智慧校园大数据平台技术解决方案
- 格式:pptx
- 大小:46.69 MB
- 文档页数:60
智慧校园大数据中心解决方案技术创新,变革未来智慧校园智慧应用智慧决策深度互联智能服务全面感知智慧校园势在必行基础建设完成部分业务管理系统无线网络覆盖管理转型服务服务信息化师生办事难使用场景变化手机场景增多校园无线网络智慧化服务化移动化智慧化的一站式服务平台大数据中心解决方案大数据在校园广泛运用预测趋势竞争策略运营决策数据交易流程优化体现关联数据交换数据报告数据,是高校的战略资产。
数据的有效资产化,有利于对内实现数据资产增值,对外实现数据共享变现。
数据的价值管理或自我驱动能力分析数据后的结论知识数据驱动单个的分散的数字综合的可比较的数据需求驱动价值驱动制度化、标准化、数据化、自动化传统数据中心的问题优点:关系型数据库存储结构化数据;数据集中存储集中管理;数据库中心,应用和数据分离;提高了硬件利用率和数据安全性。
缺点:数仓建设不完善,不能全维度数据的关联,挖掘和预测分析;不支持非(半)结构化数据和实时流数据处理;随着数据规模不断加大,海量数据查询性能降低;缺少调度,任务和服务管理的引擎等;数据源财务系统教务系统图书馆系统学分系统BBS……统一数据标准体系数据分析数据共享服务平台应用集市数据区数据探索区实时数据查询区数据挖掘教室查询一卡通消费查询教学模型综合报表课程生命周期学生模型结构化主题数据非结构化数据存储区实时数据存储区教师主题学生主题监控视频学生档案照片数据……财务主题课程主题消费记录学生位置教室状态……档案数据地理信息主题数据区贴源数据区财务数据成绩数据教师信息教务数据……学生信息校长驾驶舱QQ校园号微哨APP一卡通集群管理安全体系分布式数据库机器学习大数据技术平台FlumeKafkaHDFSHiveSqoopYarnZooKeeper ZeppelinStormElastic SearchMapReduceSparkHBaseKylin数据处理数据治理离线数据数据接入实时数据数据工厂数据加工实时数据处理数据分析数据探索数据挖掘标准制定数据标准标准实施稽核任务数据质量稽核稽核报告数据全景元数据管理数据血缘数据应用数据服务API数据分析系统SDK应用门户模型生命周期管理数据转换数据探索建模优化流程化封装投产数据标准来源结构化数据区非结构化数据区教师主题学生主题监控视频学生档案照片数据……财务主题课程主题档案数据地理信息数据标准制定数据标准执行数据标准校验数据标准数据质量稽核稽核任务调度稽核报告稽核任务配置稽核规则配置告警配置问题处理元数据管理血缘分析数据共享全景视图元数据检索元数据影响分析元数据统计主数据管理数据平台数据治理数据标准质量稽核数据血缘稽核报告数据采集数据对接+pc端采集+移动端采集总体情况主题分析教师画像数据可视化自主化分析业务人员0门槛获取与分析数据自助查询数据、自助探索分析:在浏览器上通过简单的鼠标操作,完成自助式的明细数据筛选、导出,以及进行类似Excel 透视表的互动分析,满足自由钻取、同环比计算、自定义分组等灵活分析需要。
智慧校园大数据平台建设技术方案xx年xx月xx日•引言•大数据平台架构设计•数据采集与预处理技术•数据存储与查询技术•数据分析与挖掘技术•大数据安全与隐私保护•智慧校园大数据平台建设实施方案•结论与展望目录01引言信息化建设的不断深入,促进了智慧校园建设的发展国家对智慧校园建设的政策支持与引导提高校园管理效率、提升教学质量的需要背景与意义建设目标与任务建设任务开发数据分析与可视化工具,辅助决策与教学优化整合校园安防、资产等管理系统,提高管理效率建设目标:实现智慧化、信息化、高效化的校园管理搭建大数据平台,整合校园内各部门数据资源建设智慧课堂、智能实验室等设施,提升教学质量010203040506大数据平台建设方案通过数据接口对接、数据填报等方式,采集校园内各部门数据数据采集数据存储数据处理数据应用采用分布式存储技术,实现海量数据的存储与备份利用数据挖掘、机器学习等技术,对数据进行处理与清洗开发数据可视化、报表生成等应用,辅助决策与优化02大数据平台架构设计以数据仓库为核心,通过ETL(数据提取、转换、加载)等技术手段将数据从各个业务系统整合到数据仓库中,再通过报表、OLAP等手段将数据展现给用户。
分布式架构采用分布式存储和计算技术,如Hadoop、Spark等,对海量数据进行处理和分析,提高数据处理效率和可靠性。
