证明 必要性.
设 P(x) Hn , 则 P(x)n1(x) H2n1,
(5.5)
8
因此,如果 x0 , x1,, xn 是高斯点,则求积公式(5.1)对于
f (x) P(x)精确n1成(x立) ,
即有
b
n
a P( x)n1( x) ( x)dx Ak P( xk )n1( xk ).
切比雪夫多项式的零点,即为
xk
cos
2k 1 2n 2
π
(k 0,1,,n)
(5.12)的系数
Ak
使π 用, 时将
n 1
个节n 点1公式改为
n
个节点,于是高斯-切比雪夫求积公式写成
1 f (x)
πn
1 1 x2 dx n k1 f (xk ),
xk
cos
(2k 1) 2n
π
(5.13)
22n3[(n 1)!]4 (2n 3)[(2n 2)!]3
f (2n2) ( )
当 n 时1,有
(1,1).
(5.10)
R1[ f
] 1 135
f
(4) ( ).
它比区间 [1上,1]辛普森公式的余项
R1[ f
] 1 90
f
(4) ( )
还小,且比辛普森公式少算一个函数值.
当积分区间不是 [,1而,1]是一般的区间 时[a,, b]
4.5.1 一般理论
求积公式
b
n
f (x)dx
a
Ak f ( xk )
k 0
含有 2n 个2待定参数 xk , Ak (k 0,1,, n).
当 为x等k 距节点时得到的插值求积公式其代数精度至少
为 次n.