地从高温物体传到低温物体,低到高也可以,但要引起其它变化热的第二定律热力学第一定律ΔE =W+Q ⇔能的转化守恒定律⇔第一类永动机不可能制成. 热学第二定律⇔第二类永动机不能制成实质:涉及热现象自然界中的宏观过程都具方向性,是不可逆的①热传递方向表述: 不可能使热量由低温物体传递到高温物体,而不引起其它变化热传导具有方向性②机械能与内能转化表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化机械能与内能转化具有方向性;知第一、第二类永动机是怎样的机器热力学第三定律:热力学零度不可达到一定质量的理想气体状态方程:T PV=恒量 常与ΔE =W+Q 结合考查动量、功和能 重点是定理、定律的列式形式力的瞬时性F=ma 、时间积累I=Ft 、空间积累w=Fs力学:p=mv=KmE 2动量定理 I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律的守恒条件和列式形式:'p p =;0p =∆;21p -p ∆=∆E K =m 2p mv 2122= 求功的方法:力学:① W =Fscos α② W= P ·t ⇒p=t w =t FS=Fv③动能定理 W 合=W 1+ W 2+ --- +W n =ΔE K =E 末-E 初 W 可以不同的性质力做功 ④功是能量转化的量度易忽视 惯穿整个高中物理的主线重力功重力势能的变化 电场力功 分子力功 合外力的功动能的变化电学: W AB =qU AB =F 电d E =qEd E ⇒ 动能导致电势能改变 W =QU =UIt =I 2Rt =U 2t/R Q =I 2RtE=IR+r=u 外+u 内=u 外+Ir P 电源=uIt= +E 其它 P 电源=IE=I U +I 2Rt安培力功W =F 安d =BILd ⇒内能发热R V L B L R BLV B 22== 单个光子能量E =hf一束光能量E 总=NhfN 为光子数目 光电效应mV m 2/2=hf -W 0跃迁规律:h γ =E 末-E 初 辐射或吸收光子 ΔE =Δmc 2 注意换算单位:J ev=×10-19J 度=kw/h=×106J 1u=与势能相关的力做功特点:如重力,弹力,分子力,电场力它们 做功与路径无关,只与始末位置有关.机械能守恒条件:功角度只有重力,弹力做功;能角度只发生重力势能,弹性势能,动能的相互转化 机械能守恒定律列式形式:E 1=E 2先要确定零势面 P 减或增=E 增或减 E A 减或增=E B 增或减除重力和弹簧弹力做功外,其它力做功改变机械能滑动摩擦力和空气阻力做功W =fd 路程⇒E内能发热特别要注意各种能量间的相互转化物理的一般解题步骤:1审题:明确己知和侍求如:光滑,匀速,恰好,缓慢,距离最大或最小,有共同速度,弹性势能最大或最小等等 2选对象和划过程整体还是隔离,全过程还是分过程3选坐标,规定正方向.依据所选的对象在某种状态或划定的过程中有时可能要用到几何关系式. 5,最后结果是矢量要说明其方向.静电场:概念、规律特别多,注意理解及各规律的适用条件;电荷守恒定律,库仑定律三个自由点电荷的平衡问题:“三点共线,两同夹异,两大夹小”: 中间电荷量较小且靠近两边中电量较小的;313221q q q q q q =+只要有电荷存在周围就存在电场力的特性:电场中某位置场强:q F E =2rQ E = d U E = 某点电势ϕ描述电场能的特性:qW 0A →=ϕ相对零势点而言理解电场线概念、特点;常见电场的电场线分布要求熟记,特别是等量同种、异种电荷连线上及中垂线上的场强特点和规律能判断:电场力的方向⇒电场力做功⇒电势能的变化这些问题是基础两点间的电势差U 、U AB :有无下标的区别静电力做功U 是电能⇒其它形式的能 电动势E 是其它形式的能⇒电能Ed -qW U B A BA AB ===→ϕϕ与零势点选取无关 电场力功W=qu=qEd=F 电S E 与路径无关等势面线的特点,处于静电平衡导体是个等势体,其表面是个等势面,导体外表面附近的电场线垂直于导体表面距导体远近不同的等势面的特点,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;表面曲率大的地方等势面越密,E 