初中数学优质课《全等三角形》教学设计及反思
- 格式:docx
- 大小:15.86 KB
- 文档页数:6
《全等三角形》的教学反思《全等三角形》的教学反思(精选18篇)在日常生活中,教学是重要的任务之一,反思是思考过去的事情,从中总结经验教训。
那么优秀的反思是什么样的呢?以下是小编整理的《全等三角形》的教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《全等三角形》的教学反思篇1教师的成长在于不断地总结教学经验和进行教学反思,下面就是我对我的这一节课的得失分析。
本课为本章的起始课,主要是一些基础的概念和性质,本节课的设计注重学生的直观感知和情感体验,从学生熟悉的生活中的全等现象和全等图形引入,借助直观、形象、生动的多媒体课件演示,激发学生兴趣,充分调动学生的学习积极性。
在教学过程中,增添了许多教材中没有的一些常见图形和课例,由易到难充分展示,给学生提供一个观察、思考的平台。
通过学生的观察、思考、交流、总结归纳出概念和性质,培养了学生初步的识图能力。
在整个教学过程中,学生在自主探索和合作交流中,经历了观察、操作、思考等思维过程,而这样的过程能够促进学生对数学的真正理解和把握,符合学生思维发展,培养了学生分析、解决问题的能力和逻辑思维能力。
通过图形的变换,让学生在不同的图形中寻找对应元素,突破本节的重、难点。
在教学过程中,真正做到以生为本。
让学生积极参与课堂活动之中,成为课堂的主体,而教师则适时点拨,及时引导。
让学生体验到数学的乐趣,让学生从中不仅获得了知识,提高了技能,经历了数学活动,同时在情感、态度、价值观等方面也都得到了很好的发展。
不足之处:由于准备时间不够充分,在一些例子的设置上没有完全注意到学生的差异。
如问题三,找全等三角形的对应边和对应角时,设计的图形较为复杂,致使一些基础较弱的同学解决此题较为吃力。
《全等三角形》的教学反思篇2本节课先复习旧知识,再提问学生两个三角形全等是否要六个元素分别相等式入手.在每个环节的安排中,突出了问题的设计,教师通过一个个的问题,把学生的思维激发起来,从而使学生主动、有效地参与到学习中来.1、猜想入手,激发学习兴趣。
教学设计模板课程名称《12.1全等三角形》执教教师何春燕学校名称托里县第一中学学科数学学段八年级一、教学目标1.知识与技能1)了解全等形和全等三角形的概念。
2)能准确识别全等三角形的对应边、对应角。
3)掌握全等三角形的性质。
2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角。
3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值。
二、教学重点、难点重点:探究全等三角形的性质。
难点:正确的指出两个全等三角形的对应元素。
三、教学方法采用“直观──感悟”的教学方法,让学生动手画出出形状、大小相同的三角形,加深认识。
四、教学用具PPT、直尺、剪刀.五、课时一课时六、学情分析八年级是初中学习过程中的关键时期,14班比13班的学生反应慢点,基础差点。
八年级这个年龄阶段的学生比较调皮,两个班中都有部分学生不上进,思维不紧跟老师。
要想获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,在教学中要循序渐进,结合实例,通俗易懂,培养学生活学活用的数学应用能力。
七、教学过程教学环节学习活动学生活动教师活动设计意图一、情景引入看一看,比一比:形状?大小?学生讨论:从PPT的图片中你能的出什么结论?教师利用希沃白板5的克隆功能展现图片的变化过程。
让学生直观看出全等三角形来源于生活。
激发学生的求知欲,为新课作铺垫。
二、新课讲解观察:同一张底片洗出的照片是能够完全重合的动动手:把一块三角板按在纸上,沿边每人画出一个图形,剪下这个图形.1、比一比:哪一组最快剪出这个图形.2.想一想:这个三角板和剪下的图形之间有什么关系?想一想:把一个三角形平移、旋转、翻折,变换前后的两个三角形有何关系?学生观察总结动手操作、用脑思考、与同伴讨论,得出结论.【互动交流】剪出的三角形,可以看出:形状、大小相同,能够完全重合.这样的两个三角形叫做全等形三角形。
《全等三角形》教学设计方案(第一课时)一、教学目标本课教学目标为:使学生掌握全等三角形的基本概念及其特性,通过教学和实践操作,理解全等三角形的判定方法,并能够灵活运用这些方法解决实际问题。
同时,通过学习全等三角形,培养学生的空间想象能力和逻辑推理能力,激发学生的学习兴趣和主动性。
