全等三角形 优秀教学设计
- 格式:doc
- 大小:164.50 KB
- 文档页数:4
2教案全等三角形教师版范文大全第一篇:2教案全等三角形教师版2.全等三角形知识考点:掌握用三角形全等的判定定理来解决有关的证明和计算问题,灵活运用三角形全等的三个判定定理来证明三角形全等。
精典例题:【例1】如图,已知AB⊥BC,DC⊥BC,E在BC上,AE=AD,AB=BC。
求证:CE=CD。
分析:作AF⊥CD的延长线(证明略)评注:寻求全等的条件,在证明两条线段(或两个角)相等时,若它们所在的两个三角形不全等,就必须添加辅助线,构造全等三角形,常见辅助线有:①连结某两个已知点;②过已知点作某已知直线的平行线;③延长某已知线段到某个点,或与已知直线相交;④作一角等于已知角。
AFDA34E1A12CEBBD2PCBEC例1图例2图问题一图【例2】如图,已知在△ABC中,∠C=2∠B,∠1=∠2,求证:AB =AC+CD。
分析:采用截长补短法,延长AC至E,使AE=AB,连结DE;也可在AB上截取AE=AC,再证明EB=CD(证明略)。
探索与创新:【问题一】阅读下题:如图,P是△ABC中BC边上一点,E是AP 上的一点,若EB=EC,∠1=∠2,求证:AP⊥BC。
证明:在△ABE和△ACE中,EB=EC,AE=AE,∠1=∠2 ∴△ABE≌△ACE(第一步)∴AB=AC,∠3=∠4(第二步)∴AP⊥BC(等腰三角形三线合一)上面的证明过程是否正确?若正确,请写出每一步的推理依据;若不正确,请指出关键错在哪一步,并写出你认为正确的证明过程。
略解:不正确,错在第一步。
正确证法为:∵BE=CE∴∠EBC=∠ECB 又∵∠1=∠2∴∠ABC=∠ACB,AB=AC∴△ABE≌△ACE(SAS)∴∠3=∠4又∵AB=AC∴AP⊥BC 评注:本题是以考查学生练习中常见错误为阅读材料设计而成的阅读性试题,其目的是考查学生阅读理解能力,证明过程中逻辑推理的严密性。
阅读理解题是近几年各地都有的新题型,应引起重视。
【问题二】众所周知,只有两边和一角对应相等的两个三角形不一定全等,你能想办法安排和外理这三个条件,使这两个三角形全等吗?请同学们参照下面的方案(1)导出方案(2)(3)(4)。
《12.1 全等三角形》教学设计课题:12.1 全等三角形课型:新授课课时:第一课时【教学过程】一、情境引入同学们,几何中把“一模一样”的图形叫做”全等图形“,如果是三角形呢?又该怎么判断是不是全等三角形呢?今天我们将一起来学习——全等三角形!二、探究把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.对应顶点的字母写在对应的位置上.记作:“△ABC ≌△DEF”,读作:“△ABC 全等于△DEF”能够完全重合的两个三角形叫做全等三角形.三、练习1、若△AOC△△BOD,AC= BD;△A=△B。
2、若△ABD△△ACE,BD=CE,△BDA=△CEA。
3、若△ABC△△CDA,AB= CD,△BAC=△DCA。
四、探究想一想:(1)把△ABC沿直线BC平移,得到△DEF,(2)把△ABC沿直线BC翻折180°,得到△DBC,(3)把△ABC绕点A旋转,得到△ADE.各图中的两个三角形全等吗?平移、翻折、旋转,变换前后的图形全等五、练习已知:如图,△ABC与△DEF是全等三角形,则图中相等的线段的组数是(B )A.3B.4C.5D.6解析:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF,有四组相等线段,故选B.六、应用提高如图,△ACB△△A′CB′,△ACA′=30°,则△BCB′的度数为(B)A.20°B.30°C.35°D.40°解析:△△ACB△△A′CB′,△△ACB=△A′CB′,△△ACB-△A′CB=△A′CB′-△A′CB,即△BCB′=△ACA′,又△ACA′=30°,△△BCB′=30°,故选:B.七、达标测试1.如图,已知△ABC△△EDF,下列结论正确的是(A)A.△A=△E B.△B=△DFEC.AC=ED D.BF=DF解析:△△ABC△△EDF,△△A=△E,A正确;△B=△FDE,B错误;AC=EF,C错误;BF=DC,D错误;故选:A.2.如图,已知ΔABC△ΔFED, BC=ED, 求证:AB△EF证明:△ΔABC△ΔFED, BC=ED △BC与ED是对应边△△A=△F(全等三角形的对应角相等)△AB△EF八、布置作业教材33页习题12.1第1、2题.。