越大,称为尖端放电静电感应,静电屏蔽电容器的两种情况分析始终与电源相连U 不变;当d 增⇒C 减⇒Q=CU 减⇒E=U/d 减 仅变s 时,E 不变; 充电后断电源q 不变:当d 增⇒c 减⇒u=q/c 增⇒E=u/d=s kq 4d q/c επ=不变sq面电荷密度仅变d 时,E 不变;带电粒子在电场中的运动: ① 加速 2mv 21qEd qu W ===加 m2qu v 加=②偏转类平抛平行E 方向:L=v o t竖直:2222222mv L qU 4dU LU t md qU 21t m qE 21t 21y 偏加偏偏=====a tg θ=加偏2dU L U V atV V 00==⊥速度:V x =V 0 V y =at o oy v gt v v tg ==β β为速度与水平方向夹角位移:S x = V 0 t S y =221atoo 221v 2gt tv gt tg ==α α为位移与水平方向的夹角③圆周运动④在周期性变化电场作用下的运动结论:①不论带电粒子的m 、q 如何,在同一电场中由静止加速后,再进入同一偏转电场,它们飞出时的侧移和偏转角是相同的即它们的运动轨迹相同②出场速度的反向延长线跟入射速度相交于O 点,粒子好象从中心点射出一样 即2Ltan y b==α 证:oo yv gtv v tg ==β oo 2v 2gtt v gt tg 21==α αβ2tg tg =αβ的含义恒定电流: I=t q 定义 I=nesv 微观 I=R u R=Iu 定义 R=S Lρ决定 W =QU =UIt =I 2Rt =U 2t/R Q =I 2Rt P =W/t =UI =U 2/R =I 2RE=IR+r=u 外+u 内=u 外+Ir P 电源=uIt= +E 其它 P 电源=IE=I U +I 2Rt单位:J ev=×10-19J 度=kw/h=×106J 1u=电路中串并联的特点和规律应相当熟悉路端电压随电流的变化图线中注意坐标原点是否都从零开始电路动态变化分析高考的热点各灯表的变化情况1程序法:局部变化⇒R 总⇒I 总⇒先讨论电路中不变部分如:r ⇒最后讨论变化部分局部变化↑↓⇒↓⇒↑⇒↑⇒露内总总U U I R R i ⇒再讨论其它2直观法:①任一个R 增必引起通过该电阻的电流减小,其两端电压U R 增加.本身电流、电压②任一个R 增必引起与之并联支路电流I 并增加; 与之串联支路电压U 串减小称串反并同法 当R=r 时,电源输出功率最大为P max =E 2/4r 而效率只有50%,电学实验专题测电动势和内阻1直接法:外电路断开时,用电压表测得的电压U 为电动势E U=E 2通用方法:AV 法测要考虑表本身的电阻,有内外接法;①单一组数据计算,误差较大②应该测出多组u,I 值,最后算出平均值③作图法处理数据,u,I 值列表,在u--I 图中描点,最后由u--I 图线求出较精确的E 和r;3特殊方法一即计算法:画出各种电路图r)(R I E r)(R I E 2211+=+==E 122121I -I )R -(R I I =r 122211I -I R I -R I 一个电流表和两个定值电阻r I u E r I u E 2211+=+==E 211221I -I u I -u I =r 2112I -I u -u 一个电流表及一个电压表和一个滑动变阻器r R u u E r R u u E 222111+=+=21122121R u -R u )R -(R u u E =21122121R u -R u R)R u -(u r =一个电压表和两个定值电阻二测电源电动势ε和内阻r 有甲、乙两种接法,如图甲法中所测得ε和r 都比真实值小,ε/r 测=ε测/r 真; 乙法中,ε测=ε真,且r 测= r+r A ;三电源电动势ε也可用两阻值不同的电压表A 、B 测定,单独使用A 表时,读数是U A ,单独使用B 表时,读数是U B ,用A 、B 两表测量时,读数是U, 则ε=U A U B /U A -U;电阻的测量AV 法测:要考虑表本身的电阻,有内外接法;多组u,I 值,列表由u--I 图线求;怎样用作图法处理数据 欧姆表测:测量原理两表笔短接后,调节R o 使电表指针满偏,得 I g =E/r+R g +R o接入被测电阻R x 后通过电表的电流为 I x =E/r+R g +R o +R x =E/R 中+R x 由于I x 与R x 对应,因此可指示被测电阻大小使用方法:机械调零、选择量程大到小、欧姆调零、测量读数时注意挡位即倍率、拨off 挡; 注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零; 电桥法测半偏法测表电阻 断s,调R 0使表满偏; 闭s,调R ’使表半偏.