自锚式悬索桥的特点与计算
- 格式:doc
- 大小:3.05 MB
- 文档页数:7
一. 自锚式悬索桥简介1. 自锚式悬索桥概述自锚式悬索桥不同于一般的悬索桥,它不需要庞大的锚碇,而是把主缆锚固在加劲梁的两端,用加劲梁来承担主缆的水平分力[1]。
因此,端部支撑只需承担拉索的竖向分力,这给不方便建造锚碇的地方修建悬索桥提供了一种解决方法。
因为加劲梁要承担索力,所以一般情况下,加劲梁先于主缆架设之前完成施工,这种与一般悬索桥相反的施工顺序使这种桥梁目前还只局限于中等跨径。
不同于一般的悬索桥,自锚式悬索桥的计算必须考虑主梁中轴力的影响,因此设计师和有关学者也探索出,并不断地完善各种适用于自锚式悬索桥的设计理论和施工控制理论。
本文首先回顾一下这种桥型的发展历史。
1.1 自锚式悬索桥的发展历史19世纪后半叶,奥地利工程师约瑟夫·朗金和美国工程师查理斯·本德分别独立地构思出自锚式悬索桥的造型。
朗金首先在1859年写出了这种设想,本德在1867年申请了专利。
1870年朗金在波兰建造了一座小型的铁路自锚式悬索桥。
尽管他们都没有直接影响未来的设计,但20世纪初期自锚式悬索桥已经在德国兴起。
图1.1.1 德国1915年修建的科隆-迪兹桥Fig. 1.1.1 Original 1915 Cologne-Deutz Bridge in Germany1915年,德国设计师在科隆的莱茵河上建造了第一座大型自锚式悬索桥(图1.1.1)。
这座科隆-迪兹桥主跨185m,用临时木脚手架支撑钢梁直到主缆就位。
在它建成后的15年里影响了其它桥梁的设计,这种创新的设计思想得到了美国和日本等世界各国工程师们的关注。
美国宾夕法尼亚州匹兹堡跨越阿勒格尼河的3座桥,日本东京的清洲桥都与科隆-迪兹桥外型非常相似。
科隆-迪兹桥在1945年被毁,而原来桥台上的钢箱梁仍保存至今。
匹兹堡的三座悬索桥虽然比科隆-迪兹桥的跨径小,但施工技术有了很大的进步,并且采用了悬臂施工的新方法。
德国莱茵河上科隆-迪兹桥建成后25年间又修建了4座悬索桥,最著名的是1929年建成的科隆-米尔海姆桥,主跨315m,虽然该桥在1945年被毁,但它将自锚式悬索桥跨径的记录保持到21世纪。
自锚式悬索桥的力学特性分析自锚式悬索桥是一种重要的桥梁结构,它具有轻巧的桥墩、优良的抗震性能、通高、高过行限制车辆的受限空间,以及在工况等方面具有良好的可行性,在各种地质环境中具有广泛的应用前景。
然而,自锚式悬索桥本身具有复杂的力学结构,研究其力学特性分析对于它的研究和应用具有重要意义。
一、自锚式悬索桥的结构特征自锚式悬索桥的结构主要包括桥面系统、桥墩系统和支撑系统,其结构特征是桥面只有两条悬索索绳,桥墩只有两个大型节点和几个小型节点,而支撑系统可以表示为支撑桁架。
桥墩由双T型混凝土壁板组成,桁架由钢柱、钢架、橡胶弹簧和其他配件组成,两条悬索索绳分别由桥墩上固定的支撑系统把桥面拉起,使它得以实现。
二、自锚式悬索桥的力学特性分析1.桁架的振动特性桥墩的支撑系统是自锚式悬索桥的关键,它们是结构的支撑点,支撑系统的振动特性是自锚式悬索桥力学特性分析的基础。
因此,桁架的振动特性是自锚式悬索桥安全性的重要指标,它可以从两个方面进行分析,一是桥梁自身振动,即桁架因结构自身强度不足而引起的结构局部振动;二是桁架对其他结构的影响,即桁架影响其他结构的振动,从而影响桥梁的安全性。
2.悬索索绳的受力特性悬索索绳是自锚式悬索桥的重要结构构件,其受力特性是悬索桥力学特性分析的重要指标。
索绳的受力特性不仅受桥梁的荷载影响,还受线材质量、设计参数等因素的影响,因此对索绳的受力特性进行全面分析,是研究自锚式悬索桥力学特性的重要环节。
三、自锚式悬索桥的力学性能分析1.线杆弯曲变形分析悬索桥的支撑系统不仅需要承受自身重量和桥面荷载,还要承受索绳的力,悬索桥的支撑系统受线杆弯曲变形是比较明显的。
当桁架受压时,会出现弯曲变形,这种变形可以分解为两个部分:一是支撑系统的位移变形,即线杆本身的弯曲变形;二是桁架自身的变形,即桁架体系在整体受力作用下产生的变形。
2.悬索索绳的应力分析悬索索绳是自锚式悬索桥的重要结构构件,它的受力状况直接影响着桥梁的安全性。
