二次根式的化简求值
- 格式:doc
- 大小:662.50 KB
- 文档页数:3
二次根式的化简求值一 、解答题(本大题共12小题)1.已知1018222=++a a a a,求a 的值. 2.请先化简下列式子,再选取两个能使原式有意义,而你又喜爱的数代入化简后的式子中求值.3.先化简,再求值:2232()111x x x x x x +÷---,其中1x =.4.已知x =,求5x x -的值. 5.已知x =,y =1111x y +--的值. 6.先化简,再求值:11()b a b b a a b ++++,其中a b ==.7.2011+8.当a =,求代数式2963a a a -+-的值.9.已知x =,y =222)x xy y x y ++-的值. 10.先化简再求值,其中3a =,4b =11. 若正数m,n满足43+=.m n12.已知a、b、c满足3+++=,求222a b c++的值a b c二次根式的化简求值答案解析一 、解答题1.先化原方程中的二次根式为最简二次根式,然后按着解一般整式方程的步骤去解即可.1010=2=a =2.原式=÷=== 当2x =时,原式=当3x =时,原式=.3.原式232132[]2(1)(1)111x x x x x x x x x x x --=-⨯=-=-+-++,当1x =时,原式1===4.x =25==+,原式1==.5.x =3=-y ==3+原式1====-.6.原式=22()()()()ab a a b b a b a b ab a b ab a b ab+++++==++当a b =,原式7.原式1201211++--+8.原式=211(3)33(1)(1)a a a a a a a a a ---+=-+---,2)212a a =-∴=-=+ 原式=111333(1)(1)a a a a a a a a a a ---+=-+=----, 当a =时,原式=2321+=.9.x =2)2==2222)())x xy y x y x y x y ∴+++-=++-,把x y ==代入得原式=2402416+=-=.10.根据本题特点,可先通分做加法,后做除法进行化简,再代入.原式====当3a =,4b =时,原式2==. 11.此题用到了因式分解.43m n +=,2230+--=,即230--=,1)0∴=31+=-(舍去), ∴原式385320112014-==-+12.30a b c +++-,∴1[(1)1][(1)1]0a b c -+--++-=2221)1)1)0∴++=1=,1,2,0a b c ∴===∴222c b a ++2221205=++=。
专题16.1二次根式的化简求值整体思想:指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
一、二次根式的定义形如(≥0)的式子叫做二次根式,叫做二次根号,叫做被开方数.二、二次根式有意义的条件1.二次根式中的被开方数是非负数;2.二次根式具有非负性:≥0.三、判断二次根式有意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数;2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.四、二次根式的性质性质1:2=(≥0),即一个非负数的算术平方根的平方等于它本身;性质2:2==(≥0)−(<0),即一个任意实数平方的算术平方根等于它本身的绝对值.五、同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.六、二次根式的加减法则二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.七、二次根式的乘除法则①二次根式的乘法法则:∙=∙o≥0,≥0);②积的算术平方根:∙=∙o≥0,≥0);≥0,>0);=≥0,>0).八、最简二次根式我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式.九、分母有理化1.分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式;2.两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.【典例1】阅读下列材料,然后回答问题.====3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab=-3,求2+2.我们可以把a+b和ab看成是一个整体,令x=a+b,y=ab,则2+2=(+p2−2B=2−2=4+6=10.这样,我们不用求出a,b,就可以得到最后的结果.(1(2)m是正整数,a b22+1823B+22=2019.求m.(3)已知15+2−26−2=1,求15+2+26−2的值.(1)由题目所给出的规律进行计算即可;(2)先求出+=2(2+1),B=1再由22+1823B+22=2019进行变形再求值即可;(3)先得到15+2⋅26−2=20,然后可得(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,最后由15+2≥0,26−2≥0,求出结果.解:(1)原式=2+++⋯+2=3−1+5−3+7−5+⋯+2019−20172=(2)∵a b∴+==2(2+1),B=1,∵22+1823B+22=2019,∴2(2+2)+1823=2019,∴2+2=98,∴4(2+1)2=100,∴2=±5−1,∵m是正整数,∴m=2.