自锚式悬索桥
- 格式:doc
- 大小:49.50 KB
- 文档页数:9
一. 自锚式悬索桥简介1. 自锚式悬索桥概述自锚式悬索桥不同于一般的悬索桥,它不需要庞大的锚碇,而是把主缆锚固在加劲梁的两端,用加劲梁来承担主缆的水平分力[1]。
因此,端部支撑只需承担拉索的竖向分力,这给不方便建造锚碇的地方修建悬索桥提供了一种解决方法。
因为加劲梁要承担索力,所以一般情况下,加劲梁先于主缆架设之前完成施工,这种与一般悬索桥相反的施工顺序使这种桥梁目前还只局限于中等跨径。
不同于一般的悬索桥,自锚式悬索桥的计算必须考虑主梁中轴力的影响,因此设计师和有关学者也探索出,并不断地完善各种适用于自锚式悬索桥的设计理论和施工控制理论。
本文首先回顾一下这种桥型的发展历史。
1.1 自锚式悬索桥的发展历史19世纪后半叶,奥地利工程师约瑟夫·朗金和美国工程师查理斯·本德分别独立地构思出自锚式悬索桥的造型。
朗金首先在1859年写出了这种设想,本德在1867年申请了专利。
1870年朗金在波兰建造了一座小型的铁路自锚式悬索桥。
尽管他们都没有直接影响未来的设计,但20世纪初期自锚式悬索桥已经在德国兴起。
图1.1.1 德国1915年修建的科隆-迪兹桥Fig. 1.1.1 Original 1915 Cologne-Deutz Bridge in Germany1915年,德国设计师在科隆的莱茵河上建造了第一座大型自锚式悬索桥(图1.1.1)。
这座科隆-迪兹桥主跨185m,用临时木脚手架支撑钢梁直到主缆就位。
在它建成后的15年里影响了其它桥梁的设计,这种创新的设计思想得到了美国和日本等世界各国工程师们的关注。
美国宾夕法尼亚州匹兹堡跨越阿勒格尼河的3座桥,日本东京的清洲桥都与科隆-迪兹桥外型非常相似。
科隆-迪兹桥在1945年被毁,而原来桥台上的钢箱梁仍保存至今。
匹兹堡的三座悬索桥虽然比科隆-迪兹桥的跨径小,但施工技术有了很大的进步,并且采用了悬臂施工的新方法。
德国莱茵河上科隆-迪兹桥建成后25年间又修建了4座悬索桥,最著名的是1929年建成的科隆-米尔海姆桥,主跨315m,虽然该桥在1945年被毁,但它将自锚式悬索桥跨径的记录保持到21世纪。
自锚式悬索桥的力学特性分析自锚式悬索桥是一种重要的桥梁结构,它具有轻巧的桥墩、优良的抗震性能、通高、高过行限制车辆的受限空间,以及在工况等方面具有良好的可行性,在各种地质环境中具有广泛的应用前景。
然而,自锚式悬索桥本身具有复杂的力学结构,研究其力学特性分析对于它的研究和应用具有重要意义。
一、自锚式悬索桥的结构特征自锚式悬索桥的结构主要包括桥面系统、桥墩系统和支撑系统,其结构特征是桥面只有两条悬索索绳,桥墩只有两个大型节点和几个小型节点,而支撑系统可以表示为支撑桁架。
桥墩由双T型混凝土壁板组成,桁架由钢柱、钢架、橡胶弹簧和其他配件组成,两条悬索索绳分别由桥墩上固定的支撑系统把桥面拉起,使它得以实现。
二、自锚式悬索桥的力学特性分析1.桁架的振动特性桥墩的支撑系统是自锚式悬索桥的关键,它们是结构的支撑点,支撑系统的振动特性是自锚式悬索桥力学特性分析的基础。
因此,桁架的振动特性是自锚式悬索桥安全性的重要指标,它可以从两个方面进行分析,一是桥梁自身振动,即桁架因结构自身强度不足而引起的结构局部振动;二是桁架对其他结构的影响,即桁架影响其他结构的振动,从而影响桥梁的安全性。
2.悬索索绳的受力特性悬索索绳是自锚式悬索桥的重要结构构件,其受力特性是悬索桥力学特性分析的重要指标。
索绳的受力特性不仅受桥梁的荷载影响,还受线材质量、设计参数等因素的影响,因此对索绳的受力特性进行全面分析,是研究自锚式悬索桥力学特性的重要环节。
三、自锚式悬索桥的力学性能分析1.线杆弯曲变形分析悬索桥的支撑系统不仅需要承受自身重量和桥面荷载,还要承受索绳的力,悬索桥的支撑系统受线杆弯曲变形是比较明显的。
当桁架受压时,会出现弯曲变形,这种变形可以分解为两个部分:一是支撑系统的位移变形,即线杆本身的弯曲变形;二是桁架自身的变形,即桁架体系在整体受力作用下产生的变形。
2.悬索索绳的应力分析悬索索绳是自锚式悬索桥的重要结构构件,它的受力状况直接影响着桥梁的安全性。
自锚式悬索桥的综述一、悬索桥的介绍悬索桥是一种结构独特、形式美观的桥梁,常见于峡谷、河流、海湾等地形复杂的地区。