目录4.2.4.1.结构总体静力计算分析 (1)(1)主要构件材料及性能 (1)①混凝土 (1)②结构钢材 (1)③主缆用钢材 (1)④吊索用钢材 (1)(2)全桥成桥状态计算 (2)①计算方法及模型 (2)②计算荷载及组合 (3)③刚度计算结果 (3)④强度计算结果 (4)4.2.4.2.结构稳定计算分析 (6)(1)计算模型及方法 (6)(2)荷载及组合 (6)(3)计算结果 (6)4.2.4.3.结构动力特性计算分析 (7)(1)计算模型及方法 (7)(2)计算结果 (7)4.2.4.4.结构抗震计算分析 (8)(1)结构抗震设防标准 (8)(2)计算参数选取 (8)①下水平向地震动参数 (8)②竖向地震动参数 (8)③结构阻尼比的取值 (9)(3)地震组合 (9)(4)计算模型 (9)(5)计算结果 (9)4.2.4.5.结构抗风计算分析 (9)(1)设计风速确定 (9)(2)颤振稳定性计算分析 (10)①颤振临界风速确定 (10)②颤振稳定性分析 (11)(3)静风稳定性计算分析 (11)①二维静风扭转发散分析 (11)②二维横向屈曲发散分析 (12)(4)静风荷载计算分析 (13)4.2.4 自锚式悬索桥结构计算分析4.2.4.1.结构总体静力计算分析(1)主要构件材料及性能①混凝土索塔采用C50混凝土,边墩采用C40混凝土,承台及桩基采用C30混凝土,各种标号混凝土主要力学性能见下表。
混凝土标号C50 C40 C30应用结构索塔及塔上横梁过渡墩承台力学性能弹性模量E(MPa) 34500 32500 30000剪切模量G(MPa) 13800 13000 12000 泊松比γ0.2 0.2 0.2 轴心抗压设计强度(MPa) 22.4 18.4 13.8抗拉设计强度(MPa) 1.83 1.65 1.39热膨胀系数(℃) 0.000010 0.000010 0.000010 主梁及桥塔横梁采用Q345qD 钢材。
自锚式悬索桥的综述一、悬索桥的介绍悬索桥是一种结构独特、形式美观的桥梁,常见于峡谷、河流、海湾等地形复杂的地区。
基本的构造是利用主悬索和辅助悬索的组合,使桥梁跨越河谷、山峰或凹地,形成一条能够承载车辆和行人交通的道路。
目前悬索桥已成为桥梁工程领域的代表性建筑之一。
悬索桥根据其支撑方式的不同可以分为自锚式、钢管式、混凝土箱形等多种类型。
本文主要介绍自锚式悬索桥。
二、自锚式悬索桥的特点自锚式悬索桥是一种挂设在位置固定的桥墩上的悬索桥,其特点主要在于下部构件可以直接以锚固方式固定在河床、桥墩或其他位置。
因此,自锚式悬索桥不需要准备大型基础或钢管桩,也不用使用复杂的鼓型钢管。
此外,自锚式悬索桥的上部构件比较柔软,可以在桥梁发生大量变形时进行适当调整,从而保证桥梁的整体稳定性。
自锚式悬索桥不仅具有良好的适应性和稳定性,而且建设难度低,非常受到人们的欢迎。
三、自锚式悬索桥的结构自锚式悬索桥的主悬索是由一系列高强度细钢线构成的。
主悬索的锚固点通常设置在桥墩处,下级锚固点则悬挂在主悬索两端的墩柱上。
桥梁的其他部分包括主梁、侧拱、横梁、悬索和牵引索等。
自锚式悬索桥的主梁通常是钢箱梁,侧拱作为主梁的辅助结构,与横梁相连。
悬索的作用是保持桥梁的平衡和稳定,而牵引索则是将桥梁的水平力传递给桥墩。
四、自锚式悬索桥的优缺点自锚式悬索桥具有以下优点:1.建设成本低:自锚式悬索桥的基础建设相对较少,结构简单且容易锚固,因此建设成本比其他悬索桥更低;2.适应性强:自锚式悬索桥的地基要求不高,建设灵活,适应性较强,能够适应复杂的地形地貌和环境条件;3.稳定性高:自锚式悬索桥的主悬索锚固点设置在固定的地基上,增加了桥梁的稳定性。
自锚式悬索桥的缺点包括:1.桥塔高度限制:自锚式悬索桥需要固定在桥塔上,而桥塔的高度存在一定的限制,因此自锚式悬索桥的跨径也受到限制。
2.自锚式悬索桥的支承方式:由于自锚式悬索桥有一部分结构是悬挂在桥塔上,因此其支承方式受到限制,无法承受较大的水平荷载。
自锚式悬索桥的综述【摘要】自锚式悬索桥是一种具有独特结构特点的桥梁形式,其重要性在于可以跨越大跨度的河流或峡谷,提高交通效率。
