高数常系数非齐次线性微分方程
- 格式:ppt
- 大小:1.57 MB
- 文档页数:19
高阶常系数非齐次线性微分方程在工程、物理、金融等领域都有广泛应用。
它是一个非齐次方程,其中存在一个常系数,其次数为高阶的微分方程,求解这个微分方程是理解和应用这些领域的重要基础。
一、概述在微积分的学习过程中,学生们常常会遇到求解常系数非齐次线性微分方程的问题。
它也被称为高阶非齐次微分方程。
其中的“常系数”指的是微分方程中所有的系数都是常数,而“非齐次”则表示方程中存在非零项。
假设我们有一个高阶常系数非齐次微分方程:$$\frac{d^ny}{dx^n}+a_{n-1}\frac{d^{n-1}y}{dx^{n-1}}+...+a_1\frac{dy}{dx}+a_0y=f(x)$$其中 $a_0,a_1,...,a_{n-1}$ 是常数,$f(x)$ 是一个已知函数。
为了解决该微分方程,我们需要找到一个解 $y(x)$。
二、齐次微分方程的求解首先,我们需要解决由齐次微分方程所得到的通解。
齐次微分方程是指 $f(x)$ 的项为 $0$,即$$\frac{d^ny}{dx^n}+a_{n-1}\frac{d^{n-1}y}{dx^{n-1}}+...+a_1\frac{dy}{dx}+a_0y=0$$这个微分方程可以通过假设 $y(x)=e^{\lambda x}$ 为通解进行求解,得到特征值方程:$$\lambda ^n+a_{n-1}\lambda ^{n-1}+...+a_1\lambda+a_0=0$$特征值方程的解称为特征根$\lambda_1,\lambda_2,...,\lambda_n$,它们也称为系统的固有值。
特征根决定了系统的动态性质。
找到特征根后,我们可以得到齐次微分方程的通解:$$y(x)=c_1e^{\lambda_1 x}+c_2e^{\lambda_2x}+...+c_ne^{\lambda_n x}$$其中 $c_1, c_2,...,c_n$ 是常数。
三、非齐次微分方程的求解在解决了齐次微分方程的通解后,我们可以将非齐次微分方程转化为齐次微分方程。
常系数非齐次线性微分方程
常系数非齐次线性微分方程是一类常见的微分方程,在数学和物理
学等领域有着广泛的应用。
那么,常系数非齐次线性微分方程是什么呢?它的一般形式是什么样的?它的解法有哪些呢?下面我们来一一
探讨。
首先,常系数非齐次线性微分方程是指一类满足以下形式的微分方程:a1(x)y'' + a2(x)y' + a3(x)y = f(x)
其中,a1(x)、a2(x)、a3(x)是常数系数,y是未知函数,f(x)是给定的函数。
这类微分方程的特点是:未知函数的阶数不超过二阶,并且常数
系数都是常数。
其次,常系数非齐次线性微分方程的解法有多种。
对于没有特殊限制
的常系数非齐次线性微分方程,通常采用牛顿迭代法来求解。
牛顿迭
代法是利用牛顿近似定理,通过不断迭代来逼近方程的解的一种求解
方法。
但是,如果该方程具有特殊的性质,则可以使用其它方法来求解。
例如,如果该方程具有对称性,则可以使用对称法求解;如果该
方程具有线性特征,则可以使用线性特征法求解。
最后,常系数非齐次线性微分方程在数学和物理学等领域有着广泛的
应用。
在数学中,它常用于描述各种数学模型;在物理学中,它常用
于描述各种物理现象,如电学、力学、热学等。
因此,掌握常系数非
齐次线性微分方程的求解方法,对于理解和研究这些领域的知识具有
十分重要的意义。