(3)由15+2−26−2=1得出(15+2−26−2)2=1,∴15+2⋅26−2=20,∵(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,又∵15+2≥0,26−2≥0,∴15+2+26−2=9.1.(2023下·浙江·八年级阶段练习)已知=2−3,=2+3,则代数式2+2B+2+−−4的值为()A B.34C.3−1D【思路点拨】根据已知,得到+=2−3+2+3=22,−=2−3−2−3=−23,整体思想带入求值即可.【解题过程】解:∵=2−3,=2+3,∴+=2−3+2+3=22,−=2−3−2−3=−23,∴2+2B+2+−−4=+2+−−4=222−23−4=8−23−4=4−23=32−23+1=3−12=3−1.故选C.2.(2022下·广西钦州·八年级统考阶段练习)已知+1=7(0<<1),则−)【思路点拨】,故<,将−由0<<1,得0<<1【解题过程】解:∵0<<1,∴0<<1,∴<2=−2+1,+1=7(0<<1),∵(−∴(−∴=-5或−=5,∵<0,∴∴故选B.3.(2023·浙江宁波·校考一模)若2+2=1,则2−4+4+B−3+−3的值为()A.0B.1C.2D.3【思路点拨】先根据2+2=1得出−1≤≤1,−1≤≤1,根据2−4+4+B−3+−3要有意义,得出+ 1−3≥0,根据−3<0得出+1≤0,从而得出J−1,将J−1代入即可求出式子的值.【解题过程】解:∵2+2=1,∴−1≤≤1,−1≤≤1,∵2−4+4+B−3+−3要有意义,∴B−3+−3≥0,整理得:+1−3≥0,∵−3<0,∴+1≤0,∴J−1,∴2−4+4+B−3+−3=−22++1−3=−1−22+−1+1−3=3+0=3,故D正确.故选:D.4.(2023上·四川达州·八年级校考期中)已知xx6﹣22019x5﹣x4+x3﹣22020x2+2x﹣2020的值为()A.0B.1C.2019D.2020【思路点拨】对已知进行变形,再代入所求式子,反复代入即可.【解题过程】解:∵=2020−=2020+2019,∴6−220195−4+3−220202+2−2020,=5−22019−4+2−22020+2−2020,=52020+2019−22019−4+22020+2019−22020+2−2020,=52020−2019−4+22019−2020+2−2020,=42020−2019−1+22019−2020+2−2020,=2020+20192019−2020+2−2020=−+2−2020,=−2020,=2019,故选:C.5.(2023·安徽·校联考模拟预测)设a为3+5−3−5的小数部分,b为6+33−6−33的小数部分,则2b−1的值为()A.6+2−1B.6−2+1C.6−2−1 D.6+2+1【思路点拨】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【解题过程】解:3+5−3−5-=5+15-1=2∴a的小数部分为2-1,6+336−33−=3+33-3=6∴b的小数部分为6-2,∴2b−1=6+2-2-1=6-2+1,故选:B.6.(2022上·湖南益阳·八年级统考期末)设1=1+112+122,2=1+122+132,3=1+132+142,……,=1+ 12+1(r1)2.其中n为正整数,则1+2+3+⋅⋅⋅+2021的值是()A.202020192020B.202020202021C.202120202021D.202120212022【思路点拨】根据题意,先求出=1+1or1),然后把代数式进行化简,再进行计算,即可得到答案.【解题过程】解:∵n为正整数,∴=2+r1or1)=1+1or1);∴1+2+3+⋯+2021=(1+11×2)+(1+12×3)+(1+13×4)+…+(1+12021×2022)=2021+1﹣12+12−13+13−14+⋯+12021−12022=2021+1﹣12022=202120212022.故选:D.7.(2023上·上海金山·八年级校考期中)如果=5−2,则1=.【思路点拨】本题考查了二次根式的化简求值,熟练掌握二次根式的性质、完全平方公式是解题关键.先根据二次根式的分母有理化可得1,从而可得1−>0,再利用完全平方公式化简二次根式,代入计算即可得.【解题过程】解:∵=5−2,∴1=5−2=5−2=5+2,∴1−55−2∴1=1+=1+−=5+2+4=5+6.故答案为:5+6.8.(2022上·湖南长沙·七年级校联考阶段练习)已知==42−3B+42=.【思路点拨】先把和的值分母有理化得到==−=−12,B=1,再利用完全平方公式变形原式得到4(−p2+5B,然后利用整体代入的方法计算.【解题过程】解:∵==∴====∴−=−12,B=1,∴原式=4(−p2+5B=4×(−12)2+5×1=6.故答案为6.9.(2022下·浙江杭州·八年级校考期中)已知=2的值等于.【思路点拨】通过完全平方公式求出+1=2,把待求式的被开方数都用+1的代数式表示,然后再进行计算.【解题过程】=2,解:∵+∴=4,∴+1+2=4∴+12===10.(2023下·广东深圳·九年级深圳中学校考自主招生)已知x,y为正整数,+−7−7+ 7B=7,求+=.【思路点拨】将等式进行因式分解,得到++7B−7=0,求得B=7,即可求解.