自锚式悬索桥简介
- 格式:ppt
- 大小:4.74 MB
- 文档页数:35
摘要:自锚式悬索桥作为地锚式悬索桥的一种变形,以其优美的造型,良好的经济型,以及对不良地形和地质条件的适应能力,受到了工程界越来越多的的青睐,本文分析了自锚式悬索桥的优缺点,探讨了钢箱梁的施工技术的一些流程事项。
关键词:自瞄式悬索桥钢箱梁施工中图分类号:TU74文献标识码:A 文章编号:自锚式悬索桥是由主缆、吊索、加劲梁、主塔、鞍座、锚固构造等构件组成的柔性悬吊组合体系,它与地锚式悬索桥最大的区别在于主缆锚固的位置,地锚式悬索桥主缆锚固在锚旋上,自锚式悬索桥主缆锚固在加劲梁上。
结构的自重和外荷载由主缆、加劲梁和主塔共同承受。
自锚式悬索桥的主缆是结构体系中的主要承重构件,主要承受拉力作用,是几何可变体。
它不仅可以通过自身的弹性变形,而且可以通过几何形状的改变来影响体系平衡,表现出大位移非线性的力学特征,在恒载作用下主缆具有很大的初始拉力,对后续结构形状提供强大的“重力刚度”。
主塔在恒载作用下主要是轴向受压,但在运营阶段,由于塔顶主缆不平衡水平分力的作用,是压弯构件,呈梁柱特性。
加劲梁是结构体系中重要的受力构件,加劲梁在承担传递桥面恒活载作用的同时也承受主缆的水平分力,因此加劲梁同样为压弯杆件,呈现出梁柱特性。
吊索的作用是将加劲梁承担的荷载传递到主缆,是联系加劲梁和主缆的纽带。
一、自锚式悬索桥的优缺点自锚式悬索桥的优点:1不需修建大体积的锚碇。
尤其在地质条件很差的时候,这一点显得特别重要。
2跨径布置较灵活,可紧密地结合地形,即可作成一般的双塔三跨悬索桥;也可作成单塔双跨悬索桥。
但是,自锚式悬索桥也存在很明显的缺点:1用钢量大,造价昂贵。
由于主缆直接锚固在加劲梁上,梁承受很大的水平轴向力。
为了能抵抗这巨大的水平力, 必须加大梁的截面,并且在梁的各板件上,设置很多加劲件,以防止梁和板件的压屈。
2施工步骤的限制。
由于主缆锚固在梁上,因此锚固跨的梁必须首先吊装完成,才能架设主缆。
这一点和一般悬索桥是不相同的,一般悬索桥是先架设主缆,再吊装加劲梁构件,直至合龙;而自锚式悬索桥必须先吊装梁,再架设主缆。
自锚式悬索桥的综述一、悬索桥的介绍悬索桥是一种结构独特、形式美观的桥梁,常见于峡谷、河流、海湾等地形复杂的地区。
基本的构造是利用主悬索和辅助悬索的组合,使桥梁跨越河谷、山峰或凹地,形成一条能够承载车辆和行人交通的道路。
目前悬索桥已成为桥梁工程领域的代表性建筑之一。
悬索桥根据其支撑方式的不同可以分为自锚式、钢管式、混凝土箱形等多种类型。
本文主要介绍自锚式悬索桥。
二、自锚式悬索桥的特点自锚式悬索桥是一种挂设在位置固定的桥墩上的悬索桥,其特点主要在于下部构件可以直接以锚固方式固定在河床、桥墩或其他位置。
因此,自锚式悬索桥不需要准备大型基础或钢管桩,也不用使用复杂的鼓型钢管。
此外,自锚式悬索桥的上部构件比较柔软,可以在桥梁发生大量变形时进行适当调整,从而保证桥梁的整体稳定性。
自锚式悬索桥不仅具有良好的适应性和稳定性,而且建设难度低,非常受到人们的欢迎。
三、自锚式悬索桥的结构自锚式悬索桥的主悬索是由一系列高强度细钢线构成的。
主悬索的锚固点通常设置在桥墩处,下级锚固点则悬挂在主悬索两端的墩柱上。
桥梁的其他部分包括主梁、侧拱、横梁、悬索和牵引索等。
自锚式悬索桥的主梁通常是钢箱梁,侧拱作为主梁的辅助结构,与横梁相连。
悬索的作用是保持桥梁的平衡和稳定,而牵引索则是将桥梁的水平力传递给桥墩。
四、自锚式悬索桥的优缺点自锚式悬索桥具有以下优点:1.建设成本低:自锚式悬索桥的基础建设相对较少,结构简单且容易锚固,因此建设成本比其他悬索桥更低;2.适应性强:自锚式悬索桥的地基要求不高,建设灵活,适应性较强,能够适应复杂的地形地貌和环境条件;3.稳定性高:自锚式悬索桥的主悬索锚固点设置在固定的地基上,增加了桥梁的稳定性。