二、教学重难点教学重点在于让学生熟练掌握全等三角形的概念及判定方法。
教学难点则在于理解不同全等三角形判定定理的内在联系和逻辑关系,以及如何将这些理论知识应用到实际问题中。
为了突破这一难点,将通过多种教学方法和案例分析,帮助学生理解并运用。
三、教学准备在课前准备阶段,需准备好相关的数学教学资料,包括课本、PPT、教具等。
同时,需要设计一些简单的全等三角形实例和练习题,以便在课堂上进行演示和练习。
此外,为了营造良好的学习氛围,可以准备一些启发性的问题和情境模拟活动,激发学生的学习兴趣和主动性。
此外,还应为学生准备好足够的时间和空间进行自主学习和思考。
四、教学过程:一、导入新课在课堂开始之初,教师首先需要吸引学生的注意力,并引导他们进入本节课的主题。
教师可以通过提问来激发学生的学习兴趣和好奇心。
比如:“你们知道在生活中哪些情况下我们会用到全等三角形吗?”随后,教师可展示一些与全等三角形相关的实际生活案例,如建筑图纸中的直角三角形等。
这些例子不仅可以激发学生的学习兴趣,同时还能为接下来的理论知识提供现实背景。
二、基础知识介绍接着,教师需要对全等三角形的基础知识进行详细的讲解。
包括全等三角形的定义、性质和判定方法等。
在讲解过程中,教师可以通过图示和实例来帮助学生更好地理解和掌握这些知识。
同时,教师还可以引导学生进行思考和讨论,以培养学生的逻辑思维能力和自主探究能力。
三、互动探究学习在学生对全等三角形的基础知识有了一定了解之后,教师可以组织学生进行互动探究学习。
教师可以设计一些与全等三角形相关的实际问题或任务,让学生通过小组合作或个人探究的方式来解决。
《全等三角形》优秀的教学反思(通用21篇)在工作和生活中,少不了要写各种各样的文档,不论是写制度、写总结、写方案、写方案、写教案还是写其它的材料,能写出一篇好的文档,体现了一个人的文笔,也体现着一个人的力量,下面是我整理的《《全等三角形》优秀的教学反思(通用21篇)》,快快拿去用吧!《全等三角形》优秀的教学反思篇1全等三角形第一课时,这节课比较简洁,我接受了先学后教的教学策略。
教学过程大致是:首先,同学自学。
其次,老师多媒体呈现教材上的图案以及制作的一些图案,引导同学识图,检测同学自我建构全等三角形概念的状况。
再次,老师演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。
通过教具演示让同学体会对应顶点、对应边、对应角的概念,并以找伴侣的形式练习对应顶点、对应边、对应角,加强对对应元素的娴熟程度。
此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对学问的巩固,再给出练习推断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。
接下来,通过同学对全等三角形观看,得出全等三角形的性质。
并通过练习来理解全等三角形的性质并渗透符号语言推理。
最终老师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简洁的实际问题。
这节课有几点不足:1.同学动手活动少,应当在课前就要求同学自制一对全等三角形。
这样课堂上好操作,同学体验也深刻了,活而不乱,时间上也是可控的。
2.题目变形应当突出全等三角形的性质这一重点,所练习题的综合度和变化还是不够多。
3.多媒体演示如能协作同学手工制作的三角板同时进行,成效会更好。
但是要支配好观看次序和图形的变化次序。
《全等三角形》优秀的教学反思篇2一、教学方法让同学通过观赏来自生活中的精致图案,观看体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的查找方法,从而体会什么样的两个图形是全等三角形。
全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
全等三角形教案反思教案背景:一、教学目标1.知识与技能:(1)掌握全等三角形的定义及性质。
(2)能够运用全等三角形的性质解决实际问题。
2.过程与方法:(1)通过观察、操作、猜想、验证等方法,培养学生的几何直观和推理能力。
(2)通过小组合作,培养学生的团队协作能力和沟通能力。
3.情感态度与价值观:(1)激发学生对几何学习的兴趣,培养学生热爱数学的情感。
(2)培养学生严谨的科学态度和勇于探索的精神。
二、教学重难点1.教学重点:全等三角形的定义及性质。
2.教学难点:运用全等三角形的性质解决实际问题。