【解题过程】解:∵+−7−7+7B=7,∴+−7−7+7B−7=0,∴B+−7++7B−7=0,∴+B−7+7B−7=0,∴++7B−7=0,∵++7>0,∴B−7=0,∴B=7,又x,y为正整数,则s=1,7或7,1,从而+=8,故答案为:8.11.(2023下·黑龙江绥化·八年级校考阶段练习)设=3−2,则6+35+113+2+1=.【思路点拨】利用+22=2+4+4和=3−2,推得2+4+1=0,借助该式将多项式进行降幂化简,即可求解.【解题过程】解:∵=3−2,∴+22=3−2+22=3,又∵+22=2+4+4,即2+4+4=3,整理得2+4+1=0,6+35+113+2+1=42+4+1+35+113+2+1−45−4=−5−4+113+2+1=−32+4+1−4+113+2+1+44+3=34+123+2+1=322+4+1+2+1−32=−32+2+1=−32+4+1+2+1+12+3=14+4,将=3−2代入原式可得14×3−2+4=143−24.故答案为:143−24.12.(2022下·湖北武汉·九年级统考自主招生)已知=则代数式23−32−7+2022的值为.【思路点拨】将已知条件=2−3=−1,再将所求代数式变形为23−62+32−7+2022,由此即可求解.【解题过程】解:已知=∴2=3+5,即2−3=5,等式两边同时平方得,2−32=52,整理得,42−12+9=5,即42−12=−4,∴2−3=−1,∵23−32−7+2022=2o2−3p+32−7+20022把2−3=−1代入得,=2×−1+32−7+2022=32−2−7+2022=32−9+2022=3(2−3p+2022把2−3=−1代入得,=3×−1+2022=2019,故答案为:2019.13.(2022上·上海闵行·=3,=13.【思路点拨】首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解题过程】解:原式=K=+++=2+2当=3,=13时,原式=23+=23+=14.(2023·北京·九年级专题练习)已知==,求2+2的值.【思路点拨】首先把x和y进行分母有理化,然后将其化简后的结果代入计算即可.【解题过程】解:∵==5−26,===5+26,∴原式=(5+2(5−26)=2620626206=26)(49206)6)(49206)6)(492026)(49206)=245−1006−986+240+245+1006+986+240=970.15.(2023下·山东威海·九年级校考期中)已知+=−8,B=12,求+【思路点拨】根据题意可判断a和b都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.【解题过程】解:∵+=−8,B=12,∴a和b均为负数,2+2−2B=40=B+B=2B2B=2+2B=−−==2=−4012=−401212=−40×2312=−203316.(2023上·上海杨浦·七年级校考阶段练习)已知−2B−15=0【思路点拨】讨论:当>0,>0,利用因式分解的方法得到−5+3=0,解得=25,当I0,<0,则−−+5−−−3−=0,解得=9,然后把=25,=9化简求解.【解题过程】解:∵−2B−15=0要有意义,即B≥0,∴>0且>0或I0且<0,当>0且>0时,∵−2B−15=−5+3=0,∴−5=0或+3=0(舍去),解得:=25,把=25=25r5r225K10r=2;当I0且<0时,∵−2B−15=−−+5−−−3−=0,∴−r5−=0(舍去)或−−3−=0,解得:=9,把=9==9K3r29r6r=12.17.(2023上·四川成都·八年级成都市三原外国语学校校考阶段练习)已知==(2【思路点拨】(1)先将x、y进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x、y进行计算即可.【解题过程】(1)∵=10−3=10+3,=10−3,=∴+=210,−=6,∴2+2B+2=(+p2=(210)2=40.(2)∵=10+3,=10−3,∴1∴o−2)=−2o−2)−+1o+1)=1−1=1010=10−3−10−3=−6.18.(2023上·河北衡水·八年级校联考阶段练习)已知=2−3,=2+3.(1)求+和B的值;(2)求2+2−3B的值;(3)若的小数部分是,的整数部分是,求B−B的值.【思路点拨】本题考查了二次根式的混合运算、利用完全平方公式进行计算、无理数的估算,熟练掌握以上知识点并灵活运用是解此题的关键.(1)代入=2−3,=2+3即可求出+和B的值;(2)将原式变形为+2−5B,代入数值进行计算即可;(3)先估算出1<3<2,从而得出=2−3,=3,再代入进行计算即可得出答案.【解题过程】(1)解:∵=2−3,=2+3,∴+=2−3+2+3=4,B=2−32+3=4−3=1;(2)解:由(1)得:+=4,B=1,∴2+2−3B=+2−5B=42−5×1=11(3)解:∵1<3<4,∴1<3<4,即1<3<2,∴−2<−3<−1,∴0<2−3<1,∵的小数部分是,∴=2−3,∵3<2+3<4,的整数部分是,∴=3,∴B−B=2−32−3−32+3=4−43+3−6−33=1−73.19.(2023下·广东江门·八年级统考期中)有这样一类题目:将±2化简,如果你能找到两个数m、n,使2+2=且B =,±2将变成2+2±2B ,即变成(±p 2,从而使±2得以化简.(1)例如,∵5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2,∴5+26=(3+2)2=______,请完成填空.