自锚式悬索桥的缺点包括:1.桥塔高度限制:自锚式悬索桥需要固定在桥塔上,而桥塔的高度存在一定的限制,因此自锚式悬索桥的跨径也受到限制。
2.自锚式悬索桥的支承方式:由于自锚式悬索桥有一部分结构是悬挂在桥塔上,因此其支承方式受到限制,无法承受较大的水平荷载。
一. 自锚式悬索桥简介1. 自锚式悬索桥概述自锚式悬索桥不同于一般的悬索桥,它不需要庞大的锚碇,而是把主缆锚固在加劲梁的两端,用加劲梁来承担主缆的水平分力[1]。
因此,端部支撑只需承担拉索的竖向分力,这给不方便建造锚碇的地方修建悬索桥提供了一种解决方法。
因为加劲梁要承担索力,所以一般情况下,加劲梁先于主缆架设之前完成施工,这种与一般悬索桥相反的施工顺序使这种桥梁目前还只局限于中等跨径。
不同于一般的悬索桥,自锚式悬索桥的计算必须考虑主梁中轴力的影响,因此设计师和有关学者也探索出,并不断地完善各种适用于自锚式悬索桥的设计理论和施工控制理论。
本文首先回顾一下这种桥型的发展历史。
1.1 自锚式悬索桥的发展历史19世纪后半叶,奥地利工程师约瑟夫·朗金和美国工程师查理斯·本德分别独立地构思出自锚式悬索桥的造型。
朗金首先在1859年写出了这种设想,本德在1867年申请了专利。
1870年朗金在波兰建造了一座小型的铁路自锚式悬索桥。
尽管他们都没有直接影响未来的设计,但20世纪初期自锚式悬索桥已经在德国兴起。
图1.1.1 德国1915年修建的科隆-迪兹桥Fig. 1.1.1 Original 1915 Cologne-Deutz Bridge in Germany1915年,德国设计师在科隆的莱茵河上建造了第一座大型自锚式悬索桥(图1.1.1)。
这座科隆-迪兹桥主跨185m,用临时木脚手架支撑钢梁直到主缆就位。
在它建成后的15年里影响了其它桥梁的设计,这种创新的设计思想得到了美国和日本等世界各国工程师们的关注。
美国宾夕法尼亚州匹兹堡跨越阿勒格尼河的3座桥,日本东京的清洲桥都与科隆-迪兹桥外型非常相似。
科隆-迪兹桥在1945年被毁,而原来桥台上的钢箱梁仍保存至今。
匹兹堡的三座悬索桥虽然比科隆-迪兹桥的跨径小,但施工技术有了很大的进步,并且采用了悬臂施工的新方法。
德国莱茵河上科隆-迪兹桥建成后25年间又修建了4座悬索桥,最著名的是1929年建成的科隆-米尔海姆桥,主跨315m,虽然该桥在1945年被毁,但它将自锚式悬索桥跨径的记录保持到21世纪。
自锚式悬索桥的综述【摘要】自锚式悬索桥是一种具有独特结构特点的桥梁形式,其重要性在于可以跨越大跨度的河流或峡谷,提高交通效率。
本文首先介绍了自锚式悬索桥的背景和发展历史,接着分析了其结构特点、优缺点、设计原则以及建造工艺。
还探讨了自锚式悬索桥在不同应用领域的具体运用情况。
结合现有研究成果,展望了自锚式悬索桥未来的发展方向和发展前景。
该文章对了解自锚式悬索桥的技术特点、利用价值和未来发展趋势具有一定的参考意义。
【关键词】自锚式悬索桥,结构特点,优点,缺点,设计原则,建造工艺,应用领域,发展历史,未来发展方向,影响和意义,发展前景。
1. 引言1.1 介绍自锚式悬索桥的背景自锚式悬索桥是一种悬索桥的变种,其特点是悬索索塔由桥面而非地面支持。
这种独特的结构设计使得自锚式悬索桥在工程施工和桥梁设计上具有独特的优势和特点。
自锚式悬索桥的背景可以追溯到20世纪70年代,当时人们开始意识到传统的悬索桥设计存在一些局限性,例如在地震和风力等极端环境条件下的表现不佳。
自锚式悬索桥的设计理念是将悬索索塔直接连接到桥面结构,使得整个桥梁系统更加稳定和灵活。
这种设计方案不仅可以降低施工难度和成本,还可以提高桥梁的整体性能和抗震性能。
自锚式悬索桥的背景正是在这样的背景下逐渐兴起,成为桥梁工程领域中备受关注的研究方向。
随着科学技术的不断发展和桥梁工程的不断完善,自锚式悬索桥在国内外得到了广泛的应用和推广。
它不仅可以解决传统悬索桥存在的问题,还可以为世界各地的桥梁工程提供全新的设计思路和解决方案。