则R 表=R ’一、测量电路 内、外接法 记忆决调 “内”字里面有一个“大”字类型 电路图 R 测与R 真比较 条件计算比较法己知R v 、R A 及R x 大致值时内R 测=I U U AR +=R X +R A > R X 适于测大电阻R x >v A R R当R v 、R A 及R x 末知时,采用实验判断法:动端与a 接时I 1;u 1 ,I 有较大变化即121121I I -I u u -u <说明v 有较大电流通过,采用内接法动端与c 接时I 2;u 2 ,u 有较大变化即121121I I -I u u -u >说明A 有较强的分压作用,采用内接法 测量电路 内、外接法 选择方法有三 ①R x 与 R v 、R A 粗略比较② 计算比较法 R x 与v A R R 比较 ③当R v 、R A 及R x 末知时,采用实验判断法: 二、供电电路 限流式、调压式以“供电电路”来控制“测量电路”:采用以小控大的原则电路由测量电路和供电电路两部分组成,其组合以减小误差,调整处理数据两方便三、选实验试材仪表和电路,按题设实验要求组装电路,画出电路图,能把实物接成实验电路,精心按排操作步骤,过程中需要测物理量,结果表达式中各符号的含义.选量程的原则:测u I,指针超过1/2, 测电阻刻度应在中心附近.方法: 先画电路图,各元件的连接方式先串再并的连线顺序明确表的量程,画线连接各元件,铅笔先画,查实无误后,用钢笔填,先画主电路,正极开始按顺序以单线连接方式将主电路元件依次串联,后把并联无件并上.注意事项:表的量程选对,正负极不能接错;导线应接在接线柱上,且不能分叉;不能用铅笔画 用伏安法测小电珠的伏安特性曲线:测量电路用外接法,供电电路用调压供电;。
高考物理专题物理方法知识点分类汇编含解析一、选择题1.在物理学的探索和发现过程中,科学家们运用了许多研究方法.以下关于物理学研究方法的叙述中不正确的是()A.伽利略在研究自由落体运动时采用了微量放大法B.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是理想模型法C.根据速度定义式v=,当△t→0时,就可以表示物体在t时刻的瞬时速度,该定义运用了极限思维法D.在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了微元法2.在物理学的重大发现中科学家们创造出了许多物理学研究方法,如理想实验法、控制变量法、极限思维法、类比法和科学假说法、建立理想模型法、微元法等等.以下关于所用物理学研究方法的叙述不正确的是()A.牛顿用微元法提出了万有引力定律,并计算出了太阳和地球之间的引力B.根据速度定义式xvt∆=∆,当△t非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思维法C.将插有细长玻璃管的玻璃瓶内装满水.用力捏玻璃瓶,通过细管内液面高度的变化,来反映玻璃瓶发生形变,该实验采用了放大的思想D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法3.如图所示,倾角为θ的斜面体c置于水平地面上,小物块b置于斜面上,通过细绳跨过光滑的定滑轮与沙漏a连接,连接b的一段细绳与斜面平行。