(2)仿照上面的例子,请化简4−23;(3)利用上面的方法,设=6+42,=3−5,求A +B 的值.【思路点拨】(1)根据二次根式的性质:2==o >0)0(=0)−o <0),即可得出相应结果.(2)根据(1)中“5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A 式和B 式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B 式的结果分别算出,最后把A 式和B 式再代入A +B 中,求出A +B 的值.【解题过程】(1)∵5+26=2+3+26=22+32+2×2×3=2+32∴5+26=(3+2)2=3+2故答案为:3+2(2)∵4−23=3+1−23=32+1−23=3−12∴4−23=(3−1)2=3−1.(3)∵=6+42=4+2+42=42+22+2×4×2=(2+2)2∴=6+42=2+2∵=3−5=∴=3−5====∴把A 式和B 式的值代入A +B 中,得:+=2+2=2+2220.(2023下·广西钦州·八年级校考阶段练习)我们将+、−称为一对“对偶式”,因为+−=(p2−(p2=−,所以构造“和−====3+22.像这中的“”样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:“>”、“<”或“=”填空);(1(2)已知==,求K2rB2的值;+…+(3【思路点拨】(1)先分母有理化,然后根据作差法,比较大小即可求解;(2)先求得−s B的值,然后代入即可求解;(3)将每一项分母有理化,然后就根据二次根式的加减进行计算即可求解.【解题过程】(17−2=7−2===∵7>6,2>3−137−6+2−3>0,>故答案为:>.(2)∵==5+45+4=9+45,==5+2=5−45+4=9−45,∴+=9+45+9−45=18,−=9+45+−9+45=85,B=9+45945−80=1,∴K 2rB2+⋯+(3=3)2(53−35)35)(5−3979799⋯+2(99979799)(99979799)(9997−97=1−33+33−55+55−77+⋯+9797−9999=1−9999=1−。
二次根式化简求值的十种技巧
1、分解因子:将多项式的括号分解,提取未知项;
2、分子分母同乘以同一因子或者最小公倍数:分子分母乘以最小公倍数后,可分解未知项;
3、比例问题转化为相似三角形:通过比例问题比较两个等式,转化为两个相似三角形,求他们的包含角;
4、代入等式方法:把另外一个等式中的已知值替换掉未知项,再用未知项代入其他等式求解;
5、化简为等式:将式子中的所有常数项移到右边,使左边的各未知项组成解;
6、同类项除法:直接将同类项的分子分母分别相除,可消去某项未知数;
7、加减同乘:可以把加/减法式改成乘法式,使同类项可相除;
8、乘除同加:可以把乘/除法式改成加法式,使同类项可分解;
9、移项求值:把式子中的所有未知项移到右边,用常数项求出变量值;
10、套管问题:将多项式中的未知数抽出,再套回原来的表达式中去,计算未知项的值。
z二次根式的化简求值整体思想:指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
一、二次根式的定义形如√a (a ≥0)的式子叫做二次根式,√⬚叫做二次根号,a 叫做被开方数. 二、二次根式有意义的条件1.二次根式中的被开方数是非负数;2.二次根式具有非负性:√a ≥0. 三、判断二次根式有意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是 非负数;2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.四、二次根式的性质性质1:&√a'!=a (a ≥0),即一个非负数的算术平方根的平方等于它本身;性质2:√a !=|a|=)a (a ≥0)−a (a <0),即一个任意实数平方的算术平方根等于它本身的绝对值.五、同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式. ①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.◆知识点总结◆思想方法z六、二次根式的加减法则二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变. 七、二次根式的乘除法则①二次根式的乘法法则:√a ∙√b =√a ∙b(a ≥0,b ≥0); ②积的算术平方根:√a ∙b =√a ∙√b(a ≥0,b ≥0); ③二次根式的除法法则:√#√$=5#$(a ≥0,b >0);④商的算术平方根:5#$=√#√$(a ≥0,b >0).八、最简二次根式我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式. 九、分母有理化1.分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母 组成平方差公式;2.两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个 二次根式的有理化因式不止一个.【典例1】阅读下列材料,然后回答问题.①在进行二次根式的化简与运算时,我们有时会碰上如!