基本的构造是利用主悬索和辅助悬索的组合,使桥梁跨越河谷、山峰或凹地,形成一条能够承载车辆和行人交通的道路。
目前悬索桥已成为桥梁工程领域的代表性建筑之一。
悬索桥根据其支撑方式的不同可以分为自锚式、钢管式、混凝土箱形等多种类型。
本文主要介绍自锚式悬索桥。
二、自锚式悬索桥的特点自锚式悬索桥是一种挂设在位置固定的桥墩上的悬索桥,其特点主要在于下部构件可以直接以锚固方式固定在河床、桥墩或其他位置。
因此,自锚式悬索桥不需要准备大型基础或钢管桩,也不用使用复杂的鼓型钢管。
此外,自锚式悬索桥的上部构件比较柔软,可以在桥梁发生大量变形时进行适当调整,从而保证桥梁的整体稳定性。
自锚式悬索桥不仅具有良好的适应性和稳定性,而且建设难度低,非常受到人们的欢迎。
三、自锚式悬索桥的结构自锚式悬索桥的主悬索是由一系列高强度细钢线构成的。
主悬索的锚固点通常设置在桥墩处,下级锚固点则悬挂在主悬索两端的墩柱上。
桥梁的其他部分包括主梁、侧拱、横梁、悬索和牵引索等。
自锚式悬索桥的主梁通常是钢箱梁,侧拱作为主梁的辅助结构,与横梁相连。
悬索的作用是保持桥梁的平衡和稳定,而牵引索则是将桥梁的水平力传递给桥墩。
四、自锚式悬索桥的优缺点自锚式悬索桥具有以下优点:1.建设成本低:自锚式悬索桥的基础建设相对较少,结构简单且容易锚固,因此建设成本比其他悬索桥更低;2.适应性强:自锚式悬索桥的地基要求不高,建设灵活,适应性较强,能够适应复杂的地形地貌和环境条件;3.稳定性高:自锚式悬索桥的主悬索锚固点设置在固定的地基上,增加了桥梁的稳定性。
自锚式悬索桥的缺点包括:1.桥塔高度限制:自锚式悬索桥需要固定在桥塔上,而桥塔的高度存在一定的限制,因此自锚式悬索桥的跨径也受到限制。
2.自锚式悬索桥的支承方式:由于自锚式悬索桥有一部分结构是悬挂在桥塔上,因此其支承方式受到限制,无法承受较大的水平荷载。
自锚式悬索桥的综述【摘要】自锚式悬索桥是一种具有独特结构特点的桥梁形式,其重要性在于可以跨越大跨度的河流或峡谷,提高交通效率。
本文首先介绍了自锚式悬索桥的背景和发展历史,接着分析了其结构特点、优缺点、设计原则以及建造工艺。
还探讨了自锚式悬索桥在不同应用领域的具体运用情况。
结合现有研究成果,展望了自锚式悬索桥未来的发展方向和发展前景。
该文章对了解自锚式悬索桥的技术特点、利用价值和未来发展趋势具有一定的参考意义。
【关键词】自锚式悬索桥,结构特点,优点,缺点,设计原则,建造工艺,应用领域,发展历史,未来发展方向,影响和意义,发展前景。
1. 引言1.1 介绍自锚式悬索桥的背景自锚式悬索桥是一种悬索桥的变种,其特点是悬索索塔由桥面而非地面支持。
这种独特的结构设计使得自锚式悬索桥在工程施工和桥梁设计上具有独特的优势和特点。
自锚式悬索桥的背景可以追溯到20世纪70年代,当时人们开始意识到传统的悬索桥设计存在一些局限性,例如在地震和风力等极端环境条件下的表现不佳。
自锚式悬索桥的设计理念是将悬索索塔直接连接到桥面结构,使得整个桥梁系统更加稳定和灵活。
这种设计方案不仅可以降低施工难度和成本,还可以提高桥梁的整体性能和抗震性能。
自锚式悬索桥的背景正是在这样的背景下逐渐兴起,成为桥梁工程领域中备受关注的研究方向。
随着科学技术的不断发展和桥梁工程的不断完善,自锚式悬索桥在国内外得到了广泛的应用和推广。
它不仅可以解决传统悬索桥存在的问题,还可以为世界各地的桥梁工程提供全新的设计思路和解决方案。
介绍自锚式悬索桥的背景将有助于我们更好地理解这种桥梁结构在现代工程领域中的重要性和价值。
1.2 阐明自锚式悬索桥的重要性自锚式悬索桥的广泛应用,可以有效地促进城市的建设和经济的发展。
在城市交通建设中,自锚式悬索桥可以作为重要的交通枢纽,连接两岸,缓解交通压力,提高通行效率。
自锚式悬索桥的美观性和艺术性也可以增强城市的形象和吸引力,成为城市的标志性建筑物,吸引游客和投资。
自锚式悬索桥的综述的开题报告
开题报告
题目:自锚式悬索桥综述
一、选题背景
随着人们生活水平的不断提高,交通运输的需求也越来越大,特别是在山区、水域等复杂地形的交通建设和桥梁建设中,如何提高工程质量和减少施工成本,成为了一个重要的问题。
自锚式悬索桥是一种新型的桥梁结构,其特点是完全没有主缆或拉索,支撑索以及主要构件都可由钢筋混凝土制成,能够大大减少成本,提高工程效率,因此这种桥梁结构在实际工程中得到了广泛应用。