本文首先介绍了自锚式悬索桥的背景和发展历史,接着分析了其结构特点、优缺点、设计原则以及建造工艺。
还探讨了自锚式悬索桥在不同应用领域的具体运用情况。
结合现有研究成果,展望了自锚式悬索桥未来的发展方向和发展前景。
该文章对了解自锚式悬索桥的技术特点、利用价值和未来发展趋势具有一定的参考意义。
【关键词】自锚式悬索桥,结构特点,优点,缺点,设计原则,建造工艺,应用领域,发展历史,未来发展方向,影响和意义,发展前景。
1. 引言1.1 介绍自锚式悬索桥的背景自锚式悬索桥是一种悬索桥的变种,其特点是悬索索塔由桥面而非地面支持。
这种独特的结构设计使得自锚式悬索桥在工程施工和桥梁设计上具有独特的优势和特点。
自锚式悬索桥的背景可以追溯到20世纪70年代,当时人们开始意识到传统的悬索桥设计存在一些局限性,例如在地震和风力等极端环境条件下的表现不佳。
自锚式悬索桥的设计理念是将悬索索塔直接连接到桥面结构,使得整个桥梁系统更加稳定和灵活。
这种设计方案不仅可以降低施工难度和成本,还可以提高桥梁的整体性能和抗震性能。
自锚式悬索桥的背景正是在这样的背景下逐渐兴起,成为桥梁工程领域中备受关注的研究方向。
随着科学技术的不断发展和桥梁工程的不断完善,自锚式悬索桥在国内外得到了广泛的应用和推广。
它不仅可以解决传统悬索桥存在的问题,还可以为世界各地的桥梁工程提供全新的设计思路和解决方案。
介绍自锚式悬索桥的背景将有助于我们更好地理解这种桥梁结构在现代工程领域中的重要性和价值。
1.2 阐明自锚式悬索桥的重要性自锚式悬索桥的广泛应用,可以有效地促进城市的建设和经济的发展。
在城市交通建设中,自锚式悬索桥可以作为重要的交通枢纽,连接两岸,缓解交通压力,提高通行效率。
自锚式悬索桥的美观性和艺术性也可以增强城市的形象和吸引力,成为城市的标志性建筑物,吸引游客和投资。
自锚式悬索桥吊索索力测试与计算方法
自锚式悬索桥是一种采用悬索和主塔之间均匀分布自锚式索杆的桥梁结构。
在
设计和建造自锚式悬索桥时,必须进行吊索索力测试和计算。
这一过程是确保悬索桥的结构安全性和稳定性的重要步骤。
吊索索力测试是通过施加不同的荷载并测量相应的吊索反力来确定悬索桥的索
力分布。
测试时,需要使用专业的测力仪器和设备进行测量,以获得准确的结果。
吊索索力计算是基于桥梁的几何形状、悬索材料的特性和外部荷载等因素,通
过理论计算来确定吊索的索力分布。
常用的计算方法包括静力学平衡法和有限元分析法。
静力学平衡法是一种基于平衡原理的计算方法,通过将桥梁视为整体系统,将
外部荷载与吊索索力之间的关系纳入计算。
该方法需要考虑桥梁的刚度和几何形状等因素,以得出合理的计算结果。
有限元分析法是一种基于数值模拟的计算方法,通过将桥梁划分为许多小单元,并考虑各个单元之间的相互作用来进行计算。
该方法可以更准确地模拟悬索桥的力学行为,但也需要更复杂的计算程序和专业软件的支持。
在进行吊索索力测试和计算时,需要考虑到悬索桥的实际使用情况、荷载情况
以及材料的力学特性等因素。
合理的测试和计算可以帮助工程师们确保悬索桥的结构安全,并为桥梁的设计和施工提供指导。
总结起来,吊索索力测试和计算方法是设计和建造自锚式悬索桥时不可或缺的
步骤。
通过科学合理的测试和计算,可以保障悬索桥的安全性和稳定性,为桥梁的使用和维护提供依据。
自锚式悬索桥的力学特性分析自锚式悬索桥是一种利用悬挂和锚固联合原理,利用钢丝绳、球墨
铸铁结构件悬挂桥梁来形成的桥梁形式。
它具有安装简便、自重轻、
抗震性能优良、维护维修方便、适应性强等优点,经常用于山谷和山
地地形较复杂地区建设的小型临河索道或者公路桥梁结构。
自锚式悬索桥的力学特性由悬索桥的基本机构获得,悬索桥的主
要组成部分包括悬挂组件、节点部件、立柱、悬索架及桥型等,悬挂
组件是桥梁主要构件,节点部件是桥梁接受和施加荷载、转移荷载的
环节,立柱是悬索桥的坚固支撑,而悬索架则是节点部件的垂直支撑,同时也是荷载的垂直传递手段。
悬索桥的主体结构中,节点部件的组合及悬索架的拉力对悬索桥
的力学性能有重要的影响,尤其是悬挂部分的扭转荷载和锚固部分的
