电子传递与氧化磷酸化
- 格式:ppt
- 大小:6.67 MB
- 文档页数:155
第三节电⼦传递与氧化磷酸化第三节电⼦传递与氧化磷酸化三羧酸循环等呼吸代谢过程中脱下的氢被NAD+或FAD所接受。
细胞内的辅酶或辅基数量是有限的,它们必须将氢交给其它受体之后,才能再次接受氢。
在需氧⽣物中,氧⽓便是这些氢的最终受体。
这种有机物在⽣物活细胞中所进⾏的⼀系列传递氢和电⼦的氧化还原过程,称为⽣物氧化(biological oxidation)。
⽣物氧化与⾮⽣物氧化的化学本质是相同的,都是脱氢、失去电⼦或与氧直接化合,并产⽣能量。
然⽽⽣物氧化与⾮⽣物氧化不同,它是在⽣活细胞内,在常温、常压、接近中性的pH和有⽔的环境下,在⼀系列的酶以及中间传递体的共同作⽤下逐步地完成的,⽽且能量是逐步释放的。
⽣物氧化过程中释放的能量可被偶联的磷酸化反应所利⽤,贮存在⾼能磷酸化合物(如ATP、GTP等)中,以满⾜需能⽣理过程的需要。
线粒体中氧化磷酸化反应的⼀般机理⼀、呼吸链的概念和组成所谓呼吸链(respiratory chain)即呼吸电⼦传递链(electron transport chain),是线粒体内膜上由呼吸传递体组成的电⼦传递总轨道。
呼吸链传递体能把代谢物脱下的电⼦有序地传递给氧,呼吸传递体有两⼤类:氢传递体与电⼦传递体。
氢传递体包括⼀些脱氢酶的辅助因⼦,主要有NAD+、FMN、FAD、UQ等。
它们既传递电⼦,也传递质⼦;电⼦传递体包括细胞⾊素系统和某些黄素蛋⽩、铁硫蛋⽩。
呼吸链传递体传递电⼦的顺序是:代谢物→NAD+→FAD→UQ→细胞⾊素系统→O2。
呼吸链中五种酶复合体(enzyme complex)的组成结构和功能简要介绍如下(图5-11,5-12)。
图 5-11 植物线粒体内膜上的复合体及其电⼦传递Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ分别代表复合体Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ; UQ库代表存在于线粒体中的泛醌库1.复合体Ⅰ⼜称NADH∶泛醌氧化还原酶(NADH∶ubiquinone oxidoreductase)。
氧化磷酸化的原理和过程
氧化磷酸化是生物体内提取化学能的重要途径,是有氧呼吸的关键过程,在线粒体中进行。
其基本原理和过程包括:
1. 电子传递链
NADH和FADH2将电子传递给一系列载体分子,如辅酶Q和细胞色素C。
电子层层递减能量。
2. 氧化磷酸化
电子最终传至氧分子,氧与电子和质子发生化学反应,形成水。
同时释放能量。
3. 氢离子跨膜传递
电子传递过程中,质子被主动穿梭跨线粒体膜,形成跨膜电化学位梯。
4. 合成ATP
利用质子跨膜传递的潜在能驱动ATP合酶,催化ADP与无机磷酸生成ATP。
5. 氧化反应释放能量
磷酸化过程中,氧化反应释放的能量用于合成ATP。
6. 氧化磷酸化耦合
电子传递链与质子跨膜形成耦合,两者协同进行,实现能量转化。
7. 氧是终电子受体
氧分子通过获得电子达到满殻稳定状态,是整个电子传递链中的终接收体。
综上,氧化磷酸化通过一系列细胞色素氧化反应,辅以质子跨膜传递,将化学能高效转换为生物所需的ATP的化学能,为生命活动提供能量。