二、选题意义
自锚式悬索桥是一种具有特殊结构的桥梁,其采用特殊的结构形式和新型材料,能够在复杂地形中实现大跨度、大载荷的通行,具有较高的适应能力和通行性能。
因此,对其结构原理、特点和应用情况的全面了解及研究,对于推广该结构、提高桥梁建设水平、促进交通运输事业的发展都有着积极的意义。
三、研究内容
本综述主要包括:
1. 自锚式悬索桥的定义和发展历程。
2. 自锚式悬索桥的结构原理和技术特点。
3. 自锚式悬索桥的优点和不足,以及在实际工程中的应用情况。
4. 自锚式悬索桥的未来发展方向和研究方向。
四、研究方法
本综述采用文献研究法,主要通过查阅网络数据库、图书、文献等途径,收集和梳理相关资料,在此基础上系统分析和总结自锚式悬索桥的结构原理、特点、应用情况等方面的内容。
五、预期成果
本综述将系统介绍自锚式悬索桥的特点、原理和应用情况,分析其在实际工程中的优缺点,并提出未来发展方向和研究方向,以期对于促进桥梁建设技术的进步和发展起到推动作用,促进人们对于自锚式悬索桥的认识和理解。
自锚式悬索桥的力学特性分析自锚式悬索桥是一种利用悬挂和锚固联合原理,利用钢丝绳、球墨
铸铁结构件悬挂桥梁来形成的桥梁形式。
它具有安装简便、自重轻、
抗震性能优良、维护维修方便、适应性强等优点,经常用于山谷和山
地地形较复杂地区建设的小型临河索道或者公路桥梁结构。
自锚式悬索桥的力学特性由悬索桥的基本机构获得,悬索桥的主
要组成部分包括悬挂组件、节点部件、立柱、悬索架及桥型等,悬挂
组件是桥梁主要构件,节点部件是桥梁接受和施加荷载、转移荷载的
环节,立柱是悬索桥的坚固支撑,而悬索架则是节点部件的垂直支撑,同时也是荷载的垂直传递手段。
悬索桥的主体结构中,节点部件的组合及悬索架的拉力对悬索桥
的力学性能有重要的影响,尤其是悬挂部分的扭转荷载和锚固部分的
轴力的拉力影响更为明显,因此,考虑悬挂部分的内力和轴力荷载以
及悬索架、立柱等结构件的抗力,进行结构整体力学分析,以确定桥
梁的受力特性,以明确桥梁的荷载性能、抗震能力等特点。
自锚式悬索桥要求工作时无外力作用,否则它的运动学参数将会
发生变化,影响到桥梁的稳定性,发生破坏。
因此,应该分析悬挂组
件的拉力及其整体效应,以确保桥的可使用性;同时,应考虑桥架位
变影响的结构框架的受力变化以及桥梁横向偏移对悬挂和锚固结构的
影响。
此外,需考虑自身的重量和气温变化对悬索架施加的拉力变化,
要及时检修,以确保构件健康状态,避免严重影响桥梁受力性能,以
及维持悬挂架及其锚固处的拉力分布均匀,确保桥梁的稳定和安全性。
综上所述,自锚式悬索桥的力学特性是桥梁的重要性能指标,它
的抗力能力的优劣关系到桥梁的设计、施工质量及使用寿命等重要性
能因素。
自锚式悬索桥的综述(1)摘要:关键词:悬索桥;自锚式体系;施工;实例一、前言一般索桥的主要承重构件主缆都锚固在锚碇上,在少数情况下,为满足特殊的设计要求,也可将主缆直接锚固在加劲梁上,从而取消了庞大的锚碇,变成了自锚式悬索桥。
过去建造的自锚式悬索桥加劲梁大多采用钢结构,如1990 年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥墩等。
2002年7月在大连建成了世界上第一座钢筋混凝土材料的自锚式悬索桥——金石滩金湾桥墩,为该类桥墩型的研究提供了宝贵的经验。
此后在吉林、河北、辽宁又有4座钢筋混凝土自锚式悬索桥正在设计和设计和建造中。
自锚式悬索桥有以下的优点:①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。
②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,了可做成单塔双跨的悬索桥。
③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。
④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。
⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。
⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。
