光致发光(PL)光谱
- 格式:ppt
- 大小:727.00 KB
- 文档页数:17
光致发光(PL)光谱测试操作规程(一)电源及机器启动方式1.打开电源配电箱后的电源开关,接通总电源。
2.按照正常开机顺序启动电脑。
3. PL光谱测试仪电源启动方式:a. 旋转紧急停止开关(红色按钮弹出状态)b. 按下电源启动开关(蓝色按钮、power指示灯为红色)。
c. 将开机开关打开到1的位置上(绿色按钮),机器启动(power灯为绿色,真空指示灯(V ACUUM)为红色)。
4.接通真空泵。
(二)操作软件菜单使用说明1.单击桌面菜单中的()图标,等待软件初始化。
2.初始化完成后,进入登陆口令窗口对话框,在User level中选择Engineer选项,不用键入password,点击OK,进入操作菜单。
3.打开样品室盖,用镊子将所测样品放入到载物台中,注意放置时应将中央真空抽气孔完全覆盖。
按下抽真空按钮(绿色按钮),样品被吸附到载物台中,完成载物过程(此时抽真空提示灯由红色转为绿色)。
闭合样品室,确认样品室闭合指示灯为熄灭状态。
4.返回操作菜单,点击工具栏中的load wafer()按钮,样品载入至测试仪器内,完成准备工作。
(三)具体实验测试过程说明A. Single Spectrum检测1.选择纵向工具栏中的Single Spectrum()按钮,等待程序操作界面跳出。
2.在程序对话框中,首先选择range类型,其中包括single frame 和wide scan 两种模式:在single frame 模式中,首先确定mode模式为PL Spectrum和standard根据自己所测样品的理论数据修改center(发光中心谱线波长)和谱线测试的最大值和最小值。
wide scan模式中,只需改动min及max两值即可。
3.测试过程默认测试点为R,T=0,0mm,0,0deg,若期望测试样品其他点处的Single Spectrum,点击move stage按钮,得到操作对话框。
在右侧网格坐标图中直接点击选取期望测试点;或在左侧absolute position中输入相应值,单击go键可将测试点移动到期望位置。
光致发光光谱(photoluminescence spectrum, PL谱)是一种常用的表征半导体材料光学性质的手段。
通过激发光源照射样品,测量样品发射的光谱特性,可以得到样品的发光峰值、半导体材料的载流子寿命和激子解离效率等重要信息。
本文将通过光致发光光谱计算激子解离效率的相关理论及计算方法进行探讨。
1. 光致发光光谱的基本原理光致发光光谱是指当外界光照射到样品后,通过测量样品发射光的能谱和强度变化,研究样品内部载流子的复合和发光过程。
在激子体系中,激子解离是一个重要的过程,激子的解离效率对半导体材料的发光性能有着重要影响。
通过光致发光光谱可以间接的推断出激子解离效率,为进一步研究半导体材料的光学性质提供了重要手段。
2. 激子解离效率的计算方法激子解离效率可以通过光致发光光谱中的激子发光峰和自由载流子发光峰的位置和强度变化来计算。
在样品中,由于激发光源的作用,激子和自由载流子会产生发光,通过测量样品的光谱可以得到激子和自由载流子的发光峰值。
激子解离效率可以通过以下公式计算:激子解离效率 = (激子发光峰值 - 自由载流子发光峰值) / 激子发光峰值其中,激子发光峰值和自由载流子发光峰值分别为在样品发光光谱中激子和自由载流子的发光峰值。
通过测量样品的光致发光光谱,并进行激子解离效率的计算,可以直观的了解激子解离过程对样品发光性质的影响。
3. 激子解离效率的影响因素激子解离效率受到多种因素的影响,主要包括材料的结构和纯度、激子的束缚能和载流子的密度等。
在材料的结构和纯度方面,晶格缺陷和杂质的存在会损害激子的稳定性,导致激子解离效率的降低。
而激子的束缚能和载流子的密度则会影响激子的形成和解离过程,进而影响激子解离效率的大小。
在研究激子解离效率时,需要综合考虑以上因素的影响,以更准确的评估半导体材料的光学性能。