三、教学过程1.导入新课(1)引导学生回顾已学的三角形知识,为新课学习做好铺垫。
(2)提出问题:什么是全等三角形?全等三角形有哪些性质?2.探索新知(1)组织学生进行观察、操作、猜想、验证等活动,引导学生发现全等三角形的性质。
(2)通过实例讲解,让学生理解全等三角形的定义及性质。
3.实践应用(1)设置一些实际问题,让学生运用全等三角形的性质解决问题。
(2)组织小组讨论,让学生在合作中巩固所学知识。
(2)对学生的表现进行评价,鼓励学生继续努力。
四、教学反思1.优点:(1)在教学过程中,注重学生的主体地位,引导学生主动参与、积极探究。
(2)通过实例讲解和小组讨论,让学生在合作中学习,培养学生的团队协作能力。
(3)注重培养学生的几何直观和推理能力,提高学生的数学素养。
2.不足:(1)在课堂讲解中,对部分学生的关注不够,未能及时发现和解决他们的问题。
(2)课堂练习量不足,未能充分检验学生的学习效果。
(3)在小组讨论环节,部分学生参与度不高,讨论效果不佳。
3.改进措施:(1)在课堂教学中,增加互动环节,关注每个学生的表现,及时解答他们的疑问。
(2)增加课堂练习量,让学生在练习中巩固所学知识。
(3)优化小组讨论环节,提高学生的参与度,确保讨论效果。
重难点补充:教学过程:1.导入新课师:同学们,我们之前学过了三角形的基本概念和性质,谁能告诉我,三角形有几个角?几条边?生:三角形有三个角,三条边。
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
《全等三角形的性质》教学反思
一、教学目标达成情况
本节课的教学目标是让学生掌握全等三角形的性质,包括全等三角形的对应边相等、对应角相等。
通过讲解、讨论和练习,学生基本掌握了这些性质,并能运用它们进行简单的推理和证明。
二、教学方法和手段
本节课采用了讲解、讨论和练习相结合的教学方法。
首先,通过回顾全等三角形的定义,引出全等三角形的性质。
然后,通过讲解和讨论,让学生了解全等三角形的性质及其应用。
最后,通过练习巩固所学知识。
三、学生表现
在课堂中,大部分学生能够积极参与讨论和练习,表现出较高的学习热情和积极性。
但也存在一些问题,如部分学生对于全等三角形的性质理解不够深入,需要进一步加强练习和指导。
四、改进措施
针对本节课存在的问题,可以采取以下措施加以改进:
1.加强学生对全等三角形性质的深入理解,可以通过更多的实例和练习加以
巩固。
2.针对学生的不同学习水平,可以设计不同难度的练习题,以满足不同层次
学生的需求。
3.加强课堂互动,鼓励学生提出问题和意见,以便更好地了解学生的学习情
况和需求。
总之,本节课的教学效果基本达到了预期目标,但也存在一些需要改进的地方。
在今后的教学中,我将继续努力,不断改进教学方法和手段,提高教学效果。
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
全等三角形教学反思这是全等三角形教学反思,是优秀的数学教案文章,供老师家长们参考学习.全等三角形教学反思第1篇本节课探索三角形全等的判定方法一,是后面几种判定方法的根底,也是本章的重点也是难点.教材看似简单,仔细研究后才发现对学生来说有些困难,处理不好可能难以成功.备课时发现本节课的难点就是处理从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完本钱节课的教学任务.反思整个过程,我觉得做得较为成功的有以下几个方面:1、教学设计整体化,内容生活化.在课题的引入方面,让学生动手做、裁剪三角形.既提问复习了全等三角形的定义,又很好的过渡到确定一个三角形需要哪些条件的问题上来.把知识不知不觉地表达出来,学得自然新鲜.数学学习来源于生活实际,学生学得轻松有趣.2、把课堂充分地让给了学生.我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言.其实,这是一个调动学生积极性,同时也是鼓励彼此的过程.在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题.3、在难点的突破上取得了成功.上这堂课前,我一直担忧学生在得出三角形全等的判定方法上出现理解困难.课堂上我通过让学生动手制作一个两边长分别为6cm和8cm,并且这两边的夹角为45度的三角形,并要求相互之间互相比拟发现制作的三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法:边角边公理,即:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简称SAS. 