自锚式悬索桥也不可避免地有其自身的缺点:①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。
②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊索,因此需要搭建大量临时支架以安装加劲梁。
所以自锚式悬索桥若跨径增大,其额外的施工费用就会增多。
③锚固区局部受力复杂。
④ 相对地锚式悬索桥而言,由于主缆非线性的影响,使得吊杆张拉时的施工控制更加复杂。
自锚式悬索桥的特点与计算一、悬索桥计算原理1、恒载内力:柔性的悬索在均布荷载作用下,为抛物线形。
悬索的承载原理,功能等价于同等跨径的简支梁。
简支梁的跨中弯矩 M=QL²/8悬索拉力作功 M=H*F悬索水平拉力 H= QL²/(8*F)悬索座标 Y=4*(F/ L²)*X*(L-X)悬索垂度 F 悬索斜率 tg α=4*(F/L)*(L-X)悬索最大拉力 Tmax=H/COS α=H*SEC α2、活载内力:在集中荷载作用时,悬索的变形很大,为满足行车需要,需要通过桥面加劲梁来分布荷载,弯矩由桥面加劲梁来承担,悬索的变形与桥面加劲梁相同。
桥面加劲梁为弹性支承连续梁,它不便手工计算,采用有限单元法计算则方便。
(1)弹性理论:不考虑在恒载和活载的共同作用下产生的竖向变形和悬索水平拉力的增加。
加劲梁的弯矩:弹性理论 M=M-h*y式中:简支梁的活载弯矩M,悬索座标y,活载引起的水平拉力h。
(2)变位理论:考虑在恒载和活载的共同作用下产生的竖向变形和悬索水平拉力的增加,这种竖向变位与悬索的水平拉力所作的功,将减小桥面加劲梁的弯矩。
加劲梁的弯矩:变位理论 M=M-h*y-(H-h)*v 式中:活载产生的撓度v二、自锚式悬索桥计算原理自锚式悬索桥的内力计算复杂,应采用非线性有限单元法来计算。
对于几何可变的缆索单元,需作加大弹性模量的应力刚化处理。
悬索作为几何可变体系,活载作用的变形影响很大,是非线性变形影响的主要因素。
本文采用线性有限单元法作简化计算的方法,是先按线性程序计算出活载撓度,修正活载撓度的座标以后,再用线性有限单元法作迭代计算。
即采自锚式悬索桥计算可采用有限单元程序解决,而施工矛盾很突出,需要寻求合理的施工办法。
采用复合钢管砼、钢管砼、加劲钢管作加劲梁,配合钢筋砼或正交异性板钢桥面,能够解决自锚式悬索桥存在的问题。
按照一般桥梁的常用形式,城市桥梁可以加设悬挑人行道,作了系列跨径的探索计算,以探求自锚式悬索桥大、中、小跨径的内力变化和变形规律。
自锚式悬索桥的综述构建拥有一定规模的桥梁工程是城市化进程中的必要组成部分,而自锚式悬索桥,在工程技术上具备了一定的发展前景。
因此,本文将从建筑专家的角度,对自锚式悬索桥进行综述。
本文将从以下五个方面进行分析:一、自锚式悬索桥的概述自锚式悬索桥属于现代化悬索桥的一种类型,建造时可以脱离传统锚具的使用。
它是一种连结两边大陆的现代桥梁工程,主跨向形为悬索,以悬挂索的方式连接于下放缆,并由自锚装置和主塔的承载力共同支撑,支撑物的内容质调配要求较高。
自锚式悬索桥是一种跨度较长的桥梁,其制造需要更高的技术和材料。
由于其结构特性,使得该类桥梁能够承受较大的荷载,并且在不牺牲桥梁的整体强度情况下,可以达到优秀的流畅性和结构简单性。
二、自锚式悬索桥的优点自锚式悬索桥具有以下优点:1. 结构简单通常自锚式悬索桥只有一至两个塔,整体结构简单明了,操作简洁,维护也方便;2.纤维混凝土是一种有效的材料,不仅强度和韧性都很高,并且可以使悬索桥的跨度实现大规模的变化;3. 确保桥梁强度,减少维护成本;4. 具有良好的自锚定能力,降低了工期,省去了锚具的使用,减少了成本;5. 对于环境遮挡物的压力较强,在自锚式悬索桥的支撑下,协同优化来使对气象条件的自适应性更强;三、自锚式悬索桥的缺点1. 建造难度大,需要高精度的制造过程;2. 需要高质量材料,建造成本较高;3. 需要对环境条件进行严格的考虑和设计,如风、雨、地震等灾害;四、自锚式悬索桥的工程实例分析1. 汉江大桥(中华人民共和国第一长跨钢斜拉桥),主跨1104米,总长1670米,建于1993-1995年间,位于中国河南省郑州市新郑市汝河之下。