√%&'一样的式子,其实我们还可以将其进一步化简:!√%&'= !(√%)')(√%&')(√%)')= !(√%)')(√%)!)'=!(√%)')!= √3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求a !+b !.我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则a !+b !=(a +b)!−2ab =x !−2y =4+6=10.这样,我们不用求出a ,b ,就可以得到最后的结果. (1)计算:'√%&'+ '√+&√%+ '√,&√++ ...+'√!-'.&√!-',;◆典例分析z(2)m 是正整数, a =√/&')√/√/&'&√/,b =√/&'&√/√/&')√/且2a !+1823ab +2b !=2019.求 m .(3)已知√15+x !−√26−x !=1,求√15+x !+√26−x !的值.(1)由题目所给出的规律进行计算即可;(2)先求出a +b =2(2m +1),ab =1再由2a !+1823ab +2b !=2019进行变形再求值即可;(3)先得到√15+x !⋅√26−x !=20,然后可得(√15+x !+√26−x !)!=(√15+x !−√26−x !)!+4√15+x !⋅√26−x !=81,最后由√15+x !≥0,√26−x !≥0,求出结果. 解:(1)原式=√%)'!+√+)√%!+√,)√+!+⋯+√!-'.)√!-',!=√3−1+√5−√3+√7−√5+⋯+√2019−√20172=√!-'.)'!, (2)∵a =√/&')√/√/&'&√/,b =√/&'&√/√/&')√/,∴a +b =(√/&')√/)!&(√/&'&√/)!(√/&'&√/)(√/&')√/)=2(2m +1),ab =1,∵2a !+1823ab +2b !=2019, ∴2(a !+b !)+1823=2019, ∴a !+b !=98, ∴4(2m +1)!=100, ∴2m =±5−1, ∵m 是正整数, ∴m =2.(3)由√15+x !−√26−x !=1得出(√15+x !−√26−x !)!=1, ∴√15+x !⋅√26−x !=20,∵(√15+x !+√26−x !)!=(√15+x !−√26−x !)!+4√15+x !⋅√26−x !=81, 又∵√15+x !≥0,√26−x !≥0, ∴√15+x !+√26−x !=9.z1.(2023下·浙江·八年级阶段练习)已知x =√2−√3,y =√2+√3,则代数式Kx !+2xy +y !+x −y −4的值为( ) A .√%! B .%C .√3−1D .√+)'!【思路点拨】根据已知,得到x +y =√2−√3+√2+√3=2√2,x −y =√2−√3−√2−√3=−2√3,整体思想带入求值即可. 【解题过程】解:∵x =√2−√3,y =√2+√3,∴x +y =√2−√3+√2+√3=2√2,x −y =√2−√3−√2−√3=−2√3, ∴Kx !+2xy +y !+x −y −4=K (x +y )!+(x −y )−4 =5&2√2'!−2√3−4 =58−2√3−4 =54−2√3 =5&√3'!−2√3+1 =5&√3−1'! =√3−1. 故选C .2.(2022下·广西钦州·八年级统考阶段练习)已知x +'1=7(0<x <1),则√x −'√1的值为( )A .−√7B .−√5C .√7D .√5【思路点拨】由0<x <1,得0<x <'1,故√x <'√1,将√x −'√1平方展开计算,后开平方即可.【解题过程】解:∵0<x <1, ∴0<x <'1,◆学霸必刷∴√x<'√1,∵(√x−'√1)!=x−2+'1,x+'1=7(0<x<1),∴(√x−'√1)!=5,∴√x−'√1=-√5或√x−'√1=√5,∵√x<'√1,∴√x−'√1<0,∴√x−'√1= -√5,√x−'√1=√5不符合题意,舍去,故选B.3.(2023·浙江宁波·校考一模)若x!+y!=1,则√x!−4x+4+K xy−3x+y−3的值为()A.0 B.1 C.2 D.3【思路点拨】先根据x!+y!=1得出−1≤x≤1,−1≤y≤1,根据√x!−4x+4+K xy−3x+y−3要有意义,得出(x+1)(y−3)≥0,根据y−3<0得出x+1≤0,从而得出x=−1,将x=−1代入即可求出式子的值.【解题过程】解:∵x!+y!=1,∴−1≤x≤1,−1≤y≤1,∵√x!−4x+4+K xy−3x+y−3要有意义,∴xy−3x+y−3≥0,整理得:(x+1)(y−3)≥0,∵y−3<0,∴x+1≤0,∴x=−1,∴√x!−4x+4+K xy−3x+y−3=K(x−2)!+K(x+1)(y−3)=K(−1−2)!+K(−1+1)(y−3)=3+0=3,故D正确.故选:D.4.(2023上·四川达州·八年级校考期中)已知x='√!-!-)√!-'.,则x6﹣2√2019x5﹣x4+x3﹣2√2020x2+2x ﹣√2020的值为()A.0 B.1 C.√2019D.√2020【思路点拨】对已知进行变形,再代入所求式子,反复代入即可.【解题过程】解:∵x='√!-!-)√!-'.=√2020+√2019,∴x2−2√2019x+−x0+x%−2√2020x!+2x−√2020,=x+&x−2√2019'−x0+x!&x−2√2020'+2x−√2020,=x+&√2020+√2019−2√2019'−x0+x!