第七章:微分方程第一类:(可分离变量型——包括一阶齐次线性微分方程)方程可以化为dy y g dx x f )()(=形式,用分离变量微分法;第二类:(非线性齐次型)方程可以化为)(x y dx dy ϕ=的形式,用u xy =替换法;一种较特殊的方程c b a y x c by ax dx dy 111++++=(*)在不同情况下可经过不同的变化来属于第一、二类微分方程1.01==c c 时,(1111x y x y x y b a yx by ax dx dy b a b a ϕ=++=++=属于第二类微分方程;2.01≠⋅c c 时,首先考虑b a ba 11=(&)成不成立;(1)不成立:根据此时的(*)并不属于第二类,可以重新构造分子、分母,来使得新形成的常数都为零,为了计算简便,引入的新参数必须与x、y 齐次,故设m X x +=、n Y y +=,这样就确保了dX dx =、dY dy =,故c b a b a c b a n m Y X cbn am bY aX y x c by ax dx dy dX dY 11111111++++++++=++++==,为了使这个式子属于第二类微分方程,则必须像 1.一样,常数都为零,即0111=++=++c b a n m c bn am (A ),因为(&)不成立,所以011≠-ab a b ,故可解得⎪⎪⎩⎪⎪⎨⎧--=--=b ba c cb b a a ac a b m a b c n 11111111,则此时就有)(1111111X Y X Y X Y ba Y X bY aX y x c by ax dx dy dX dYb a b ac b a ϕ=++=++=++++==,属于第二类微分方程;(2)成立:由(1)中叙述可知,当(&)式成立时,方程组(A )无解,则(2)中的方法不可行,故考虑整体替换,即设λ==b a b a 11,c b a b a c b a y x c y x y x c by ax dx dy 11111111)(++++=++++=λ,再令y x u b a 11+=,此时⇒=+++=⇒++=-=)(1111111u g u c u dx du u c u dx du dx dy a c b c b a λλduu g dx x f )()(=(1)(=x f ),属于属于第一类微分方程;第三类:(可降阶微分型)1.),(y x f y '=''型[y 的二阶微分方程中不含y 型],用p y ='替换法;2.),(y y f y '=''型[y 的二阶微分方程中不含x 型],用p y ='替换法;第四类:(一阶非齐次线性微分型)方程可化为)()(x Q y x p dxdy =+的形式,用背公式或者常数变易法;公式:一阶非齐次线性微分方程的通解(简称“非通”)y =e e dx x p dx x p dxx Q C ⎰⎰+⎰)()()(【背诵口诀:C+Q(X)积分含e 的P(x)积分方,再除以e 的P(x)积分方】;常数变易法:第一步:先求一阶齐次微分方程(即一阶非齐次微分方程右端为零时的方程)的通解(运用第一类微分方程的解法);第二步:令第一步求得的通解中的常数C 为u ,求出y ';第三步:将第二步得到的⎩⎨⎧='=y y 代入一阶非齐次微分方程中得到一个关系式(只引入了一个参数u ,一个关系式足矣),消掉y '、y 后(第一、二步都是为这个消掉y '、y 做准备),解得u ',再利用积分求得u ;第四步:将u 代入第二步替换后的通解中,即求得一阶非齐次微分方程的通解;一种较特殊的方程y n x Q y x p dxdy )()(=+(伯努力方程)(*)在不同情况下可经过不同的变化来属于第一、四类微分方程1.当n=1时,dx x p x Q ydy y x Q y x p dx dy )]()([)()(-=⇒=+,属于第一类微分方程;2.当n=0时,)()(x Q y x p dx dy =+,属于第四类微分方程;3.