2. 宝华山双塔拱桥,是中国目前仅存的悬索桥桁架结构的一座大跨度悬索桥,主跨660米,总长1299.5米,位于四川省巴中市南江县。
3. 大澳大桥,位于香港新界西贡区,是一座容纳行人、自行车和车辆的悬索桥,主跨180米,总长610米,建于1997年。
自锚式悬索桥的设计与施工关键技术摘要自锚式悬索桥是一种特殊类型的桥梁,它的主体结构由悬索索、主塔和桥面构成。
相较于传统的斜拉桥和悬索桥,自锚式悬索桥具有更好的经济性和适应能力。
本文将介绍自锚式悬索桥的设计与施工的关键技术,并探讨其在桥梁工程中的应用前景。
1. 引言自锚式悬索桥是一种新型的桥梁结构,它采用了自锚式悬索索技术,能够在施工过程中自锚在塔顶,不需要外部临时支撑。
这种桥梁结构具有施工便捷、支撑力学性能良好等优势,因此在近年来得到了广泛应用和研究。
本文将重点讨论自锚式悬索桥的设计与施工关键技术。
2. 自锚式悬索桥的设计要点2.1 结构配置自锚式悬索桥的主要结构包括悬索索、主塔和桥面。
为了确保桥梁的稳定性和安全性,在设计过程中需要合理配置悬索索和主塔。
一般情况下,自锚式悬索桥采用单塔单跨设计,即每个主塔只支撑一跨悬索桥。
悬索索的数量和排列也需要根据桥梁的跨度和荷载情况进行合理选择。
2.2 悬索索设计悬索索设计是自锚式悬索桥设计中的关键环节。
悬索索一般采用钢索,其长度和直径需要根据桥梁的跨度和荷载来确定。
在设计过程中,还需要考虑悬索索受力分析、挠度控制和抗风性能等因素。
悬索索的设计需要遵循相关的规范和标准,并通过有限元分析和实验验证。
2.3 主塔设计自锚式悬索桥的主塔一般采用钢筋混凝土结构或钢结构。
主塔的设计需要考虑其承受的荷载、抗风性能和稳定性等因素。
在设计过程中还需要合理选择主塔的形式和尺寸,以满足桥梁的功能和美观要求。
2.4 桥面设计桥面是自锚式悬索桥行车通行的部分,其设计需要考虑行车荷载、抗滑稳定性和舒适性等因素。
桥面一般采用钢结构或钢筋混凝土结构,设计时需要确定材料的类型和厚度,并保证其在使用寿命内具有良好的承载性能。
3. 自锚式悬索桥的施工关键技术3.1 自锚施工工艺自锚式悬索桥的施工过程需要使用特殊的自锚施工工艺。
首先,需要在主塔上设置自锚装置,以确保悬索索在施工过程中能够自锚在主塔顶部。
预应力混凝土自锚式悬索桥主梁施工技术及控制要点预应力混凝土自锚式悬索桥主梁施工技术及控制要点预应力混凝土自锚式悬索桥是一种新型的桥梁结构,具有结构简单、施工方便、经济实用等优点。
其主梁的施工是整个桥梁施工的重要环节,本文将介绍预应力混凝土自锚式悬索桥主梁施工技术及控制要点。
一、主梁施工工艺1. 预制梁段预应力混凝土自锚式悬索桥主梁采用预制梁段的方式进行施工。
预制梁段的制作需要严格按照设计要求进行,包括混凝土配合比、预应力钢筋的布置、预应力张拉力的控制等。
预制梁段的长度一般为20-30米,宽度为2-3米。
2. 梁段运输预制梁段制作完成后,需要进行运输。
在运输过程中,需要注意梁段的稳定性和安全性。
梁段的运输方式一般有两种,一种是采用汽车运输,另一种是采用船运输。
在运输过程中,需要对梁段进行保护,避免梁段受到损坏。
3. 梁段拼装梁段拼装是主梁施工的重要环节。
在梁段拼装过程中,需要注意梁段的位置和高度的控制,保证梁段之间的连接牢固。
梁段拼装完成后,需要进行预应力张拉。
4. 预应力张拉预应力张拉是预应力混凝土自锚式悬索桥主梁施工的重要环节。
在预应力张拉过程中,需要控制预应力张拉力的大小和时间,保证梁段的预应力张拉力符合设计要求。
预应力张拉完成后,需要进行养护。
二、主梁施工控制要点1. 梁段的位置和高度控制在梁段拼装过程中,需要控制梁段的位置和高度,保证梁段之间的连接牢固。
在梁段拼装完成后,需要进行梁段的调整,保证梁段的位置和高度符合设计要求。
2. 预应力张拉力的控制在预应力张拉过程中,需要控制预应力张拉力的大小和时间,保证梁段的预应力张拉力符合设计要求。
预应力张拉力的控制需要根据梁段的长度和预应力钢筋的布置来确定。
3. 梁段的养护在梁段预应力张拉完成后,需要进行梁段的养护。
梁段的养护需要根据混凝土的强度和预应力张拉力来确定。
在梁段的养护过程中,需要注意梁段的保护,避免梁段受到损坏。
4. 安全措施在主梁施工过程中,需要采取一系列安全措施,保证施工过程的安全。