但也有几处是值得思考和在以后教学中应该改良的地方:1、在课堂上优等生急着演示、发言,后进生却成了观众和听众.如何做到面向全体,人人学有所得,也值得我们数学教师来探讨.2、课堂学生的操作应努力做到学生自发生成的,而不是老师说你们比拟下三角形的形状和大小,应换为自发地比拟更好.3、教学细节需进一步改良,教学时应多关注学生,在学习新知后,虽然大局部的学生都掌握了,但有少数后进生仍然是不理解.全等三角形教学反思第2篇本节课探索三角形全等的判定方法一,是后面几种判定方法的根底,也是本章的重点也是难点.备课时发现本节课的难点就是处理从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完本钱节课的教学任务.反思整个过程,我觉得做得较为成功的有以下几个方面:1、教学设计整体化,内容生活化.在课题的引入方面,然学生动手做、裁剪三角形.既提问复习了全等三角形的定义,又很好的过度到确定一个三角形需要哪些条件的问题上来.把知识不知不觉地表达出来,学得自然新鲜.数学学习来源于生活实际,学生学得轻松有趣.2、把课堂充分地让给了学生.我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言.其实,这是一个调动学生积极性,同时也是鼓励彼此的过程.在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题.3、在难点的突破上取得了成功.上这堂课前,我一直担忧学生在得出三角形全等的判定方法上出现理解困难.课堂上我通过让学生动手制作两个三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法.但也有几处是值得思考和在以后教学中应该改良的地方:1、在课堂上优等生急着演示、发言,后进生却成了观众和听众.如何做到面向全体,人人学有所得,也值得我们数学教师来探讨.2、课堂学生的操作应努力做到学生自发生成的,而不是老师说你们比拟下三角形的形状和大小,应换为自发地比拟更好.3、教学细节需进一步改良,教学时应多关注学生,在学习新知后,虽然大局部的学生都掌握了,但有少数后进生任然是不理解.全等三角形教学反思第3篇一、教学目标的反思.『全等三角形的判定』这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件.具体说:〔1〕正确识别两个三角形全等----会将两个三角形相等的边和角对应重叠在一起,看是否重合;〔2〕相信判定两个三角形全等不一定要3条边和3个角都相等,可能一边或一角相等就足够〔这个判断不一定要正确,但要有这种想法,探索命题的真假才有可能〕;〔3〕能正确地将三角形的6个元素按条件的个数分成:①一个元素:一个边或一条角对应相等.②两个元素:两边或一边一角或两角对应相等.③三个元素:三边或两边和一角或一边和两角或三角对应相等.或者按:①边〔一条边或两条边或三条边分别对应相等〕,②角〔一个角或两个角或三个角分别对应相等〕,③边和角[一条边和一个角或一条边和两个角〔又分为角边角和角角边两种〕或两条边和一个角〔又分为边角边和边边角两种〕分别对应相等];〔4〕能将分好的三大类〔12小类〕条件用画图的方法进行验证,找出能判定两个三角形全等的三条公理和一条定理;〔5〕能用这四个判定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等.基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计表达了知识与技能目标.增强学生的观察、猜测和动手操作能力.二、教学策略的反思1、对分类的把握.对许多学生来说进行分类有困难,学生是否能准确分类,是本节课的难点和重点之一.要找到解决难点策略,就要找到造成难点的原因,学生之所以分类有困难是因为他们不知到从什么地方下手,以及做到不重不漏.我将这个问题分为两步:〔1〕提出第一个问:我们发现判定两个三角形全等不一定要6个元素〔三个角和三条边〕分别对应相等,可少一些元素,那么最少要几个元素,我们从多少个元素开始找呢?多数学生会从一个元素开始,不断地增加元素.少局部学生从边开始,一条边、两条边、三条边,然后再到角、边角〔这也是一种好方法,给予肯定,但不在堂上全班探讨〕.〔2〕提出第二个问:从一个元素到二个元素再到三个元素,一步一步地探索下去的思路是正确的,但不够具体,请同学们将元素所代表的具体情况〔边或角〕写出,并进一步画出草图表示对应相等的边角位置.