&√2020+√2019−2√2020'+2x−√2020,=x+&√2020−√2019'−x0+x!&√2019−√2020'+2x−√2020,=x0Mx&√2020−√2019'−1N+x!&√2019−√2020'+2x−√2020,=x&√2020+√2019'&√2019−√2020'+2x−√2020=−x+2x−√2020,=x−√2020,=√2019,故选:C.5.(2023·安徽·校联考模拟预测)设a为K3+√5−K3−√5的小数部分,b为K6+3√3−K6−3√3的小数部分,则!b −'#的值为()A.√6+√2−1B.√6−√2+1C.√6−√2−1 D.√6+√2+1【思路点拨】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【解题过程】解:K3+√5−K3−√5=P 6+2√52-P 6-2√52=√5+1√2-√5-1√2=√2∴a 的小数部分为√2-1, 56+3√3−56−3√3 =P 12+6√32−P 12−6√32=√3+3√2-3-√3√2=√6∴b 的小数部分为√6-2, ∴!b −'#=!√2-!-'√!-'=√6+2-√2-1=√6-√2+1,故选:B .6.(2022上·湖南益阳·八年级统考期末)设a '=1+''!+'!!,a !=1+'!!+'%!,a %=1+'%!+'0!,……,a 5=1+'5!+'(5&')!.其中n 为正整数,则√a '+√a !+K a %+⋅⋅⋅+K a !-!'的值是( ) A .2020!-'.!-!-B .2020!-!-!-!'C .2021!-!-!-!'D .2021!-!'!-!!【思路点拨】根据题意,先求出K a 5=1+'5(5&'),然后把代数式进行化简,再进行计算,即可得到答案.【解题过程】解:∵n 为正整数, ∴K a 5=51+'5!+'(5&')! =55!•(5&')!&(5&')!&5!5!(5&')!=5[5(5&')]!&!5(5&')&'5!(5&')!=9(5!&5&')!5(5&')=5!&5&'5(5&')=1+'5(5&');∴√a'+√a!+K a%+⋯+K a!-!'=(1+''×!)+(1+'!×%)+(1+'%×0)+…+(1+'!-!'×!-!!)=2021+1﹣'!+'!−'%+'%−'+⋯+'!-!'−'!-!!=2021+1﹣'!-!!=2021!-!'!-!!.故选:D.7.(2023上·上海金山·八年级校考期中)如果a=√5−2,则'#+5'#!+a!−2=.【思路点拨】本题考查了二次根式的化简求值,熟练掌握二次根式的性质、完全平方公式是解题关键.先根据二次根式的分母有理化可得'#,从而可得'#−a>0,再利用完全平方公式化简二次根式,代入计算即可得.【解题过程】解:∵a=√5−2,∴'#='√+)!=√+&!;√+&!<;√+)!<=√5+2,∴'#−a=√5+2−&√5−2'=4>0,∴1a+P1a!+a!−2=1a+P R1a−aS!=1a+R1a−aS=√5+2+4=√5+6.故答案为:√5+6.8.(2022上·湖南长沙·七年级校联考阶段练习)已知x=+)√',√',)%,y=√',)%+)√',,则4x!−3xy+4y!=.【思路点拨】先把x和y的值分母有理化得到x=√',)'0,y=√',&',则x−y=−'!,xy=1,再利用完全平方公式变形原式得到4(x−y)!+5xy,然后利用整体代入的方法计算.解:∵x=+)√',√',)%,y=√',)%+)√',,∴x=;+)√',<;√',&%<;√',)%<;√',&%<=√',)',y=;√',)%<;+&√',<;+)√',<;+&√',<=√',&',∴x−y=−'!,xy=1,∴原式=4(x−y)!+5xy=4×(−12)!+5×1=6.故答案为6.9.(2022下·浙江杭州·八年级校考期中)已知√x+'√1=2,那么511!&%1&'−511!&.1&'的值等于.【思路点拨】通过完全平方公式求出x+'1=2,把待求式的被开方数都用x+'1的代数式表示,然后再进行计算.【解题过程】解:∵√x+'√1=2,∴U√x+'√1V!=4,∴x+'1+2=4∴x+'1=2,∴511!&%1&'−511!&.1&'=P 1x+3+1x−P1x+9+1x=P 12+3−P12+9=√++−√''''.故答案为:√++−√''''.10.(2023下·广东深圳·九年级深圳中学校考自主招生)已知x,y为正整数,x K y+y√x−√7x−√7y+ K7xy=7,求x+y=.将等式进行因式分解,得到&√x+K y+√7'&K xy−√7'=0,求得xy=7,即可求解.【解题过程】解:∵x K y+y√x−√7x−K7y+K7xy=7,∴x K y+y√x−√7x−K7y+K7xy−7=0,∴K xy&√x+K y'−√7&√x+K y'+√7&K xy−√7'=0,∴&√x+K y'&K xy−√7'+√7&K xy−√7'=0,∴&√x+K y+√7'&K xy−√7'=0,∵√x+K y+√7>0,∴K xy−√7=0,∴xy=7,又x,y为正整数,则(x,y)=(1,7)或(7,1),从而x+y=8,故答案为:8.11.(2023下·黑龙江绥化·八年级校考阶段练习)设x=√3−2,则x2+3x++11x%+2x+1=.【思路点拨】利用(x+2)!=x!+4x+4和x=√3−2,推得x!+4x+1=0,借助该式将多项式进行降幂化简,即可求解.