自锚式悬索桥分离式猫道施工工法自锚式悬索桥分离式猫道施工工法一、前言自锚式悬索桥分离式猫道施工工法是一种用于建造自锚式悬索桥的施工方法。
自锚式悬索桥是一种常见的大型跨度桥梁,其悬索被固定在桥塔上,起到承载桥面荷载的作用。
分离式猫道则是为了方便施工人员在悬索上移动,以完成各项作业任务。
本文将详细介绍自锚式悬索桥分离式猫道施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。
二、工法特点自锚式悬索桥分离式猫道施工工法的特点包括:施工效率高、工期短、施工质量可控、适用于各种地形和条件等。
三、适应范围该工法适用于大型跨度的自锚式悬索桥梁的建造,可以在不同地形和条件下进行施工。
四、工艺原理自锚式悬索桥分离式猫道施工工法的工艺原理是通过使用特殊的施工设备,在桥塔上固定悬索,并搭建分离式猫道,使施工人员能够在悬索上进行作业。
五、施工工艺施工工艺分为以下几个阶段:1. 悬索固定阶段:先在桥塔上固定悬索,使用专用设备进行拉力控制和固定。
2. 悬索调整阶段:对悬索进行调整,确保其处于设计位置和水平状态。
3. 猫道搭建阶段:在悬索上搭建分离式猫道,以便施工人员在悬索上移动。
4. 桥面铺设阶段:在悬索上铺设桥面板,并进行固定和连接。
5. 完工验收阶段:对整个自锚式悬索桥进行验收,并进行必要的调整和修缮。
六、劳动组织在自锚式悬索桥分离式猫道施工中,需要由施工队伍组织各个工种的人员,确保各项施工任务有序进行。
同时,需要有专门的管理和监督人员,负责施工质量和安全管理。
七、机具设备为了实施自锚式悬索桥分离式猫道施工工法,需要使用各种机具设备,包括悬索固定设备、猫道搭建设备、桥面铺设设备以及吊装和运输设备等。
八、质量控制在自锚式悬索桥分离式猫道施工过程中,需要进行严格的质量控制,包括悬索固定质量、猫道搭建质量、桥面铺设质量等方面的控制。
九、安全措施在自锚式悬索桥分离式猫道施工中,需要注意施工中的安全事项,特别是对悬索和猫道的安全要求,需要有严格的安全措施,确保施工人员的安全。
自锚式悬索桥的综述2005-8-5【大中小】【打印】摘要:介绍自锚式悬索桥的特点、历史及国内外发展情况。
重点分析了钢筋混凝土桥的设计和发展,并对其施工工艺做了简单介绍。
总结展望了自锚式悬索桥的发展空间及其需进一步研究的问题。
关键词:悬索桥;自锚式体系;施工;实例一、前言一般索桥的主要承重构件主缆都锚固在锚碇上,在少数情况下,为满足特殊的设计要求,也可将主缆直接锚固在加劲梁上,从而取消了庞大的锚碇,变成了自锚式悬索桥。
过去建造的自锚式悬索桥加劲梁大多采用钢结构,如1990 年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥墩等。
2002年7月在大连建成了世界上第一座钢筋混凝土材料的自锚式悬索桥——金石滩金湾桥墩,为该类桥墩型的研究提供了宝贵的经验。
此后在吉林、河北、辽宁又有4座钢筋混凝土自锚式悬索桥正在设计和设计和建造中。
自锚式悬索桥有以下的优点:①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。
②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,了可做成单塔双跨的悬索桥。
③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。
④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。
⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。
⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。
自锚式悬索桥也不可避免地有其自身的缺点:①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。
②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊索,因此需要搭建大量临时支架以安装加劲梁。
所以自锚式悬索桥若跨径增大,其额外的施工费用就会增多。