全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
第1篇课时:2课时年级:八年级教学目标:1. 知识与技能:理解三角形全等的概念,掌握三角形全等的判定方法(SSS、SAS、ASA、AAS)。
2. 过程与方法:通过观察、实验、推理等活动,培养学生观察、分析、推理和解决问题的能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨求实的科学态度。
教学重点:1. 三角形全等的概念和判定方法。
2. 三角形全等的判定方法的应用。
教学难点:1. 三角形全等判定方法的灵活运用。
2. 复杂三角形全等问题的解决。
教学准备:1. 多媒体课件2. 三角形纸片、剪刀、胶水3. 练习题教学过程:第一课时一、导入新课1. 复习三角形的概念,引导学生回顾三角形的基本性质。
2. 提出问题:如何判断两个三角形是否全等?二、讲授新课1. 引入三角形全等的概念:两个三角形在形状和大小上完全相同,即它们的边长和角度都相等。
2. 介绍三角形全等的判定方法:- SSS(Side-Side-Side):三边对应相等的两个三角形全等。
- SAS(Side-Angle-Side):两边和它们的夹角对应相等的两个三角形全等。
- ASA(Angle-Side-Angle):两角和它们的夹边对应相等的两个三角形全等。
- AAS(Angle-Angle-Side):两角和非夹边对应相等的两个三角形全等。
3. 通过实例讲解每种判定方法的应用。
三、课堂练习1. 学生完成课堂练习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
四、小结1. 回顾本节课所学内容,强调三角形全等的判定方法。
2. 引导学生思考如何将三角形全等的判定方法应用于实际问题。
第二课时一、复习导入1. 复习三角形全等的判定方法。
2. 提出问题:如何解决复杂的三角形全等问题?二、讲授新课1. 介绍三角形全等问题的解决策略:- 利用三角形全等的判定方法进行证明。
- 通过构造辅助线或图形进行证明。
- 运用反证法进行证明。
2. 通过实例讲解复杂三角形全等问题的解决方法。
《全等三角形的判定》教学设计一、教学目标1、知识与技能目标学生能够理解并掌握全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),能够运用这些判定方法证明两个三角形全等,并能利用全等三角形的性质解决相关的几何问题。
2、过程与方法目标通过观察、操作、比较、推理等活动,培养学生的空间观念、逻辑思维能力和推理能力,提高学生的动手操作能力和数学语言表达能力。
3、情感态度与价值观目标让学生在探索全等三角形判定方法的过程中,体验数学的乐趣,感受数学的严谨性,激发学生学习数学的兴趣和积极性,培养学生勇于探索、敢于创新的精神。
二、教学重难点1、教学重点全等三角形的判定方法(SSS、SAS、ASA、AAS、HL)的理解和掌握。
2、教学难点灵活运用全等三角形的判定方法证明两个三角形全等,以及在复杂的图形中准确找出全等三角形的对应边和对应角。
三、教学方法讲授法、演示法、探究法、讨论法四、教学过程1、导入新课通过展示两个形状相同、大小相等的三角形图片,引导学生观察并思考:如何判断这两个三角形全等?从而引出本节课的主题——全等三角形的判定。
2、讲解新课(1)边边边(SSS)判定定理展示三根长度分别相等的小木棒,让学生动手拼成一个三角形,然后将这个三角形与同桌拼成的三角形进行比较,发现两个三角形完全重合,从而得出“三边对应相等的两个三角形全等”这一判定定理,即SSS 判定定理。
(2)边角边(SAS)判定定理在黑板上画出两个三角形,其中一个三角形的两条边和它们的夹角分别与另一个三角形的两条边和它们的夹角相等,让学生通过测量或折叠的方法,验证这两个三角形是否全等,从而得出“两边和它们的夹角对应相等的两个三角形全等”这一判定定理,即 SAS 判定定理。
(3)角边角(ASA)判定定理在纸上画出两个三角形,其中一个三角形的两个角和它们的夹边分别与另一个三角形的两个角和它们的夹边相等,让学生通过剪拼的方法,验证这两个三角形是否全等,从而得出“两角和它们的夹边对应相等的两个三角形全等”这一判定定理,即 ASA 判定定理。
全等三角形优秀教案一、教学目标1、知识与技能目标理解全等三角形的概念,能识别全等三角形中的对应边、对应角。