在a中的沙子缓慢流出的过程中,a、b、c都处于静止状态,则()A.c对b的支持力减小B.c对b的摩擦力方向可能平行斜面向上C.地面对c的摩擦力方向向右D.地面对c的摩擦力增大4.在物理学的重大发现中科学家们创造出了许多物理学方法,如理想实验法、控制变量法、极限思想法、类比法和科学假说法、建立物理模型法等等.以下关于所用物理学研究方法的叙述不正确的是A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法B.根据速度定义式xvt∆=∆,当⊿t非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思想法C .引入重心﹑合力与分力的概念时运用了等效替代法D .在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法5.物块A 、B 的质量分别为m 和2m ,用轻弹簧连接后放在光滑的水平面上,对B 施加向右的水平拉力F ,稳定后A 、B 相对静止在水平面上运动,此时弹簧长度为l 1;若撤去拉力F ,换成大小仍为F 的水平推力向右推A ,稳定后A 、B 相对静止在水平面上运动,弹簧长度为l 2,则下列判断正确的是( )A .弹簧的原长为122I I + B .两种情况下稳定时弹簧的形变量相等C .两种情况下稳定时两物块的加速度不相等D .弹簧的劲度系数为12F I I - 6.质量为M 的光滑圆槽放在光滑水平面上,一水平恒力F 作用在其上促使质量为m 的小球静止在圆槽上,如图所示,则( )A .小球对圆槽的压力为B .小球对圆槽的压力为C .水平恒力F 变大后,如果小球仍静止在圆槽上,小球对圆槽的压力增加D .水平恒力F 变大后,如果小球仍静止在圆槽上,小球对圆槽的压力减小7.如图所示,质量为m 的木块A 放在质量为M 的三角形斜面B 上,现用大小均为F ,方向相反的水平力分别推A 和B ,它们均在地面上静止不动,则( )A .B 与地面之间可能存在摩擦力B .A 与B 之间可能存在摩擦力C .B 对A 的支持力一定大于mgD .B 对A 的支持力一定小于mg8.库仑通过实验研究电荷间的作用力与距离、电荷量的关系时,先保持电荷量不变,寻找作用力与电荷间距离的关系;再保持距离不变,寻找作用力与电荷量的关系.这种研究方法常被称为“控制变量法”.下列应用了控制变量法的实验是( )A .验证机械能守恒定律B .探究力的平行四边形定则C .探究加速度与力、质量的关系D .探究匀变速直线运动速度随时间的变化规律9.如图所示,已知M>m ,不计滑轮及绳子的质量,物体M 和m 恰好做匀速运动,若将M 与m 互换,M 、m 与桌面的动摩因数相同,则( )A .绳子中张力增大B .物体M 与m 仍做匀速运动C .物体M 与m 做加速运动,加速度a=(M-m )g/MD .物体M 与m 做加速运动,加速度a=(M+m )g/M10.如图所示,质量为m 的物体A 放在倾角为θ=37°的斜面上时,恰好能匀速下滑,现用细线系住物体A ,并平行于斜面向上绕过光滑的定滑轮,另一端系住物体B ,物体A 恰好能沿斜面匀速上滑,(g 取10m/s 2,sin37°=0.6,cos37°=0.8)则( )A .μ=0.65B .μ=0.5C .m B =1.2mD .m B =1.6m11.如图所示,三个物块A 、B 、C 叠放在斜面上,用方向与斜面平行的拉力F 作用在B 上,使三个物块一起沿斜面向上做匀速运动.设物块C 对A 的摩擦力为A f ,对B 的摩擦力为B f ,下列说法正确的是( )A .如果斜面光滑, A f 与B f 方向相同,且A B f f >B .如果斜面光滑, A f 与B f 方向相反,且A B f f >C .如果斜面粗糙, A f 与B f 方向相同,且A B f f >D .如果斜面粗糙, A f 与B f 方向相反,且A B f f <12.如图所示,重为G 的光滑球在倾角为θ的斜面和竖直墙壁之间处于静止状态.若将此斜面换成材料和质量相同,但倾角θ稍小一些的斜面,以下判断正确的是 ( )A.球对斜面的压力增大B.球对斜面的压力减小C.斜面可能向左滑动D.地面受到的压力变小13.从科学方法角度来说物理学中引入“质点”运用了()A.比值定义法B.理想实验法C.建立模型法D.控制变量法14.如图所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块,已知所有接触面都是光滑的.现发现a、b沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于()A.Mg+mgB.Mg+2mgC.Mg+mg(sinα+sinβ)D.Mg+mg(cosα+cosβ)15.如图,有A、B两个完全相同的小球并排放在倾角为30°的固定斜面上,B球被竖直挡板挡住,不计一切摩擦,则A、B之间的作用力与竖直挡板对B的作用力之比为()3333A16.关于物理学研究中使用的主要方法,以下说法中错误的是()A.用质点代替有质量的物体,应用的是模型法B.用实验探究加速度、力和质量三者之间的关系时,应用了控制变量法C.利用速度-时间图象推导匀变速直线运动的位移公式时,使用了微元法D.伽利略在利用理想实验探究力和运动的关系时,使用的是实验法17.理想实验是科学研究中的一种重要方法,是在想象中进行的实验,它把可靠事实和理性思维结合起来,可以深刻地揭示自然规律。