当n 1,0≠时,方程变形得)()(1x Q x p dx dy y y n n =+--,令C z dy dz dxdz dx dy y y n y n n n n +=⇒=⇒=-----1)1()1(,取y n z -=1,则有)1(n dx dz dx dy y n -=-代入y n x Q y x p dx dy )()(=+后变形得)()1()()1(x Q n z x p n dx dz -=-+,令)()()1(2x x p n p =-,)()()1(2x x Q n Q =-)()(22x z x dx dz Q p =+⇒,属于第四类微分方程;第五类:(二阶非齐次线性微分型)方程可化为)()()(x f y x Q y x p y =+'+''的形式,用背公式或者常数变易法(过程与第四类中的常数变易法类似)--------用【已知“齐通找非齐特”,或者“已知齐一特”法】;公式:对于二阶非齐次线性微分方程的通解(简称“非通”)y 等于该非齐次方程对应的齐次方程的通解加上该非齐次方程的一个特解,即非通-非特=齐通【容易证明,对于n 阶非齐次线性微分方程都有这个结论】常数变易法:第一步:已知二阶齐次微分方程(即二阶非齐次微分方程右端为零时的方程——第六类方程)的通解;第二步:令第一步求得的通解中的常数C1、C2分别为u u 21,,求出y '、y '';第三步:将第二步得到的⎪⎩⎪⎨⎧=''='=y y y 代入二阶非齐次微分方程中得到一个关系式①(两个引入参数u u 21,,一个关系式不够,还需要得到一个关系式,而且得到的这个关系式为了求出u u 21,,故为了最简单地求解出这两个参数,就不允许在y ''中出现u u ''''21,,而又因为u u 21,均不为常数,故在y '定会出现u u ''21,,而要划线部分同时成立,则必须在y '中将u u ''21,抵消掉,而y u y u y u y u y '''+'++='22112211,故令02211='+'y u y u ②,为了更方便的求解,所以需要得到更简单的①式,所以将②式在第二步中就运用,这样得到的①式为)(2211x f y u y u =''+''②,联立①②就可解得u u ''21,),再利用积分求得u u 21,;第四步:将u u 21,代入第二步替换后的通解中,即求得二阶非齐次微分方程的通解。
微分算子法求解二阶常系数非齐次线性微分方程的特解李绍刚段复建徐安农(桂林电子科技大学,计算科学与数学系,广西桂林,541004)摘要:木文主要介绍了二阶微分算子的性质及其它在一些求解二阶常系数非齐次线性微分方程的常见运算公式,并对其中的大部分重要公式给出了详细的较为简单的证明,并通过具体而翔实的例子加以说明它在解题中的具体应用,大大简化了二阶常系数非齐次线性微分方程的特解的求法。
关犍词:线性微分算子非齐次微分方程特解中图分类号:0175.1 引言对于微分方程,尤其是常系数非齐次线性微分方程,算了法求其特解一肓是研究的热点问题,见参考文献[3・9],有一些是针对一般高阶的常系数非齐次线性微分方程[3-61,文献⑹ 研究了高阶的变系数非齐次线性微分方程的算子特解算法,而[7]是针对二阶的常系数非齐次线性微分方程的算子特解解法,但是理论不是很完善,而微分级数法以及复常系数非齐次线性微分方程在一般教科书很少出现,针对性不够强。
因为在高等数学中,二阶非齐次常系数线性微分方程特解的求法在微分方程屮占有很重要的地位,也是学习的重点和难点,人多高数教材采用待定系数法来求其特解,根据不同情况记忆特解的设法对人多数学生而言述是很有难度的,而且有些题目计算过程非常复朵,本文就针对微分算子法在求解二阶常系数非齐次线性微分方程特解方而的应用做一些讨论,给出理论的详细证明,并通过例子说明理论的的一些具体应用。
我们考虑如下的二阶常系数非齐次线性微分方程的一般形式y"+py'+q = f(x)其中p,q 为常数。
(1)2 2引入微分算子—= D,^ = D2,则有:y=型二Dydx dx" dx dx~于是(1)式可化为:D’y + pDy + qy = f(x) 即:(D2 + pD + q)y = f(x) (2)令F(D) = D24-pD + q 称其为算子多项式。
则(2)式即为:F(D)y = f(x) 其特解为:y = ^—f(x),在这里我们称为逆算子。