轴力的拉力影响更为明显,因此,考虑悬挂部分的内力和轴力荷载以
及悬索架、立柱等结构件的抗力,进行结构整体力学分析,以确定桥
梁的受力特性,以明确桥梁的荷载性能、抗震能力等特点。
自锚式悬索桥要求工作时无外力作用,否则它的运动学参数将会
发生变化,影响到桥梁的稳定性,发生破坏。
因此,应该分析悬挂组
件的拉力及其整体效应,以确保桥的可使用性;同时,应考虑桥架位
变影响的结构框架的受力变化以及桥梁横向偏移对悬挂和锚固结构的
影响。
此外,需考虑自身的重量和气温变化对悬索架施加的拉力变化,
要及时检修,以确保构件健康状态,避免严重影响桥梁受力性能,以
及维持悬挂架及其锚固处的拉力分布均匀,确保桥梁的稳定和安全性。
综上所述,自锚式悬索桥的力学特性是桥梁的重要性能指标,它
的抗力能力的优劣关系到桥梁的设计、施工质量及使用寿命等重要性
能因素。
自锚式悬索桥缆索分析计算摘要:对于自锚式悬索桥结构来讲,主要承重构件是两根主缆。
由于主缆是不可更换构件,所以当主缆架设完毕以后,其空缆和成桥状态下的线形和无应力长度是不可调整的,或者说调整量甚微。
因此在施工过程中,必须准确的计算缆索系统的各项参数,以指导现场施工。
关键词:自锚式悬索桥;主缆;线形;无应力长度;缆索系统;参数Abstract: For the self-anchored suspension bridge, the main load-bearing components are two main cables. As the main cable can not be replaced, so after the main cable is built, the linear and non-stress length under empety and bridge formed is not adjusted, or the adjust is minimal. Therefore, in the construction process, the various parameters of cable system must be accurate calculated to guide the site construction.Key words: self-anchored suspension bridge; the main cable; linear; non-stress length; cable system; parameters1 工程概况江阴新沟河大桥起止桩号为K17+006.18~K17+763.22,全桥长757.04m,跨径组合为3×30+4×30+(30+40+100+40+30)+4×30+2×(3×30)m,其中主桥为混凝土自锚式悬索桥,东西引桥为混凝土连续箱梁。
自锚式悬索桥抗震理论及减振措施1.自锚式悬索桥简介1.1 悬索桥的适用范围自锚式悬索桥作为一种独特的柔性悬吊组合体系,有其自身的受力特点,其优点为:(1)不需要修建大体积的锚碇,所以特别适用于地质条件较差的地区;(2)受地形限制小,可结合地形灵活布置;(3)保留悬索桥美观,错落有致的线性,特别适合景观要求较高的城市桥梁;(4)钢筋混凝土的加劲梁在轴向压力下刚度有很大的提高,且后期养护较钢梁有很大的优势。
自锚式悬索桥也有其不足之处:(1)在较大轴压作用下,梁需要加大截面,会引起自重增大,限制了跨度;(2)施工步骤受到影响。
必须先制造主塔、加劲梁在安装主缆和吊杆,需要搭建大量的临时支架来建造加劲梁;(3)锚固区局部受力复杂;(4)受到主缆非线性影响,吊杆的张拉时施工控制困难;(5)加劲梁属于压弯构件,需提高刚度来保证稳定。
1.2 自锚式悬索桥的分类自锚式悬索桥的结构形式主要有三种:美式自锚式悬索桥、英式自锚式悬索桥及其他类型自锚式悬索桥。
(1)美式自锚式悬索桥美式自锚式悬索桥的基本特征为采用竖直吊杆。
采用钢桁架的自锚式悬索桥的加劲梁是连续的,以承受主缆传递的压力。
加劲梁可做成双层公铁两用。
可以调整钢桁架的高度来提高加劲梁的刚度以保证桥梁有足够的刚度。
此类自锚悬索桥的典型代表为韩国的永宗大桥。