历年(2020-2023)全国高考物理真题分类(物理常识)汇编一、单选题1.(2023ꞏ辽宁ꞏ统考高考真题)安培通过实验研究,发现了电流之间相互作用力的规律。
若两段长度分别为1l ∆和2l ∆、电流大小分别为I 1和I ₂的平行直导线间距为r 时,相互作用力的大小可以表示为21221I I l l F k r ∆∆∆=。
比例系数k 的单位是( )A .kgꞏm/(s²ꞏA )B .kgꞏm/(s²ꞏA²)C .kgꞏm²/(s³ꞏA )D .kgꞏm²/(s³ꞏA³)2.(2023ꞏ浙江ꞏ高考真题)下列属于国际单位制中基本单位符号的是( )A .JB .KC .WD .Wb3.(2022ꞏ浙江ꞏ统考高考真题)下列属于力的单位是( )A .2kg m/s ⋅B .kg m/s ⋅C .2kg m /s ⋅D .2kg s/m ⋅4.(2021ꞏ海南ꞏ高考真题)公元前4世纪末,我国的《墨经》中提到“力,形之所以奋也”,意为力是使有形之物突进或加速运动的原因。
力的单位用国际单位制的基本单位符号来表示,正确的是( ) A .1kg m s -⋅⋅ B .2kg m s -⋅⋅ C .2Pa m ⋅ D .1J m -⋅5.(2021ꞏ天津ꞏ高考真题)科学研究方法对物理学的发展意义深远,实验法、归纳法、演绎法、类比法、理想实验法等对揭示物理现象的本质十分重要。
下列哪个成果是运用理想实验法得到的( )A .牛顿发现“万有引力定律”B .库仑发现“库仑定律”C .法拉第发现“电磁感应现象”D .伽利略发现“力不是维持物体运动的原因”6.(2021ꞏ河北ꞏ高考真题)普朗克常量346.62610J s h -=⨯⋅,光速为c ,电子质量为e m ,则e h m c在国际单位制下的单位是( ) A .J/s B .m C .J m ⋅ D .m/s7.(2020ꞏ浙江ꞏ高考真题)以下物理量为矢量,且单位是国际单位制基本单位的是( )A .电流、AB .位移、mC .功、JD .磁感应强度、T参考答案一、单选题1.(2023ꞏ辽宁ꞏ统考高考真题)安培通过实验研究,发现了电流之间相互作用力的规律。
物理高考重点知识点归纳总结物理作为一门自然科学学科,涉及广泛而又深奥的知识领域。
在高考物理考试中,掌握并理解重点知识点是取得优异成绩的关键。
本文将对物理高考的重点知识点进行归纳总结,为大家提供学习和复习的指导。
一、力学篇1. 力和运动- 力的合成与分解- 牛顿第一定律、第二定律和第三定律- 惯性系和非惯性系- 平抛运动和竖直上抛运动- 等速圆周运动和变速圆周运动2. 力的作用效果- 动能、功和功率- 机械能守恒定律- 势能与势能曲线- 机械能损失和机械能转化3. 物体在重力作用下的运动- 重力、重力加速度和重力势能- 垂直上抛运动的时间、高度和速度关系- 自由落体运动和竖直抛体运动的加速度关系 - 斜抛运动和斜体撞击- 空中作业运动和竖直运动合成4. 牛顿定律- 浮力和阿基米德原理- 物体受力分析和力的平衡- 摩擦力和静摩擦力、滑动摩擦力关系- 斜面问题和绳子问题的解析5. 圆周运动- 平抗运动与圆周运动的关系- 合成圆周运动- 旋转定律和角动量守恒定律二、热学篇1. 温度和热量- 热平衡和温度计- 热容量和比热容- 相变过程和热传导2. 热力学第一定律- 等温过程、绝热过程和等压过程- 等温变化、绝热变化和等压变化的图像表示 - 焓、熵和理想气体状态方程3. 热力学第二定律- 热机效率和热力学温度- 热力学循环和卡诺循环- 热力学第二定律的表述和应用4. 热辐射- 黑体辐射和黑体的概念- 热辐射的普朗克公式- 斯特藩-波尔兹曼定律和维恩位移定律三、电磁篇1. 