小组讨论,分类如下:可以说,通过这样分类的学习,到达了两个目标:〔1〕渗透数学的分类思想;〔2〕明确对应关系,使得后继学习变得顺利.2、容量问题.与其把学生当天津鸭儿添入一些零碎知识,不如给他们几把锁匙,使他们可以自动去开发文化的金库和宇宙之宝藏. 本课为了到达内容的完整性和思路的连续性----找两个三角形全等的判定,将找的方法-----分类和验证得出结论,放在一节课上,使人觉得容量比拟大.造成容量大的原因主要在画图验证上,而画图验证的过程中以学生画图占用的时间最长,弄不好整节课就好似在上画图课,而学生画图并不困难.因此,我将本课学习分为两局部完成,第一局部是画图和识图,放在课前学习,〔1〕要求学生按所给的不同的3个条件〔附上作图步骤〕,画出6个图并在图注上条件,剪下来备用.在课堂上需验证时才取出与小组同学比照,是否全等.实际上,学生在上课前早已忍不住进行了比照,正为有的三角形与同学的全等,有的三角形与同学的不全等而奇怪,不知道是同学画错了还是自己画错了.所以我在想是不是就从小组交流结果开始更好呢?〔2〕对给出的两个三角形直接判断是否全等.第二局部是在课堂上,对全等的概念进行强化复习〔包括验证两个三角形全等的方法和书写要求,使学生明确画图验证是目前唯一的可操作的方法〕,分类、验证〔包括举反例:对满足一个元素或两个元素对应相等的两个三角形不一定全等〕、简单应用.三、成效性反思原教学设计附有作图练习卷〔按要求作三角形,使得三角形有三个元素等于所给的具体值〕,要求学生在课堂上做,因考虑到内容较多,在上课时将学生分成6组,每组完成同一个作图〔其它为作业〕,每个同学独立完成作图,然后与小组成员比拟所画图形的形状和大小并汇报给全班同学.操作上可进行,但我始终有一种不踏实的感觉,可又说不出为什么.给我的学生上课,才意识到边边角情况,画了图的六分之一学生说全等,而六分之五的学生没动手画过,我不能直接点评,一急之下,我脱口说这一组的作图藏有一个秘密,我们再仔细画一次,这才顺利解决了问题.因而,另一个班,我就将作图练习卷作为课前作业,正如陶行知先生所说:行是知之始,知是行之成. 教学做是一件事,不是三件事.我们要在做上教,在做上学.不在做上用功夫,教固不成为教,学也不成为学. 这样处理效果更好.。
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
三角形全等教学反思8篇三角形全等教学反思篇1本节课是探索三角形全等的重要判定方法之一,也是本章的重点。
反思整个过程,我觉得做得较为成功的有以下几个方面:1、教学设计整体化,内容逻辑化。
在课题的引入方面,通过复习回顾,问题展示导入新课。
既提问复习了全等三角形的判定方法,又很好的过渡新问题上来。
把知识不知不觉地体现出来,学得自然新鲜。
新知学习于学生已掌握的知识基础上,学生学得轻松有趣。
2、把课堂充分地让给了学生。
我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言。
其实,这是一个调动学生积极性的过程。
在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题。
3、本课的难点在于利用隐含的边角关系证明三角形全等,以及利用全等三角形证明线段和角的相等关系。
通过适当的例题,较好的突破了这一难点。
但也有几处是值得思考和在以后教学中应该改进的地方:1、在课堂上优等生急着演示、发言,后进生却成了观众和听众。
如何做到面向全体,人人学有所得,也值得我们数学教师来探讨。
2、教学细节需进一步改进,教学时应多关注学生,在学习新知后,虽然大部分的学生都掌握了,但有少数后进生仍然是不理解。
三角形全等教学反思篇2几何知识对健听学生来说学得都是比较困难、也是不容易理解和掌握的,更何况是我们这些听障孩子。
几何有很多概念用手语也是不容易与学生讲得很透彻的,而且,几何它又枯燥无味,所以,要学好,不容易。
但我还是从学生的特点和认知能力出发,做好每一堂课的教学工作。
以《全等三角形》第一课时为例,这节课主要是学习全等形和全等三角形的概念,从中得出全等三角形的性质。
我首先拿出两张一模一样的钞票,提问学生思考两张钞票是否一样,为什么一样?(学生还真的很感兴趣)再拿出两本学生数学课本,提问学生思考两本数学课本是否一样,又为什么一样?再拿出两个一模一样的用纸片自制的三角形图形,提问学生思考这两个三角形是否一样,又为什么一样?让学生自主发言,有说这的,有说那的,老师启发学生从形状和大小上去思考,是否一样。