星型架构总体架构设计VS数据整合通过ETL等手段将分散在各个业务系统中的数据进行整合,建立统一的数据中心。
数据清洗对数据进行清洗、去重、格式转换等操作,保证数据质量和准确性。
数据分类按照数据属性、特征等对数据进行分类、分主题等操作,方便数据管理和使用。
数据层设计采用分布式存储技术,如HDFS、Cassandra等,对海量数据进行存储和管理。
数据存储采用分布式计算技术,如MapReduce、Spark 等,对海量数据进行计算和处理。
数据计算通过数据加密、权限控制等手段保障数据的安全性和隐私性。
高校大数据平台解决方案、高校智慧校园解决方案1.项目概况近年来,随着信息技术产业的蓬勃发展,高校的信息化建设工作也受到了广泛关注。
推进高校信息化建设,打造数字化校园已成为各高等院校的普遍共识。
由于信息化建设初期缺乏统一规划,数据标准各异,业务系统各自为政,导致数据非集成化并形成了许多的信息孤岛,这使得大量数据无法共享和利用,获得更大价值。
数据共享交换平台是整个数字化校园建设的重要组成部分,利用平台对校园内散乱分布的数据进行集成化整合,同时将原来分散、利用率低下的信息资源进行数据挖掘,对于学校的发展战略和决策支持具有重要意义。
另外,数据共享交换平台的建设是高校信息化建设下一阶段——智慧校园建设的工作基础。
完成对学校内大数据有机的整合和继承管理,掌握学校各项活动中发生的庞大、海量数据,并利用大数据处理技术对这些信息资源进行挖掘、整理、分析,为学校的发展提供决策支持,是大数据时代下支撑学校改革、发展的重要手段。
2.智慧校园建设方案!高校统一数据中心解决方案平台设计目标及思路大数据时代的教育带有“大教育”的特性,具有全员(从全日制学生到全民,面向所有人)、全程(从学前教育到终身教育,服务各个教育阶段)、全方位(家庭、学校、社会三位一体教育,无所不在的教育,虚实结合的教育)等特点。
随着在线平台的推广和普及,越来越多的老师将自己的授课视频放上网。
互联网上的眼睛将使所有错误无所遁形,在无数人的编辑之下,知识传播的形式将不断优化、效率会不断提高。
在数据的不断累积当中,视频将会沉淀下来,成为经典的学习材料。
目前,建设以全局数据为基础的数据共享交换平台已成为各高校信息化建设的核心内容。
通过其建设可以有效消除信息孤岛,节约人力、物力、财力成本,提高工作效率。
各职能部处可以通过该平台获取其他业务部门的数据信息,通过对数据的交换、共享、分析、挖掘,为广大师生提供更加完善的服务,为高校建设以及科学管理提供重要的依据。
3.需求分析及概述3.1产品架构3.1.1概述教学大数据平台包含4个部分:第一部分是运维管理,包括:安装部署、配置管理、主机管理、用户管理、服务管理、监控告警和安全管理等。
可编辑修改精选全文完整版智慧校园解决方案•相关推荐智慧校园解决方案(通用5篇)为了确定工作或事情顺利开展,我们需要提前开始方案制定工作,方案具有可操作性和可行性的特点。
方案应该怎么制定才好呢?以下是小编精心整理的智慧校园解决方案,欢迎阅读与收藏。
智慧校园解决方案篇1系统简介:大学学院根据自身需要,校园一卡通建设的要求,该项目并采用银校企联合的模式,由学院提出总体设计需求,银行提供结算服务,系统由多个rfid硬件及一套管理软件组成。
系统组成:根据校方的管理需要,学院一卡通系统所有服务器均安装在中心机房内,发卡中心、结算中心、经营管理中心这三个通用模块分别部署在教务处和财务处,各应用子系统按应用场所不同,分别部署于食堂、浴室、图书馆、电子阅览室、教学楼、学生活动中心、体育内。
学院一卡通系统包括报到收费、发卡、圈存、结算、控水、教务、门禁、上机、查询等12个子系统。
系统的各个功能采用模块化设计,便于增加、修改,或根据用户需要进行后续升级。
系统结构图:校园一卡通系统总体架构图功能特点:1、发卡中心功能是对卡片进行印制、发放和控制管理。
包括卡注册(发卡)、注销(回收卡)、挂失(使卡不合法)、解挂(使卡合法)、换卡等操作。
并将学生注册信息与学杂费收费管理系统相结合,进行学生信息统一管理。
学院一卡通系统配置了2个发卡中心,分别部署在学校教务处两个办公室内,以在发卡量大时起到分散发卡压力的作用。
在其中一间办公室内还安装有证卡打印机,可将采集的学生信息打印到卡片上,作为学生证使用。
2、结算管理中心结算中心的主要功能分为前台财务服务和后台结算清分服务。