(2)英式自锚式悬索桥此类悬索桥的基本特征是采用三角形的斜吊杆和刚度较小的流线形扁平翼状钢箱梁作为加劲梁,用钢筋混凝土塔代替钢塔,有的还将主缆和加劲梁在跨中固结。
其优点是钢箱梁可减轻恒荷载,因而减小了主缆截面,降低了用钢量。
钢箱梁抗扭刚度大,受到横向的风力较小,有利于抗风,并大大减小了桥塔所承受的横向力,缺点是三角形斜吊杆在吊点处的结构复杂。
此类自锚式悬索桥的典型代表为日本的此花大桥。
(3)其他类型的自锚式悬索桥其他类型的自锚式悬索桥采用了竖直吊杆和流线形钢箱梁作为加劲梁,加劲梁的材料可采用钢材或钢筋混凝土材料。
自锚式悬索桥施工技术指南1. 概述
1.1 自锚式悬索桥的定义及特点
1.2 自锚式悬索桥的适用范围
2. 设计准备
2.1 地质勘察与场地评估
2.2 荷载计算与结构分析
2.3 材料选择与规范要求
3. 基础施工
3.1 锚锭基础施工
3.2 墩柱基础施工
3.3 防护与排水措施
4. 主塔施工
4.1 主塔形式及结构设计
4.2 主塔施工工艺及控制
4.3 主塔质量检测与验收
5. 索面系统施工
5.1 索股制作与安装
5.2 索夹及附属装置安装
5.3 索面张拉与调整
6. 桥面系统施工
6.1 预制梁段制作与运输
6.2 桥面系统拼装与安装
6.3 伸缩缝及附属设施安装
7. 质量控制与安全管理
7.1 材料质量控制
7.2 施工质量控制
7.3 安全风险评估与管理
8. 维护与检测
8.1 日常维护与检修
8.2 定期检测与评估
8.3 加固与维修方案
9. 案例分析
9.1 国内外典型自锚式悬索桥工程案例 9.2 施工难点及解决方案
10. 发展前景与趋势
10.1 自锚式悬索桥的发展历程
10.2 未来发展趋势与展望。
自锚式悬索桥的综述构建拥有一定规模的桥梁工程是城市化进程中的必要组成部分,而自锚式悬索桥,在工程技术上具备了一定的发展前景。
因此,本文将从建筑专家的角度,对自锚式悬索桥进行综述。
本文将从以下五个方面进行分析:一、自锚式悬索桥的概述自锚式悬索桥属于现代化悬索桥的一种类型,建造时可以脱离传统锚具的使用。
它是一种连结两边大陆的现代桥梁工程,主跨向形为悬索,以悬挂索的方式连接于下放缆,并由自锚装置和主塔的承载力共同支撑,支撑物的内容质调配要求较高。
自锚式悬索桥是一种跨度较长的桥梁,其制造需要更高的技术和材料。
由于其结构特性,使得该类桥梁能够承受较大的荷载,并且在不牺牲桥梁的整体强度情况下,可以达到优秀的流畅性和结构简单性。
二、自锚式悬索桥的优点自锚式悬索桥具有以下优点:1. 结构简单通常自锚式悬索桥只有一至两个塔,整体结构简单明了,操作简洁,维护也方便;2.纤维混凝土是一种有效的材料,不仅强度和韧性都很高,并且可以使悬索桥的跨度实现大规模的变化;3. 确保桥梁强度,减少维护成本;4. 具有良好的自锚定能力,降低了工期,省去了锚具的使用,减少了成本;5. 对于环境遮挡物的压力较强,在自锚式悬索桥的支撑下,协同优化来使对气象条件的自适应性更强;三、自锚式悬索桥的缺点1. 建造难度大,需要高精度的制造过程;2. 需要高质量材料,建造成本较高;3. 需要对环境条件进行严格的考虑和设计,如风、雨、地震等灾害;四、自锚式悬索桥的工程实例分析1. 汉江大桥(中华人民共和国第一长跨钢斜拉桥),主跨1104米,总长1670米,建于1993-1995年间,位于中国河南省郑州市新郑市汝河之下。
2. 宝华山双塔拱桥,是中国目前仅存的悬索桥桁架结构的一座大跨度悬索桥,主跨660米,总长1299.5米,位于四川省巴中市南江县。
3. 大澳大桥,位于香港新界西贡区,是一座容纳行人、自行车和车辆的悬索桥,主跨180米,总长610米,建于1997年。
目录自锚式悬索桥施工 (1)一、前言 (1)1.概况: (1)2.自锚式悬索桥结构受力及施工特点概述 (1)3.发展历程: (3)二、施工工艺方法及其重点 (6)1.主塔施工: (6)2.鞍部施工: (6)3.加劲梁施工: (7)4.锚跨/锚块施工 (10)5.主缆施工: (10)6.主缆吊杆施工 (11)三、监理质量控制重点及措施 (13)1.悬索桥锚跨/锚碇施工 (14)2.悬索桥塔柱施工监理要点 (15)3.悬索桥钢箱梁的制作 (17)4.悬索桥钢箱梁的安装 (21)5.悬索桥主缆系统制作安装 (26)6.大跨度自锚式悬索桥施工监测监控和吊杆的加载控制 (33)7. 自锚式悬索桥施工质量标准 (36)自锚式悬索桥施工一、前言悬索桥的桥面支承在悬吊的主缆上,而主缆则一般锚固于巨大的地下锚碇。