③锚固区局部受力复杂。
④相对地锚式悬索桥而言,由于主缆非线性的影响,使得吊杆张拉时的施工控制更加复杂。
二、历史回顾19世纪后半叶,奥地利工程师约瑟夫。
朗金和美国工程师查理斯。
本德分别独立地构思出自锚式悬索桥的造型。
本德在1867年申请了专利,朗金则在1870年在波兰建造了一座小型的铁路自锚式悬索桥。
到20 世纪,自锚式悬索桥已经在德国兴起。
1915年,德国设计师在科隆的莱茵河上建造了第一座大型自锚式悬索桥——科隆-迪兹桥,当时主要是因为地质条件的限制而使工程师们选择了这种桥型,该桥主跨185m,用木脚手架支撑钢梁直到主缆就位。
此后,美国宾夕尼亚州的匹兹堡跨越阿勒格尼河的3座桥和在日本东京修建的清洲桥都受科隆-迪兹桥的影响。
虽然科隆-迪兹桥1945年被毁,但原桥台上的钢箱梁仍保存至今。
匹兹堡的3座悬索桥比科隆-迪兹桥的跨径要小,但施工技术比科隆-迪兹桥有了很大的进步。
科隆-迪兹桥建成后的25年内在德国莱茵河上又修建了4座悬索桥,其中最著名的是1929年建成的科隆-米尔海姆桥,该桥主跨315m,虽然该桥在1945年被毁,但它至仍然保持着自锚式悬索桥的跨径记录。
在20世纪30年代,工程师们认为自锚式悬索桥加劲梁的轴力将使该种桥梁的受力性能接近于弹性理论,所以这段时间美国德国修建了许多座自锚式悬索桥。
三、国外现代自锚式悬索桥1、日本此花大桥日本此花大桥原名大阪北港连络桥,是现有的最早修建的特大跨径自锚式悬索桥,又是世界上唯一的英国式自锚式悬索桥。
1990年通车。
跨径布置为(120+300+120)m,是现有最大跨径的自锚式悬索桥。
垂跨比叫大,为1/6,以减小主缆的索力,使能为梁所承受。
该桥采用单主缆,用PWS法施工,包含30束股,每束184丝。
仅一个索面,吊索做成倾斜形,构成三角形吊杆,与钢箱加劲梁一起,体现了英国式悬索桥的特点。
钢箱加劲梁为三室箱,梁高3.17m,箱总宽26.5m.由于单索面,按抗扭的需要,箱高较大。
塔成呈花瓶形,但下塔柱较矮。
人字形上塔柱要在加劲梁节段架设后才能安装。
2 韩国永宗大悬索桥永宗大悬索桥位于韩国汉城仁川国际机场通往汉城市区的高速公路上,是世界上第一座双层行车的公铁两用自锚式县索桥。
跨径布置为125+300+125m,主跨径与日本此花大桥相同。
垂跨比为1/5,以减小主缆索力。
塔设计成花瓶形,高104.6m,较美观。
采用空中纺线法制索,主缆直径46.7cm.主缆塔处横向间距受塔型限制,公6.6m,而在主跨中部则展宽为35m(与梁宽相同),主缆呈三维空间曲面。
加劲梁三跨连续,其腹板及行驶铁路部分的下层为桁架。
梁总高12m,宽35m.上层设6个车道;下设4个车道及双线铁路。
加劲梁的上层桥面系为一钢箱,以承受巨大的水平轴力。
箱高3m,连同风嘴,总宽41m.梁的施工,分为8个节段,用3000t的海上浮吊架设,全部放在临时排架或塔上,然后安设吊索。
防护体系,加劲梁采用抽湿防护,只要有一个传感器测得相对湿度高于50%时,抽湿系统自动开始一切工作,直至相对湿度降至40%以下。
主缆防护采用S形钢丝缠绕,再设涂装,并采用干燥空气体系,与日本明石海峡大桥相同。
3、美国旧金山——奥克兰海湾新桥20 世纪30年代中期修建的旧金山——奥克兰海湾桥,全长12.8m,是当时世界上最长的、技术水平很高的桥梁,至今人仍为旧金山半岛至东海湾的主干线,车辆繁忙,每天通行近28万车次。
设计的地震力很小,其东桥(钢桁架桥)于1989年在里氏7.1度地震烈度时局部坍塌,因此决定修建新海湾桥来代替现有东桥,全长3.6km.新桥每方向有宽25m的桥面,各包括5个车道和一条轻轨铁路。
南侧还有宽4.8m的人行道,考虑1500年回归的地震。
主航道桥为自锚式悬索桥,单塔,跨径为385 +180m.两主缆直径0.78m,东侧(385m侧)锚固在东墩处的梁上,其素鞍由箱梁支承,并设计成可移动的,以平衡两主缆索力差。
西侧(180m 侧)主缆通过两分离的索鞍环绕在西墩上,这两个分离索鞍固定在西墩上在施工期间两主缆索力差异采用一项进的座板来平衡。
西墩上设计一个预应力帽梁,其重量可以平衡桥梁跨径不对称而在西墩产生的恒载拨力,也用以承受西墩两主缆在运营荷载和地震荷载作用时其素鞍产生的不同应力。
塔高160m.主缆不跨越而是固定在单一的索鞍上。