电荷和电场- 电荷守恒和库伦定律- 张量关系和电场强度- 电场的叠加和电势能- 电介质和电容器2. 电流和电阻- 电流、电量和电流强度- 电阻、电阻系列和欧姆定律 - 导体的恒定电流和稳态- 电池和电源3. 磁场- 磁场的概念和磁感应强度 - 磁场的叠加和磁势能- 洛伦兹力和荷质比- 静磁场和磁感线4. 电磁感应- 法拉第电磁感应定律和电感 - 感应电动势和自感现象- 电动势和电源- 互感和电磁场能量四、光学篇1. 光的直线传播- 光的直线传播和光程- 光的偏振和光的干涉现象- 光的沿直线传播和折射定律2. 光的反射和折射- 光的反射和反射定律- 光的折射和折射定律- 光的全反射和光纤通信3. 光的波动性和光的粒子性- 惠更斯-菲涅耳原理和杨氏双缝干涉 - 光的衍射、干涉和衍射级数- 泊松公式和雷德格尔公式4. 光的偏振和光的干涉- 偏振现象和偏振光的产生- 偏振光的传播和光的偏振五、现代物理篇1. 原子核和放射性- 原子核的结构和核力- 电离辐射和放射性现象- 裂变和聚变反应2. 量子物理和粒子物理- 德布罗意假设和量子力学的基本概念- 测不准关系和波粒二象性- 粒子的衍射和干涉3. 光的粒子性和波粒二象性- 光的能量和光子能量- 光的光电效应和康普顿效应- 光的热效应和磁效应以上归纳总结的知识点是物理高考的重点内容,理解这些知识点并进行充分的练习是取得优异成绩的关键。
高考物理知识点总结一、力和物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k 为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μFN 进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上.(2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F1-F2|≤F≤F1+F2.(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.(3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx =0,∑Fy=0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
高考物理专题物理方法知识点分类汇编附解析一、选择题1.如图,有A、B两个完全相同的小球并排放在倾角为30°的固定斜面上,B球被竖直挡板挡住,不计一切摩擦,则A、B之间的作用力与竖直挡板对B的作用力之比为()A.32B.33C.34D.362.如图所示,重为G的光滑球在倾角为θ的斜面和竖直墙壁之间处于静止状态.若将此斜面换成材料和质量相同,但倾角θ稍小一些的斜面,以下判断正确的是 ()A.球对斜面的压力增大B.球对斜面的压力减小C.斜面可能向左滑动D.地面受到的压力变小3.在物理学的重大发现中科学家们创造出了许多物理学研究方法,如理想实验法、控制变量法、极限思维法、类比法和科学假说法、建立理想模型法、微元法等等.以下关于所用物理学研究方法的叙述不正确的是()A.牛顿用微元法提出了万有引力定律,并计算出了太阳和地球之间的引力B.根据速度定义式xvt∆=∆,当△t非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思维法C.将插有细长玻璃管的玻璃瓶内装满水.用力捏玻璃瓶,通过细管内液面高度的变化,来反映玻璃瓶发生形变,该实验采用了放大的思想D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法4.如图所示,竖直平面内放一直角杆MON,杆的水平部分粗糙,动摩擦因数μ=0.2,杆的竖直部分光滑.两部分各套有质量均为1 kg的小球A和B,A、B球间用细绳相连.初始A、B均处于静止状态,已知OA=3 m,OB=4 m,若A球在水平拉力的作用下向右缓慢地移动1 m(取g=10 m/s2),那么该过程中拉力F做功为()A.4 JB.10 JC.12 JD.14 J5.如图所示,三个重均为100N的物块,叠放在水平桌面上,各接触面水平,水平拉力F=20N作用在物块2上,三条轻质绳结于O点,水平绳与物块3连接,竖直绳悬挂重物B,倾斜绳通过定滑轮与物体A连接,已知倾斜绳与水平绳间的夹角为120o,A物体重40N,不计滑轮质量及摩擦,整个装置处于静止状态。