掌握全等三角形的性质,能够运用全等三角形的性质解决简单的几何问题。
掌握全等三角形的判定方法(SSS、SAS、ASA、AAS、HL),能运用这些判定方法证明两个三角形全等。
2、过程与方法目标通过观察、比较、操作等活动,培养学生的观察能力、动手操作能力和逻辑思维能力。
经历探索全等三角形性质和判定方法的过程,体会研究几何问题的一般方法和转化的数学思想。
3、情感态度与价值观目标通过探究活动,培养学生的合作精神和创新意识。
让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的信心。
二、教学重难点1、教学重点全等三角形的性质和判定方法。
运用全等三角形的性质和判定方法解决几何问题。
2、教学难点全等三角形判定方法的灵活运用。
证明两个三角形全等的思路和方法。
三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、导入新课展示一些形状、大小相同的图形,如两个完全相同的三角形,让学生观察并思考这些图形的特点。
提问学生:“你们能发现这些图形有什么共同之处吗?”引导学生得出全等图形的概念。
2、讲解新课全等三角形的概念给出全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
强调“完全重合”的含义,即两个三角形的对应边和对应角都相等。
通过实例,让学生找出全等三角形的对应边和对应角。
全等三角形的性质让学生通过观察和操作,发现全等三角形的对应边相等、对应角相等。
引导学生用数学语言表述全等三角形的性质。
全等三角形的判定方法讲解“边边边”(SSS)判定方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
通过演示和实际操作,让学生理解并掌握 SSS 判定方法。
类似地,依次讲解“边角边”(SAS)、“角边角”(ASA)、“角角边”(AAS)和“斜边、直角边”(HL)判定方法。
例题讲解出示一些简单的例题,如已知两个三角形的对应边或对应角的条件,让学生判断这两个三角形是否全等,并说明理由。
2 三角形全等的判定一等奖创新教案人教版八年级上册《三角形全等的判定》的教案教材分析1、教材地位本节教材是九年义务教育课程标准实验教科书,人教版八年级上册第十二章第二节三角形全等的判定。
在我们的周围,经常可以看到形状、大小完全相同的图形,这样的图形叫全等形。
研究两个图形全等的方法,是几何学的一个重要内容。
2、教学目标分析(1)知识与技能目标:理解并掌握三角形全等的判定的边边边定理,能够灵活运用边边边定理来证明三角形全等。
通过观察几何图形,发展学生识图能力,提高学生多方位审视问题的创造技巧和逻辑思维能力。
(2)过程与方法:在探索三角形全等的过程中,让学生经历“观察—画图—应用”的数学过程。
(3)情感态度价值观:在探究三角形全等的过程中,培养学生的合作交流意识和探索精神,增进学习数学的信心。
培养学生对数学的兴趣和对科学的热爱,能够在生活中感受到数学的乐趣,能灵活运用数学知识解决生活中实际问题。
3、教学重难点(1)重点:理解并掌握三角形全等判定的边边边定理。
(2)难点:三角形全等边边边定理的灵活运用。
(3)突破:通过折、剪和画等活动激发学生的兴趣,变抽象为形象,通过自学引导学生主动思考,从而使课堂更高效。
4、教学用具:直尺、卡纸教法分析教学方式的改变是新课标改革的目标,新课标要求教师从知识的传授者转变为学生学习的引导者和学习发展的促进者,也就是把过去单纯的老师讲学生接受的教学方式,转变为师生互动式教学。
1、讲授法通过提问、评价、解答问题等手段引导学生像当初数学家发现定律那样去发现三角形全等的判定方法,以发展他们进行研究、探讨和创新能力。
创设问题情境,激发学生学习的积极性和主动性。
完善问题解答,总结学生思路方法。
进行知识综合,充实和改善学生的知识结构。
2、演示法与学生一起动手剪纸剪或画出三角形用于教学演示。
3、讨论法在我的启发下,学生积极思考,对照材料,回忆有关知识和方法,进行分析,综合开展不同观点的思考,然后进行小组讨论,直到发现结论,探索到解决问题的途径和方法。
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形
片断2:一幅漂亮的山水倒影画,一幅用七
巧板拼成的美丽图案.X k B 1 . c o m
2.学生讨论:
(1)从上面的片断中你有什么感受?