相对地锚式悬索桥而言,如果将主缆直接锚固在加劲梁端部,从而取消了庞大的锚碇,就成为自锚式悬索桥。
对于地基基础很差的地区可采用自锚式体系代替地锚式体系建造悬索桥。
1.概况:自锚式悬索桥的加劲梁大多采用钢结构,如1990年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥等。
我国近十年发展很快,2000年来我国已相继建成二十余座风格各异的自锚式悬索桥,加劲梁分别采用钢桁梁、钢箱梁和混凝土梁。
例如广东佛山平胜大桥,2006年10月建成,独塔单跨四索面自锚式悬索桥,主跨350米跨径为同类型桥梁世界第一,钢箱加劲梁采用顶推施工;河南桃花峪黄河大桥主跨达406m,2010年3月开工,预计2013年6月建成,钢箱加劲梁、边锚固跨采用混凝土,后改为钢锚梁;在建的哈尔滨松花江大桥和即将开工的武汉市江汉六桥则为钢-混凝土组合梁。
中国大连金石滩金湾桥是世界上第一座钢筋混凝土加劲梁的自锚式悬索桥,于2002年7月建成,此后吉林、辽宁、浙江又有多座钢筋混凝土自锚式悬索桥相继设计和建造。
2.自锚式悬索桥结构受力及施工特点概述自锚式悬索桥结构是主缆通过自身结构体系的锚梁和加劲梁锚固并承受和分布主缆反力的悬索桥结构。
哈尔滨工业大学毕业设计(论文)摘要自锚式悬索桥作为一种特殊悬索桥桥型,在沉寂了多年之后,现在又重新引起工程界的兴趣。
它保留了传统的悬索桥桥型,以其优美的外形受到工程师们的青睐。
但此种桥型结构复杂,国内外对其研究的资料和成果也很少。
本文主要是对一座中等跨度的正在施工中的混凝土自锚式悬索桥—抚顺万新桥进行设计和计算分析。
1. 理想索力的计算。
悬索桥一般要求恒载作用下索力均匀,这样弯矩和剪力就分布均匀。
此桥主塔采用滑动索鞍以及有一定的预偏量,所以桥塔在恒载作用下不受弯,调索时只需控制主梁的弯矩。
使主梁弯矩尽量上下均匀,可得吊索的理想索力。
2. 主梁的计算。
自锚式悬索桥是将主缆直接锚固于加劲梁的两端,所以求得的主梁的轴力很大,主梁的纵向只需配置普通钢筋。
3. 桥面板的计算。
桥面板为双向板,按双向板求内力配筋。
关键词混凝土,自锚式,悬索桥,设计- I -哈尔滨工业大学毕业设计(论文)AbstractAs a particular kind of suspension bridge, self-anchored suspension bridge has made an appearance in field of engineering after years’ dreariness. Preserving shape of traditional suspension bridge, it causes the engineer’s favor by its elegant figure. Howener, due to complexity of its structure, there are little research data or achievement at home and abroad. This paper has put emphasis on design and computational analysis to a middle-span concrete self-anchored suspension bridge in construction—Fu Shun Wan Xin Bridge are done.1. Calculation of the reasonal force of cable.The suspension bridge is commonly required the force of cable