则物块3受力个数为()A.3个B.4个C.5个D.6个6.如图所示,倾角为θ的斜面体c置于水平地面上,小物块b置于斜面上,通过细绳跨过光滑的定滑轮与沙漏a连接,连接b的一段细绳与斜面平行。
在a中的沙子缓慢流出的过程中,a、b、c都处于静止状态,则()A.c对b的支持力减小B.c对b的摩擦力方向可能平行斜面向上C.地面对c的摩擦力方向向右D.地面对c的摩擦力增大7.如图所示,相互垂直的固定绝缘光滑挡板PO、QO竖直放置在重力场中,a、b为两个带有同种电荷的小球(可以近似看成点电荷),当用水平向左的作用力F作用于b时,a、b 紧靠挡板处于静止状态.现若稍改变F的大小,使b稍向左移动一段小距离,则当a、b重新处于静止状态后 ()A.a、b间电场力增大B.作用力F将减小C.地面对b的支持力变大D.地面对b的支持力变小8.如图所示,斜面体A静止在水平地面上,质量为m的物体B在外力F1和F2的共同作用下沿斜面体表面向下运动.当F1方向水平向右,F2方向沿斜面体的表面向下时,斜面体受到地面的摩擦力方向向左.则下列说法正确的是A.若同时撤去F1和F2,滑块B的加速度方向一定沿斜面向下B.若只撤去F1,在滑块B仍向下运动的过程中,A所受地面摩擦力的方向可能向右C.若只撤去F2,在滑块B仍向下运动的过程中,A所受地面摩擦力的方向可能向右D.若只撤去F2,在滑块B仍向下运动的过程中,A所受地面摩擦力不变9.如图所示,三个形状不规则的石块a、b、c在水平桌面上成功地叠放在一起静止不动,下列说法正确的是()A.c与水平桌面间的动摩擦因数μ=0B.c对b的作用力一定竖直向上C.b对a的支持力是由于a物体发生形变产生的D.a对b的压力就是a物体的重力10.如图所示,三个物块A、B、C叠放在斜面上,用方向与斜面平行的拉力F作用在B 上,使三个物块一起沿斜面向上做匀速运动.设物块C对A的摩擦力为A f,对B的摩擦力为B f,下列说法正确的是( )A .如果斜面光滑, A f 与B f 方向相同,且A B f f >B .如果斜面光滑, A f 与B f 方向相反,且A B f f >C .如果斜面粗糙, A f 与B f 方向相同,且A B f f >D .如果斜面粗糙, A f 与B f 方向相反,且A B f f <11.如图,弹簧秤外壳质量为m 0,弹簧及挂钩质量忽略不计,挂钩拖一重物质量为m ,现用一方向沿斜面向上的外力F 拉着弹簧秤,使其沿光滑的倾角为θ的斜面向上做匀加速直线运动,则弹簧秤读数为( )A .sin mg θB .00m F m m +C .0m F m m +D .0•sin m mg m mθ+ 12.如图,质量均为m 的两个铁块a 、b 放在水平桌面上,二者用张紧的轻质橡皮绳,通过光滑的定滑轮相连,系统都处于静止状态,若用水平外力将a 向左由P 缓慢移至M 处,b 未动;撤掉外力后仍都能保持静止,对a 、b 进行分析,正确的有( )A .铁块a 在P 、M 两点位置所受的摩擦力大小都等于b 受的摩擦力大小B .两者对桌面的压力一定都变大C .b 与地面间最大静摩擦力一直增大D .天花板对定滑轮作用力的方向竖直向上13.在物理学的重大发现中,科学家总结出了许多物理学方法,如理想实验法、控制变量法、极限思想法、建立物理模型法、等效替代法等。
以下关于物理学研究方法的叙述正确的是( )A .在探究加速度、力和质量三者之间的关系时,先保持质量不变研究加速度与力的关系,再保持力不变研究加速度与质量的关系,该探究运用了控制变量法B .根据速度的定义式,当Δt 非常小时,就可以表示物体在t 时刻的瞬时速度,该定义运用了建立物理模型法C.合力和分力的概念运用了极限法D.在不需要考虑物体本身的大小和形状时,用质点来代表物体的方法叫等效替代法14.向心力演示器如图所示.转动手柄1,可使变速塔轮2和3 以及长槽4和短槽5随之匀速转动.皮带分别套在塔轮2和3上的不同圆盘上,可使两个槽内的小球分别以几种不同的角速度做匀速圆周运动,小球做圆周运动的向心力由横臂6的挡板对小球的压力提供,球对挡板的反作用力,通过横臂的杠杆使弹簧测力套筒7下降,从而露出标尺8,标尺8上露出的红白相间等分格子的多少可以显示出两个球所受向心力的大小.现分别将小球放在两边的槽内,为探究小球受到的向心力大小..的关系,下列做法正确的是.....与半径A.皮带分别套在塔轮2和3大小不同的圆盘上,用质量不同的钢球做实验B.皮带分别套在塔轮2和3大小不同的圆盘上,用质量相同的钢球做实验C.皮带分别套在塔轮2和3大小相同的圆盘上,用质量不同的钢球做实验D.皮带分别套在塔轮2和3大小相同的圆盘上,用质量相同的钢球做实验15.如图所示,OA、OB是两根轻绳,AB是轻杆,它们构成一个正三角形。