塔由4柱组成,沿高度用剪力杆连接。
塔柱为钢箱。
柱间有间距3m的横隔梁连接。
承台高6.5m,支承在13根直径2.5m的钢管桩上,桩内填灌混凝土,桩净长20m,嵌入岩石。
上部结构为两个空心的各向异性版,并将吊杆荷载分布在箱梁上,箱梁间用宽10m、高2.5m、间距30m的横梁连接。
该横梁承受吊杆横向72m跨的荷载,保证两箱在荷载、特别是风和地震荷载时的整体作用。
吊杆设在两箱的外侧,形成两空间索面,很美观。
4、其它自锚式悬索桥Sorok 岛桥是韩国与Geogcum岛连接本土的桥梁,跨径布置为110m+480m+200m,矢跨比为1:8,加劲梁为钢箱梁,高跨比为1:400,桥塔为H 形。
1996年哥本哈根的国际桥梁和结构工程协会(LABSE)学术会议论文集中,J.F.Klcin介绍了一种自锚式悬索桥的比较方案,跨径布置为303m+950m+303m,采用单主缆,主跨跨中约200m长的主缆在梁体内部,与梁固结,使结构具有很高的刚度,索夹处设有锚固装置,所以主缆截面沿桥梁是可变化的,这样可大大节省主缆造价。
四、国内自锚式悬索桥尽管自锚式悬索桥在国处产生发展较早,在国内却很少建造,相关文献也很少,使这种桥型在国内的发展远远落后于国外。
2002年在大连建成了世界上第一座加劲梁采用钢筋混凝土材料的自锚式悬索桥,此后大连理工大学桥梁研究所又设计了多座钢筋混凝土自锚式悬索桥,为国内桥梁的建设提供了宝贵的经验。
1 大连金石滩金湾悬索桥金石滩金湾悬索桥是我国,也是世界上第一座钢筋混凝土结构的自锚式悬索桥,位于大连金石滩旅游度假区的滨海路上,横跨帆船港池入海口,已成为当地的一处特殊景观。
金石滩金湾桥主桥为自锚式混凝土悬索桥,它直接把主缆锚固于加劲梁的两端,用加劲梁做成拱形(吊拱体系),用主缆的水平分力来抵搞拱脚的推力,起到了系杆拱桥中系杆的作用。
这样既满足了跨中通航的净空要求,同时也使主桥两端高度降低,大大减少了引桥的长度,节省了投资。
这种拱度也可使加劲梁刚度增加、挠度减小,从而使该桥在受力和经济上都达到了很好的效果。
金湾悬索桥总长198m,其中主桥长108m,引桥长90m,主桥跨径为(24+60+24)m,桥宽10m,矢跨比为1:8,双塔双主缆结构。
主桥的加劲梁采用钢筋混凝土边主梁形式,梁高1m,梁段中间浇注横隔梁,引桥为钢筋混凝土连续梁。
桥塔为钢筋混凝土门式塔架,塔高27m,塔柱直径为 1.5m.主桥的加劲梁及横梁采用50号混凝土。
主缆索采用ф7,吊杆采用ф5镀锌高强钢丝,冷铸锚具。
基础采用ф1.6m钻孔灌注桩基础。
主缆跨过桥塔索鞍,不散开,两端锚固在主梁上,在端部主索套筒内设减震器。
梁上吊杆间距为3m.主桥施工主要工序为:钻孔桩基础;浇筑桥墩桥塔;搭设临时支架,支架上浇筑加劲梁;加劲梁达到强度后挂主缆,上索夹,张拉吊杆。
金石滩悬殊索桥采用了新的结构形式,总造价只有498万元,不但取得了良好的经济效益,而且其独特的设计为美丽的海滨城市大连又增添了一处亮丽的风景,同时也为该类桥型的建造提供了宝贵的经验。
2、浙江省平湖市海盐塘桥海盐塘桥位于浙江省平湖市东湖风景区,上部结构构为自锚式钢筋混凝土悬索桥,主跨跨径组合为(30+70+30)m,全桥长164m;桥面全宽40.0.m;桥梁纵坡为K2.20%.平湖海盐塘自锚式悬索桥充分利用自锚式悬索桥的受力特性,借鉴了同类桥梁的一些优点,并经过改进。
其主要有以下几个特点:主缆锚于梁端,不需要建造昂贵的锚碇;主梁采用了钢筋混凝土箱梁,利用主缆的水平分力,为主梁施加免费预应力,主梁内不再配置预应力钢束;塔顶不设置鞍座,主缆直接锚固在塔顶上。
这种桥型结构新颖,造型美观,结构轻巧,构件受力合理,用材经济,造价比同等跨径的预应力混凝土连续梁桥、部分斜拉桥都要低,是一种在中小跨径内非常具有竞争力的桥型。
五、自锚式悬索桥的受力分析1、受力原理自锚式悬索桥的上部结构包括:主梁、主缆、吊杆、主塔四部分。
传力路径为:桥面重量、车辆荷载等竖向荷载通过吊杆传至主缆承受,主缆承受拉力,而主缆锚固在梁端,将水平力传递给主梁。
由于悬索桥水平力的大小与主缆的矢跨比有关,所以可以通过矢跨比的调整来调节主梁内水平力的大小,一般来讲,跨度较大时,可以适当增加其矢跨比,以减小主梁内的压力,跨度较小时,可以适当减小其矢跨比,使混凝土主梁内的预压力适当提高。