are uniformity when the dead load acted on the bridge. Then the shear and bending moment will distribute uniformly. The tower of this bridge adopts a sliping saddle and there are some declinations. Therefore the bridge tower doesn’t has bending moment when the dead load acted on the bridge.When we adjust the force of the cable, we just need control the bending moment of the girder. If the distribution of the girder bending moment is uniformly,the force of the cable is the reasonal force of cable.2. Calculation of girder. self-anchored suspension bridge, the cable anchored at the two ends of the girder directly, so the axial-force of the girder is very great Therefore the girder only need ordinary reinforcing bar.3. Calculation of deck slab. The deck slab is two-way slab, wo need calculate the deck slab according to the two-way slab.Keywords concrete, self-anchored, suspension bridge, design- II -哈尔滨工业大学毕业设计(论文)目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景 (1)1.1.1自锚式悬索桥的发展概况 (1)1.1.2 自锚式悬索桥的特点 (2)1.1.3设计的主要内容 (3)第2章总体设计和构造形式的选择 (4)2.1大桥概况 (4)2.2总体设计及构造形式的选择 (4)2.2.1 结构体系 (4)2.2.2 构造形式 (4)2.3主桥施工方法 (5)第3章 理想索力的计算 (6)3.1 恒载集度计算 (6)3.2吊索的理想索力计算 (6)3.3索力调整的分析 (7)3.3.1静载作用下索力调整的分析 (7)3.3.2考虑活载作用索力调整的分析 (9)第4章主梁内力计算 (11)4.1恒载内力计算 (11)4.2 活载内力计算 (15)4.2.1横向分布系数计算 (23)4.2.2活载内力计算 (24)4.3温度内力计算 (28)4.4收缩、徐变 (29)4.5荷载组合画内力包络图 (29)第5章主梁配筋计算 (36)5.1 本章小结 (36)5.2 截面配筋 (36)- III -哈尔滨工业大学毕业设计(论文)5.3截面验算 (41)5.3.1垂直于弯矩作用平面内的截面复核 (41)5.3.2弯矩作用平面内的截面复核 (42)5.4应力验算 (44)5.5挠度验算 (50)第6章横梁及桥面板计算 (51)6.1 横梁计算 (51)6.1.1 预应力损失计算 (52)6.1.2 应力验算 (55)6.1.3 截面强度验算 (59)6.2 桥面板计算 (60)结论 (66)致谢 (67)参考文献 (68)附录1 (69)附录2 (76)- IV -哈尔滨工业大学毕业设计(论文)第1章绪论1.1课题背景1.1.1自锚式悬索桥的发展概况1.1.1.1前言 自锚式悬索桥不同于一般的悬索桥,它不需要庞大的锚碇,而是把主缆直接锚固到桥面板或加劲梁的两端,由它们来承担主缆中的水平力。