【解题过程】解:∵x=√3−2,∴(x+2)!=&√3−2+2'!=3,又∵(x+2)!=x!+4x+4,即x!+4x+4=3,整理得x!+4x+1=0,x2+3x++11x%+2x+1=x0(x!+4x+1)+3x++11x%+2x+1−4x+−x0=−x+−x0+11x%+2x+1=−x%(x!+4x+1)−x0+11x%+2x+1+4x0+x%=3x0+12x%+2x+1=3x!(x!+4x+1)+2x+1−3x!=−3x!+2x+1=−3(x!+4x+1)+2x+1+12x+3=14x+4,将x=√3−2代入原式可得14×&√3−2'+4=14√3−24.故答案为:14√3−24.12.(2022下·湖北武汉·九年级统考自主招生)已知x=%&√+!,则代数式2x%−3x!−7x+2022的值为.【思路点拨】将已知条件x=%&√+!变形得,x!−3x=−1,再将所求代数式变形为2x%−6x!+3x!−7x+2022,由此即可求解.【解题过程】解:已知x=%&√+!,∴2x=3+√5,即2x−3=√5,等式两边同时平方得,(2x−3)!=&√5'!,整理得,4x!−12x+9=5,即4x!−12x=−4,∴x!−3x=−1,∵2x%−3x!−7x+2022=2x(x!−3x)+3x!−7x+20022把x!−3x=−1代入得,=2x×(−1)+3x!−7x+2022=3x!−2x−7x+2022=3x!−9x+2022=3(x!−3x)+2022把x!−3x=−1代入得,=3×(−1)+2022=2019,故答案为:2019.13.(2022上·上海闵行·八年级上海市闵行区莘松中学校考期中)先化简,再求值:1)=√1)√=+1&=&!√1=√1&√=,其中x=3,y='%.首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解题过程】解:原式=(√1)√=)(√1&√=)√1)√=+(√1&√=)!√1&√==√x+K y+√x+K y =2√x+2K y当x=3,y='%时,原式=2√3+25'%=2√3+23√3=>%√3.14.(2023·北京·九年级专题练习)已知x=√%)√!√%&√!,y=√%&√!√%)√!,求1=!+=1!的值.【思路点拨】首先把x和y进行分母有理化,然后将其化简后的结果代入计算即可.【解题过程】解:∵x=√%)√!√%&√!=(√%)√!)(√%)√!)(√%&√!)(√%)√!)=5−2√6,y=√%&√!√%)√!=(√%&√!)(√%&√!)(√%)√!)(√%&√!)=5+2√6,∴原式=+)!√2(+&!√2)!++&!√2(+)!√2)!=5−2√649+20√6+5+2√649−20√6=(5−2√6)(49−20√6)(49+20√6)(49−20√6)+(5+2√6)(49+20√6)(49−20√6)(49+20√6)=245−100√6−98√6+240+245+100√6+98√6+240 =970.15.(2023下·山东威海·九年级校考期中)已知a+b=−8,ab=12,求b5$#+a5#$的值.【思路点拨】根据题意可判断a和b都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.解:∵a +b =−8,ab =12, ∴a 和b 均为负数,a !+b !=(a +b )!−2ab =40 b P b a +a5a b =b P b !ab +a P a !ab=b√b !√ab +a √a !√ab =b√b !+a√a !√ab=b (−b )+a (−a )√ab=−b !−a !√ab=−(a !+b !)√ab=−40√12 =−40√1212 =−40×2√312 =−20√33 16.(2023上·上海杨浦·七年级校考阶段练习)已知a −2√ab −15b =0,求#&√#$&!$#)!√#$&$的值.【思路点拨】讨论:当a >0,b >0,利用因式分解的方法得到&√a −5√b'&√a +3√b'=0,解得a =25b ,当a<0,b <0,则−M&√−a +5√−b'&√−a −3√−b'N =0,解得a =9b ,然后把a =25b ,a =9b 代入#&√#$&!$#)!√#$&$中进行分式的化简求解. 【解题过程】解: ∵ a −2√ab −15b =0要有意义,即ab ≥0, ∴ a >0且b >0或a<0且b <0,当a>0且b>0时,∵a−2√ab−15b=&√a−5√b'&√a+3√b'=0,∴√a−5√b=0或√a+3√b=0(舍去),解得:a=25b,把a=25b代入#&√#$&!$#)!√#$&$得:#&√#$&!$#)!√#$&$=!+$&+$&!$!+$)'-$&$=2;当a<0且b<0时,∵a−2√ab−15b=−M&√−a+5√−b'&√−a−3√−b'N=0,∴√−a+5√−b=0(舍去)或√−a−3√−b=0,解得:a=9b,把a=9b代入#&√#$&!$#)!√#$&$得:#&√#$&!$#)!√#$&$=.$&%√$!&!$.$)2√$!&$=.$)%$&!$.$&2$&$='!.17.(2023上·四川成都·八年级成都市三原外国语学校校考阶段练习)已知x='√'-)%,y='√'-&%.(1)求x!+2xy+y!的值.(2)求9(1!)01&0)1(1)!)−9(=!&!=&')=(=&')值.【思路点拨】(1)先将x、y进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x、y进行计算即可.