在A、B处分别固定着质量均为m的小球,此装置悬挂在O点。
现对B处小球施加水平外力F,让绳OA位于竖直位置。
设此状态下OB绳中张力大小为T,已知当地重力加速度为g,则( )A.T=2mg B.T>2mgC.T<2mg D.三种情况皆有可能16.如图所示,在高度不同的两水平台阶上放有质量分别为m1、m2的两物体,物体间用轻弹簧相连,弹簧与竖直方向夹角为 .在m1左端施加水平拉力F,使m1、m2均处于静止状态,已知m1表面光滑,重力加速度为g,则下列说法正确的是A.弹簧可能处于原长状态m gB.弹簧弹力的大小为1cosC.地面对m2的摩擦力大小为FD.地面对m2的支持力可能为零17.小华同学通过以下步骤测出了从一定高度落下的排球对地面的冲击力:将一张白纸铺在水平地面上,把排球在水里弄湿,然后让排球从规定的高度自由落下,并在白纸上留下球的水印.再将印有水印的白纸铺在台秤上,将球放在纸上的水印中心,缓慢地向下压球,使排球与纸接触部分逐渐发生形变直至刚好遮住水印.记下此时台秤的示数即为冲击力的最大值.下列物理学习或研究中用到的方法与该同学的方法相同的是A.建立“点电荷”的概念B.建立“合力与分力”的概念C.建立“瞬时速度”的概念D.研究加速度与合力、质量的关系18.在物理学的重大发现中科学家们创造出了许多物理学方法,如理想实验法、控制变量法、极限思想法、类比法和科学假说法、建立物理模型法等等。
以下关于物理学家及其所用物理学研究方法的叙述不正确的是A.牛顿认为自由落体运动就是物体在倾角为90°的斜面上的运动,再根据铜球在斜面上的运动规律得出自由落体运动的规律,这是采用了实验和逻辑推理相结合的方法B.根据速度定义式xvt∆=∆,当t∆非常非常小时,xt∆∆就可以表示物体在t时刻的瞬时速度,该定义应用了极限思想方法C.在探究加速度、力和质量三者之间的关系时,先保持质量不变研究加速度与力的关系,再保持力不变研究加速度与质量的关系,该实验应用了控制变量法D.在推导匀变速运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,这里采用了微元法19.在探究“加速度与物体受力的关系”实验中,我们首先保持砝码质量不变研究小车质量和加速度的关系,再保持小车质量不变研究砝码和加速度的关系最终得到 F = ma ,从科学研究的方法来说,这属于( )A.等效替代B.控制变量C.科学假说D.数学归纳20.如图所示,有3000个质量均为m的小球,将它们用长度相等的轻绳依次连接,再将其左端用细绳固定在天花板上,右端施加一水平力使全部小球静止.若连接天花板的细绳与水平方向的夹角为37°.则第1218个小球与1219个小球之间的轻绳与水平方向的夹角α的正切值等于(sin37°=0.6,cos37°=0.8)A.17814000B.12194000C.6092000D.891200021.在物理学的重大发现中,科学家总结出了许多物理学方法,如理想实验法、控制变量法、极限思维法、类比法、科学假说法和建立物理模型法等,以下关于物理学研究方法的叙述正确的是()A.在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫假设法B.根据速度的定义式,当△t非常小时,就可以表示物体在t时刻的瞬时速度,该定义运用了控制变量法C.伽利略为了探究自由落体的规律,将落体实验转化为著名的“斜面实验”,这里运用了类比法D.在推导匀变速直线运动位移公式时,把整个运动过程等分成很多小段,每一小段近似看做匀速直线运动,然后把各小段的位移相加,这里运用了微元法22.在物理学的重大发现中科学家们创造出了许多物理学方法,如理想实验法、控制变量法、极限思想法、建立物理模型法、类比法和科学假说法等等。