第八章 -结构力学
- 格式:ppt
- 大小:2.25 MB
- 文档页数:91
潍坊学院机电系讲稿专用纸如车轮上的点P的运动,如果以地面作为参考系,点的轨迹是旋轮线,而如果以小车作为参考系,点的轨迹则是一个圆。
相对于地面是直线运动,相对于旋转的工件,是,因此,车刀在工件的表面上切出螺旋线。
在实际问题中,往往不仅要知道物体相对地球的运动,而且有时要知道被观察物体相对于地面运动着的参考系的运动情况。
例如在运动着的飞机、车船上观察飞机、车船潍坊学院机电系讲稿专用纸潍坊学院机电系讲稿专用纸动系上与动点相重合的点相对于定系的速度、加速度称为牵连速度、牵连加速度。
6. 动点和动系的选择基本原则:(1)动点对动系要有相对运动。
(2)动点的相对运动轨迹要明确、容易确定。
具体选择方法:(1)选择持续接触点为动点。
(2)对没有持续接触点的问题,一般不选择接触点为动点。
根据选择原则具体问题具体分析。
实例见PPT。
潍坊学院机电系讲稿专用纸潍坊学院机电系讲稿专用纸潍坊学院机电系讲稿专用纸内的绝对位移绕固定轴O limlim11M M MM '+='M M MMM M '+='11潍坊学院机电系讲稿专用纸潍坊学院机电系讲稿专用纸潍坊学院机电系讲稿专用纸在定系和动系中的矢径分别用r 和r ′表示。
k z j y i x r r ''+''+''+='r潍坊学院机电系讲稿专用纸和为未知量,暂设潍坊学院机电系讲稿专用纸当牵连运动是定轴转动时,动点的绝对加速度并不等于牵连加速度与相对加速之矢量和。
牵连运动是定轴转动时点的加速度合成定理和角加速度α 绕定系Oxyz 的轴z 转动;动系)分析动系的单位矢量k j i''',,对时间的一阶导数以角速度e ω绕定轴z 转动,则角速度矢e ω沿潍坊学院机电系讲稿专用纸潍坊学院机电系讲稿专用纸0=r v ③ r e v//ω r e v⊥, 此时 e k a =ω2是由于牵连运动和相对运动的相互影响而产生的潍坊学院机电系讲稿专用纸潍坊学院机电系讲稿专用纸潍坊学院机电系讲稿专用纸。
第八章中点四大模型模型1【倍长中线或类中线(与中点有关的线段)构造全等三角形】模型分析如图①,AD是△ABC的中线,延长AD至点E使DE=AD,易证:△ADC≌△EDB(SAS)。
如图②,D是BC中点,延长FD至点E使DE=FD,易证:△FDB≌△FDC(SAS)。
当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移。
模型实例例1.如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,连接BE并延长AC于点F,AF=EF。
求证:AC=BE。
热搜精练1.如图,在△ABC 中,AB=12,AC=20,求BC 边上中线AD 的范围。
2.如图,在△ABC 中,D 是BC 的中点,DM⊥DN,如果2222B M C N D M D N +=+。
求证:()22214A D AB AC =+。
模型2【已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”】模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等或边相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到:“边等、角等、三线合一”。
模型实例例1.如图,在△ABC中,AB=AC-5,BC=6,M为BC的中点,MN⊥AC于点N,求MN的长度。
热搜精练1.如图,在△ABC中,AB=AC,D是BC的中点,AE⊥DE,AF⊥DF,且AE=AF。
求证:∠EDB=∠FDC。
2.已知Rt△ABC 中,AC=BC,∠C=90°,D 为AB 边的中点,∠EDF=90°,∠EDF 绕点D 旋转,它的两边分别交AC、CB(或它们的延长线)于E、F。
(1)当∠EDF 绕点D 旋转到DE⊥AC 于E 时(如图①),求证:12DEF CEF ABC S S S += ;(2)当∠EDF 绕点D 旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S 、CEF S 、ABC S 又有怎样的数量关系?请写出你的猜想,不需证明。