初中数学优质课《全等三角形》教学设
计及反思
教学目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;
3.能熟练找出两个全等三角形的对应角、对应边.
教学重点
全等三角形的性质.
教学难点
找全等三角形的对应边、对应角.
教学过程
Ⅰ.提出问题,创设情境
1、问题:你能发现这两个三角形有什么美妙的关系吗?
这两个三角形是完全重合的.
2.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.
3.获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应
顶点、对应角、对应边,以及有关的数学符号.
形状与大小都完全相同的两个图形就是全等形.
要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同.
概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求.
Ⅱ.导入新课
将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.
议一议:各图中的两个三角形全等吗?
不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.
(注意强调书写时对应顶点字母写在对应的位置上)
启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.
观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系) 得到全等三角形的性质:全等三角形的对应边相等. 全
等三角形的对应角相等.
[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.
问题:△OCA≌△OBD,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?
将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A 和D是对应顶点,•所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,•指出其他的对应边和对应角.
分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.
根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:
(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.
(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
解:对应角为∠BAE和∠CAD.
对应边为AB与AC、AE与AD、BE与CD.
[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)
借鉴例2的方法,可以发现∠A=∠A,•在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB 与AE显然不重合,所以AB•与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B 与∠D、∠ACB与∠AED.
做法二:沿A与BC、DE交点O的连线将△ABC•翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB 与∠AED.
Ⅲ.课堂练习
课本练习1.
Ⅳ.课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,•并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.
找对应元素的常用方法有两种:
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
Ⅴ.作业
课本习题1
课后作业:《新课堂》
板书设计
§13.1全等三角形
一、概念
二、全等三角形的性质
三、性质应用
例1运动角度看问题)
例2根据位置来推理)
例3:(根据位置和运动角度两种办法来推理)
四、小结:找对应元素的方法运动法:翻折、旋转、平移.。