前台结算中心负责管理除消费外的各类持卡人账务操作,如:存/取款、补贴/扣除、余额清零等功能。
后台的结算清分服务,主要是针对一卡通系统所包含的各类结算应用子系统所产生的消费流水,进行统一清分、统一资金结算,实现一卡通系统内各个应用管理部门之间的财务转账。
学院结算中心分别设置在财务处和大学生活动中心,方便持卡人充值。
智慧校园大数据平台技术解决方案xx年xx月xx日•引言•智慧校园大数据平台架构设计•关键技术•系统功能模块•系统优势与价值•系统实施与维护•结论与展望目录01引言智慧校园是指借助信息技术和智能化设备,将校园管理、教育、生活等各个领域进行深度融合,形成高效、便捷、安全的校园生态系统。
智慧校园具有以下几个特点:智能化、网络化、信息化、自动化等。
智慧校园的定义与特点为什么要建设智慧校园通过智能化设备和大数据技术,实现校园各项业务的自动化管理,减轻了管理负担,提高了工作效率。
提高校园管理效率提升教学质量促进科研创新增强校园安全智慧校园能够为教师和学生提供丰富的教学资源和工具,有助于提高教学质量和效果。
智慧校园能够为科研人员提供更好的数据支持和资源共享,有助于推动科研创新。
智慧校园通过智能化设备和视频监控等技术,能够更好地监控校园安全状况,及时发现安全隐患。
智慧校园的发展趋势通过对大数据的挖掘和分析,将数据可视化呈现,有助于更好地了解校园运行情况和发现问题。
数据分析与可视化通过人脸识别技术,实现智能化门禁管理,提高了校园安全性和管理效率。
人脸识别与智能化门禁通过推广电子化办公和数字化文件管理,减少纸张使用和资源浪费,有助于环保和节能。
无纸化办公与环保通过移动设备和社交平台,促进师生之间的交流和协作,增强校园社交氛围。
移动化与社交化02智慧校园大数据平台架构设计智慧校园大数据平台采用多层架构设计,包括数据层、平台层和应用层。
数据层负责数据的存储、清洗、整合和管理工作,平台层提供数据挖掘、分析、可视化等能力,应用层则面向校园各类用户提供个性化的应用服务。
架构概述数据层设计主要考虑数据来源、数据存储、数据处理和数据安全等方面的问题。
数据存储采用分布式存储技术,如Hadoop、HBase等,可实现数据的快速存储和查询。
针对数据处理,采用MapReduce等大数据处理技术,实现数据的批量处理和实时处理。
数据来源多样化,包括校园内各类业务系统的数据、校园卡消费数据、传感器数据等,需进行数据清洗和整合。
高校智慧校园大数据建设整体解决方案xx年xx月xx日contents •引言•大数据建设方案概述•高校智慧校园大数据应用场景•大数据建设面临的挑战与对策•大数据建设实施步骤及规划•案例分析•总结与展望目录01引言背景与意义信息化建设的加速随着高校信息化的不断推进,各种业务数据和交互数据急速增长,给数据处理和存储带来了挑战。
数据驱动决策的需求高校需要利用大数据技术,进行数据分析和挖掘,为学校决策提供科学依据。
智慧校园的需求智慧校园是高校未来发展的重要方向,需要大数据支持进行智能化管理和服务。
大数据与智慧校园的关联数据采集与整合通过数据采集和整合,实现全校数据的一体化,为大数据分析提供基础。
要点一要点二数据分析与挖掘利用大数据分析技术,对全校数据进行深入分析和挖掘,为学校决策提供科学依据。
数据驱动服务与管理通过数据驱动的服务和管理,提升校园的智能化水平,提高师生满意度。
要点三大数据建设目标与价值增强学校的综合竞争力。
提升校园管理和服务水平。
提高学校决策的科学性和有效性。
建设目标:构建全校范围内的大数据平台,实现数据的集中存储、整合、共享和分析,为学校决策提供科学依据。
价值体现02大数据建设方案概述采用分布式存储架构,如Hadoop HDFS或Ceph等,可实现数据的集中管理和分布式存储,提高数据可靠性和访问效率。
分布式存储架构建立完善的数据备份和恢复机制,确保数据安全可靠,可在灾难情况下快速恢复数据。
数据备份与恢复数据存储与管理数据清洗对数据进行清洗和预处理,去除重复、无效或错误的数据,保证数据质量。
数据整合通过ETL(抽取、转换、加载)等技术,将多源数据进行整合,实现数据的统一管理和访问。
数据整合与处理利用机器学习算法对数据进行分析,发现数据背后的规律和趋势,为决策提供支持。
数据挖掘通过关联规则、聚类分析等方法,从大量数据中提取有价值的信息和知识。
机器学习算法数据挖掘与分析VS利用图表、图形等可视化手段,将数据以直观、易懂的方式呈现,便于理解和分析。