(2)你能再举出生活中的一些类似例子吗?
的全等图形.
图片的收集与制作1.收集学生讨论中的图片.
2.讨论(或介绍)用复写纸、手撕、剪纸、扎
针眼等制作类似图形的方法.
对学生进行操作
技能的培训与指
导.
学生分组讨论、思考探究1.上面这些图形有什么共同的特征?
2,有人用“全等形”一词描述上面的图形,
你认为这个词是什么含义?
对学生的不同
回答,只要合理,
就给予认可.
教师明晰,建立模型1.给出“全等形”、“全等三角形”的定义.
2.列举反例,强调定义的条件.
3.提出问题“你能构造一对全等三角形”吗?
你是如何构造的,与同伴交流.
4.全等三角形的对应元素及性质:教师结合
手中的教具说明(学生运用自制学具理解)对
应元素(顶点、边、角)的含义,并引导学生
观察全等三角形中对应元素的关系,发现对
应边相等,对应角相等(教师启发学生根据
“重合”来说明道理).
通过构图,为学生
理解全等三角形
的有关概念奠定
基础.
拓展与延
伸1.议一议:右图是一个等边三角形,
你能把它分成两个全等的三角形吗?
你能把它分成三个、四个全等的三
角形吗?
2.例1:已知△ABC≌△DFE,∠A=96°,
∠B=25°,DF=10 cm.求∠E的度数及AB
的长.
目的是使学生在
操作的过程中理
解全等三角形的
概念,发展空间观
念.鼓励学生根据
全等三角形的概
念和性质,通过观
察、尝试找到分割
的方法,并可用分
出来的图形是否
重合来验证所得的结论.
巩固练习1.全等用符号_______表示.读作_______·
2.△ABC全等于三角形△DEF,用式子表示
为_______·
3.△ABC≌△DEF,∠A的对应角是∠D,∠B
的对应角∠E,则∠C与_______是对应角;
AB与_______是对应边,BC与_______是对应
边,AC与_______是对应边.
4.判断题:http:// www.x
(1)全等三角形的对应边相等,对应角相
等. ( )
(2)全等三角形的周长相等. ( )
(3)面积相等的三角形是全等三角
形. ( )
(4)全等三角形的面积相等. ( )
5.找出由七巧板拼成的图案中的全等三角
形.
检查学生对本节
课的掌握情况.小结与作业
课堂小结1.回忆这节课:在自己动手实际操作中,得
到了全等三角形的哪些知识?
2.找全等三角形对应元素的方法,注意挖掘
图形中隐含的条件,如公共元素、对顶角等,
但公共顶点不一定是对应顶点;
3.在运用全等三角形的定义和性质时应注意
规范书写格式.
对于学生的发言,
教师要给予肯定
的评价.
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1.本设计通过学生在做模型、画图、动手操作等活动中亲身体验,完成对三角形全等的实验,加深对“三角形全等”“对应”含义的理解,既培养学生的画图、识图能力,又提高了逻辑思维能力.
2.“构造一对全等三角形”这样一个开放性问题的设计,学生可以采用复写纸、手撕、剪纸,扎针眼、描图等方式获得,这往往因不同学生所拥有的生活经验而有所不同.显然,不同的学生从不同的生活背景和生活阅历出发,都能得到全等三角形,彼此之间的交流可以实现他们对全等三角形关键特征的理解和认识,同时,大家在交流中都能获得理解,分享成功的快乐! 3.在整个教学过程中,学生在自主探索和合作交流中,经历了观察、实验、归纳、类比、直觉、数据处理等思维过程,而这样的过程能够促进学生对数学的真正理解和把握,从中不仅获得了数学知识、技能,而经历了数学活动
新课标第一网系列资料。