介绍自锚式悬索桥的背景将有助于我们更好地理解这种桥梁结构在现代工程领域中的重要性和价值。
1.2 阐明自锚式悬索桥的重要性自锚式悬索桥的广泛应用,可以有效地促进城市的建设和经济的发展。
在城市交通建设中,自锚式悬索桥可以作为重要的交通枢纽,连接两岸,缓解交通压力,提高通行效率。
自锚式悬索桥的美观性和艺术性也可以增强城市的形象和吸引力,成为城市的标志性建筑物,吸引游客和投资。
自锚式悬索桥吊索索力测试与计算方法
自锚式悬索桥是一种采用悬索和主塔之间均匀分布自锚式索杆的桥梁结构。
在
设计和建造自锚式悬索桥时,必须进行吊索索力测试和计算。
这一过程是确保悬索桥的结构安全性和稳定性的重要步骤。
吊索索力测试是通过施加不同的荷载并测量相应的吊索反力来确定悬索桥的索
力分布。
测试时,需要使用专业的测力仪器和设备进行测量,以获得准确的结果。
吊索索力计算是基于桥梁的几何形状、悬索材料的特性和外部荷载等因素,通
过理论计算来确定吊索的索力分布。
常用的计算方法包括静力学平衡法和有限元分析法。
静力学平衡法是一种基于平衡原理的计算方法,通过将桥梁视为整体系统,将
外部荷载与吊索索力之间的关系纳入计算。
该方法需要考虑桥梁的刚度和几何形状等因素,以得出合理的计算结果。
有限元分析法是一种基于数值模拟的计算方法,通过将桥梁划分为许多小单元,并考虑各个单元之间的相互作用来进行计算。
该方法可以更准确地模拟悬索桥的力学行为,但也需要更复杂的计算程序和专业软件的支持。
在进行吊索索力测试和计算时,需要考虑到悬索桥的实际使用情况、荷载情况
以及材料的力学特性等因素。
合理的测试和计算可以帮助工程师们确保悬索桥的结构安全,并为桥梁的设计和施工提供指导。
总结起来,吊索索力测试和计算方法是设计和建造自锚式悬索桥时不可或缺的
步骤。
通过科学合理的测试和计算,可以保障悬索桥的安全性和稳定性,为桥梁的使用和维护提供依据。
自锚式悬索桥的特点与计算一、悬索桥计算原理1、恒载内力:柔性的悬索在均布荷载作用下,为抛物线形。
悬索的承载原理,功能等价于同等跨径的简支梁。
简支梁的跨中弯矩 M=QL²/8悬索拉力作功 M=H*F悬索水平拉力 H= QL²/(8*F)悬索座标 Y=4*(F/ L²)*X*(L-X)悬索垂度 F 悬索斜率 tg α=4*(F/L)*(L-X)悬索最大拉力 Tmax=H/COS α=H*SEC α2、活载内力:在集中荷载作用时,悬索的变形很大,为满足行车需要,需要通过桥面加劲梁来分布荷载,弯矩由桥面加劲梁来承担,悬索的变形与桥面加劲梁相同。
桥面加劲梁为弹性支承连续梁,它不便手工计算,采用有限单元法计算则方便。
(1)弹性理论:不考虑在恒载和活载的共同作用下产生的竖向变形和悬索水平拉力的增加。
加劲梁的弯矩:弹性理论 M=M-h*y式中:简支梁的活载弯矩M,悬索座标y,活载引起的水平拉力h。
(2)变位理论:考虑在恒载和活载的共同作用下产生的竖向变形和悬索水平拉力的增加,这种竖向变位与悬索的水平拉力所作的功,将减小桥面加劲梁的弯矩。
加劲梁的弯矩:变位理论 M=M-h*y-(H-h)*v 式中:活载产生的撓度v二、自锚式悬索桥计算原理自锚式悬索桥的内力计算复杂,应采用非线性有限单元法来计算。
对于几何可变的缆索单元,需作加大弹性模量的应力刚化处理。
悬索作为几何可变体系,活载作用的变形影响很大,是非线性变形影响的主要因素。
本文采用线性有限单元法作简化计算的方法,是先按线性程序计算出活载撓度,修正活载撓度的座标以后,再用线性有限单元法作迭代计算。
即采自锚式悬索桥计算可采用有限单元程序解决,而施工矛盾很突出,需要寻求合理的施工办法。
采用复合钢管砼、钢管砼、加劲钢管作加劲梁,配合钢筋砼或正交异性板钢桥面,能够解决自锚式悬索桥存在的问题。
按照一般桥梁的常用形式,城市桥梁可以加设悬挑人行道,作了系列跨径的探索计算,以探求自锚式悬索桥大、中、小跨径的内力变化和变形规律。