4. 光致发光光谱计算激子解离效率的应用光致发光光谱计算激子解离效率是一种非常有效的手段,可以为半导体材料的光学性能研究提供重要的参考。
pl光致发光光谱测试条件一、测试目的光致发光(PL)光谱测试是一种用于研究材料发光特性的重要手段。
通过PL光谱测试,可以了解材料的发光性质、能级结构以及材料内部的缺陷和杂质等信息。
本测试条件旨在规范PL光谱测试的实验操作流程,确保测试结果的准确性和可靠性。
二、测试原理光致发光(PL)光谱是材料在吸收光子后,将能量转化为荧光发射的现象。
PL 光谱反映了材料内部能级结构、缺陷和杂质等信息。
通过对PL光谱的分析,可以了解材料的发光性质、能级结构以及材料内部的缺陷和杂质等信息。
三、测试条件1. 样品准备(1)样品应具有代表性,能够反映材料的整体性能。
(2)样品应清洁、干燥,无杂质和污染物。
(3)样品尺寸应适中,以便于测试和观察。
2. 测试环境(1)实验室温度应保持在20±5℃。
(2)实验室湿度应保持在50±5%。
(3)实验室应保持清洁、无尘,避免影响测试结果。
3. 光源选择(1)选择合适的激光光源,确保其波长、功率和稳定性满足测试要求。
(2)激光光源的波长范围应覆盖样品发光的主要波段。
4. 样品处理(1)对于固体样品,应将其研磨成粉末或薄片,以便于测试。
(2)对于液体样品,应将其稀释至适当浓度,以便于测试。
5. 测试参数设置(1)设置合适的激发波长和发射波长范围,以便于捕捉样品的PL光谱。
(2)设置合适的扫描速度和步长,以便于获得准确的PL光谱。
6. 数据处理与分析(1)对获得的PL光谱进行去噪、平滑等处理,以提高数据质量。
(2)对PL光谱进行拟合和分析,提取发光峰位、强度等信息。
四、注意事项1. 在进行PL光谱测试前,应对样品进行充分的了解和研究,以便选择合适的测试条件和方法。
2. 在测试过程中,应注意保护眼睛和皮肤,避免长时间暴露在激光光源下。
3. 在数据处理和分析过程中,应注意数据的准确性和可靠性,避免误导实验结果。
光致发光光谱光致发光光谱,又称发光荧光现象,是指某些物质在受到特定范围的电磁辐射,特别是紫外光的照射感应后,产生幅度很大的光谱,叫做发光荧光光谱。
它是一种较新的光谱学,是一种主要应用于分子尺度上的光谱技术,是由发射光谱和吸收光谱组成。
发射光谱是物质在受到特定范围的电磁辐射照射后,将其能量发射出去,产生的一组突出的发光信号,而吸收光谱则是在物质受到辐射的照射后,将辐射能量转换成其他能量,如热量、振动、化学反应等,给出的吸收现象。
光致发光光谱分为线谱和频谱,其中线谱是指受到电磁辐射照射后物质可能出现的光谱线;而频谱则是受照射后物质可能出现的频率。
由于受到辐射照射,物质中的分子会发生跃迁,能量会从低能量态跃迁至高能量态,每一次跃迁都会带来一个特定的光谱线或信号,而且每一条光谱线或信号的频率多采用“h(6.556×10的-27)v”的公式来表示。
光致发光光谱具有很多优点,主要有:1、它可以用来研究物质的结构和性质,可以更加准确地了解物质组成段落;2、它可以用来检测物质中含量较小的元素,可以达到检测纳米量的精度;3、它可以有效地检测气体,可以检测混合气体中的组成及比例;4、它还可以有效地检测生物分子中的结构,这项技术在很多应用场合(如医药、材料等)具有重要的意义;5、光致发光光谱的检测过程不损伤样品,同时它可以很快地给出结果。
光致发光光谱已在化学、材料学、生物医学和环境科学中得到广泛应用。
在化学领域,光致发光光谱用于研究物质的组成结构,可以检测各种元素及其分子结构。
在材料学方面,光致发光光谱主要用于对聚合物和其他有机材料的结构组成,以及聚合物材料的性质,如热稳定性和表面电性等的研究。
在生物医学领域,光致发光光谱可以用来检测生物体内的各种分子,如蛋白质、糖蛋白、基因表达谱等。
此外,光致发光光谱也可以用于环境科学研究,它可以用来检测空气中的污染物,如硫化物和氨气等,从而为环境保护贡献力量。
从上面可以看出,光致发光光谱具有许多优点和广泛的应用,它不仅可以用于科学研究,也可以用于工程实践和环境检测等领域。