二阶常系数非齐次线性微分方程
- 格式:ppt
- 大小:464.00 KB
- 文档页数:16
二阶常系数非齐次线性微分方程二阶常系数非齐次线性微分方程:方程y''+py'+qy=f(x)称为二阶常系数非齐次线性微分方程,其中p、q是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y=Y(x)与非齐次方程本身的一个特解y=y*(x)之和:y=Y(x)+ y*(x).当f(x)为两种特殊形式时,方程的特解的求法:一、f(x)=P m(x)eλx型当f(x)=P m(x)eλx时,可以猜想,方程的特解也应具有这种形式.因此,设特解形式为y*=Q(x)eλx,将其代入方程,得等式Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).(1)如果λ不是特征方程r2+pr+q=0 的根,则λ2+pλ+q≠0.要使上式成立,Q(x)应设为m 次多项式:Q m(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=Q m(x)eλx.(2)如果λ是特征方程r2+pr+q=0 的单根,则λ2+pλ+q=0,但2λ+p≠0,要使等式Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).成立,Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=xQ m(x)eλx.(3)如果λ是特征方程r2+pr+q=0的二重根,则λ2+pλ+q=0, 2λ+p=0,要使等式Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).成立,Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1+⋅⋅⋅+b m-1x+b m,通过比较等式两边同次项系数,可确定b0,b1,⋅⋅⋅,b m,并得所求特解y*=x2Q m(x)eλx.综上所述,我们有如下结论:如果f(x)=P m(x)eλx,则二阶常系数非齐次线性微分方程y''+py'+qy=f(x)有形如y*=x k Q m(x)eλx的特解,其中Q m(x)是与P m(x)同次的多项式,而k按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y ''-2y '-3y =3x +1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0).与所给方程对应的齐次方程为y ''-2y '-3y =0,它的特征方程为r 2-2r -3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得-3b 0x -2b 0-3b 1=3x +1,比较两端x 同次幂的系数, 得⎩⎨⎧=--=-13233100b b b , -3b 0=3, -2b 0-3b 1=1. 由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为 31*+-=x y .例2 求微分方程y ''-5y '+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2).与所给方程对应的齐次方程为y ''-5y '+6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为 y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得-2b 0x +2b 0-b 1=x .比较两端x 同次幂的系数, 得⎩⎨⎧=-=-0212100b b b , -2b 0=1, 2b 0-b 1=0.由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为 x e x x y 2)121(*--=. 从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=.提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]'=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]''=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *''-5y *'+6y *=[(b 0x 2+b 1x )e 2x ]''-5[(b 0x 2+b 1x )e 2x ]'+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x -5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)-5(2b 0x +b 1)]e 2x =[-2b 0x +2b 0-b 1]e 2x .方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ] ]2)(2)([ ie e x P e ex P e x i x i n x i x i l x ωωωωλ---++= x i n l x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-= x i x i e x P e x P )()()()(ωλωλ-++=, 其中)(21)(i P P x P n l -=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y ''+py '+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ''+py '+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程y ''+py '+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ-i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ''+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ''+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+-=. 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *'=a cos2x -2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(-2ax -2b +c )sin2x ,y *''=2c cos2x -2(2cx +a +2d )sin2x -2a sin2x +2(-2ax -2b +c )cos2x =(-4ax -4b +4c )cos2x +(-4cx -4a -4d )sin2x .y *''+ y *=(-3ax -3b +4c )cos2x +(-3cx -4a -3d )sin2x .由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a , 得31-=a , b =0, c =0, 94=d .。
二阶常系数非齐次线性微分方程解法及例题哎呀,这可是个难题啊!不过别着急,我们一起来解决这个问题吧。
今天,我们要学习的是如何解二阶常系数非齐次线性微分方程。
听起来好像很高深莫测的样子,其实呢,只要用点心,就能轻松搞定哦!我们来看一下这个题目的意思。
所谓二阶常系数非齐次线性微分方程,就是说这个方程有两个未知数,而且它们的系数都是常数,但是方程中包含的项并不是齐次的。
那么,我们应该怎么解这个方程呢?其实,解决这个问题的关键在于找到一个合适的方法。
我们知道,解微分方程的方法有很多种,比如分离变量法、变量替换法、特征线法等等。
而对于二阶常系数非齐次线性微分方程来说,我们可以采用一种叫做“因式分解”的方法来求解。
具体来说,我们首先要将这个方程进行因式分解。
然后,根据不同的情况,选择合适的方法进行求解。
这里呢,我给大家举两个例子,看看到底是怎么做的吧。
第一个例子:假设我们要解的方程是这样的:y'' 2y' + y = 0我们可以先将这个方程进行因式分解:(y'' 2y')(1 y) = 0这样一来,我们就得到了两个独立的一阶线性微分方程:y'' 2y' = 0y' y = 0接下来,我们就可以分别用这两个方程来求解了。
具体来说,我们可以先求出y'和y''的关系式,然后再代入第二个方程求解。
当然啦,这只是其中一种方法,还有很多其他的方法可以用来解决这个问题。
第二个例子:假设我们要解的方程是这样的:xy'' + x^2y' + xy = 0我们可以先将这个方程进行因式分解:(xy'' + x^2y')(x + 1) = 0这样一来,我们就得到了两个独立的一阶线性微分方程:xy'' + x^2y' = 0xy' + x = 0同样地,我们可以分别用这两个方程来求解了。
二阶常系数非齐次线性微分方程解法及例题在数学的领域中,二阶常系数非齐次线性微分方程是一个重要的研究对象。
它在物理学、工程学、经济学等众多学科中都有着广泛的应用。
接下来,让我们深入探讨一下二阶常系数非齐次线性微分方程的解法以及相关例题。
首先,我们来明确一下二阶常系数非齐次线性微分方程的一般形式:$y''+ py' + qy = f(x)$,其中$p$、$q$ 是常数,$f(x)$是一个已知的函数。
为了求解这个方程,我们通常分为两个步骤:第一步,先求解对应的齐次方程:$y''+ py' + qy = 0$ 。
对于这个齐次方程,我们假设它的解为$y = e^{rx}$,代入方程中得到特征方程:$r^2 + pr + q = 0$ 。
通过求解这个特征方程,可以得到两个根$r_1$ 和$r_2$ 。
当$r_1$ 和$r_2$ 是两个不相等的实根时,齐次方程的通解为$y_c = C_1e^{r_1x} + C_2e^{r_2x}$;当$r_1 = r_2$ 是相等的实根时,齐次方程的通解为$y_c =(C_1 + C_2x)e^{r_1x}$;当$r_1$ 和$r_2$ 是一对共轭复根$r_{1,2} =\alpha \pm \beta i$ 时,齐次方程的通解为$y_c = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x))$。
第二步,求出非齐次方程的一个特解$y_p$ 。
求特解的方法通常根据$f(x)$的形式来决定。
常见的形式有以下几种:1、当$f(x) = P_n(x)e^{\alpha x}$,其中$P_n(x)$是$n$ 次多项式。
如果$\alpha$ 不是特征根,设特解为$y_p = Q_n(x)e^{\alpha x}$,其中$Q_n(x)$是与$P_n(x)$同次的待定多项式;如果$\alpha$ 是特征方程的单根,设特解为$y_p = xQ_n(x)e^{\alpha x}$;如果$\alpha$ 是特征方程的重根,设特解为$y_p =x^2Q_n(x)e^{\alpha x}$。