【解题过程】(1)∵x='√'-)%=√10+3,y='√'-&%=√10−3,∴x+y=2√10,x−y=6,∴x!+2xy+y!=(x+y)!=(2√10)!=40.(2)∵x=√10+3,y=√10−3,∴x−2>0,y+1>0,∴K(x!−4x+4)x(x−2)−K(y!+2y+1)y(y+1)=x−2x(x−2)−y+1y(y+1)=1x−1y=1√10+3−1√10−3=√10−3−√10−3=−6.18.(2023上·河北衡水·八年级校联考阶段练习)已知x=2−√3,y=2+√3.(1)求x+y和xy的值;(2)求x!+y!−3xy的值;(3)若x的小数部分是a,y的整数部分是b,求ax−by的值.【思路点拨】本题考查了二次根式的混合运算、利用完全平方公式进行计算、无理数的估算,熟练掌握以上知识点并灵活运用是解此题的关键.(1)代入x=2−√3,y=2+√3即可求出x+y和xy的值;(2)将原式变形为(x+y)!−5xy,代入数值进行计算即可;(3)先估算出1<√3<2,从而得出a=2−√3,b=3,再代入进行计算即可得出答案.【解题过程】(1)解:∵x=2−√3,y=2+√3,∴x+y=2−√3+2+√3=4,xy=&2−√3'&2+√3'=4−3=1;(2)解:由(1)得:x+y=4,xy=1,∴x!+y!−3xy=(x+y)!−5xy=4!−5×1=11(3)解:∵1<3<4,∴√1<√3<√4,即1<√3<2,∴−2<−√3<−1,∴0<2−√3<1,∵x的小数部分是a,∴a=2−√3,∵3<2+√3<4,y的整数部分是b,∴b=3,∴ax−by=&2−√3'&2−√3'−3&2+√3'=4−4√3+3−6−3√3=1−7√3.19.(2023下·广东江门·八年级统考期中)有这样一类题目:将K a ±2√b 化简,如果你能找到两个数m 、n ,使m !+n !=a 且mn =√b ,a ±2√b 将变成m !+n !±2mn ,即变成(m ±n)!,从而使K a ±2√b 得以化简. (1)例如,∵5+2√6=3+2+2√6=(√3)!+(√2)!+2√2×√3=(√3+√2)!, ∴K 5+2√6=5(√3+√2)!=______,请完成填空. (2)仿照上面的例子,请化简K 4−2√3;(3)利用上面的方法,设A =K 6+4√2,B =K 3−√5,求A +B 的值. 【思路点拨】(1)根据二次根式的性质:√a !=|a|=Z a(a >0)0(a =0)−a(a <0),即可得出相应结果.(2)根据(1)中“5+2√6=3+2+2√6=(√3)!+(√2)!+2√2×√3=(√3+√2)!”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A 式和B 式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B 式的结果分别算出,最后把A 式和B 式再代入A +B 中,求出A +B 的值. 【解题过程】(1)∵5+2√6=2+3+2√6=&√2'!+&√3'!+2×√2×√3=&√2+√3'!∴K 5+2√6=5(√3+√2)!=√3+√2 故答案为:√3+√2(2)∵4−2√3=3+1−2√3=&√3'!+1−2√3=&√3−1'!∴K 4−2√3=5(√3−1)!=√3−1.(3)∵A =6+4√2=4+2+4√2=&√4'!+&√2'!+2×√4×√2=(2+√2)! ∴A =K 6+4√2=2+√2 ∵B =3−√5=2)!√+!=+&')!√+!=;√+<!&'!)!×'×√+!=(√+)')!! ∴B =K 3−√5=5;√+)'<!!=√+)'√!=√'-)√!!='!√10−'!√2∴把A 式和B 式的值代入A +B 中,得:A+B=2+√2+12√10−12√2=2+12√10+√2220.(2023下·广西钦州·八年级校考阶段练习)我们将&√a+√b'、&√a−√b'称为一对“对偶式”,因为&√a+√b'&√a−√b'=(√a)!−(√b)!=a−b,所以构造“对偶式”再将其相乘可以有效的将&√a+√b'和&√a−√b'中的“√⬚”去掉于是二次根式除法可以这样解:如'√%=√%√%×√%=√%%,!&√!!)√!=(!&√!)!(!)√!)×(!&√!)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小'√,)!_____'√2)√%用“>”、“<”或“=”填空);(2)已知x=√+&!√+)!,y=√+)!√+&!,求1)=1!=&1=!的值;(3)计算:!%&√%+!+√%&%√++!,√+&+√,+⋯+!..√.,&.,√..【思路点拨】(1)先分母有理化,然后根据作差法,比较大小即可求解;(2)先求得x−y,xy的值,然后代入即可求解;(3)将每一项分母有理化,然后就根据二次根式的加减进行计算即可求解.【解题过程】(1)'√,)!=√,&!;√,)!<;√,&!<=√,&!%,'√2)√%=√2&√%;√2)√%<;√2&√%<=√2&√%%∵√7>√6,2>√3∴√,&!%−√2&√%%='%M&√7−√6'+&2−√3'N>0,∴'√,)!>'√2)√%,故答案为:>.(2)∵x=√+&!√+)!=;√+&!<!;√+&!<;√+)!<=5+4√5+4=9+4√5,y=√+)!√+&!=;√+)!<!;√+&!<;√+)!<=5−4√5+4=9−4√5,∴x+y=9+4√5+9−4√5=18,x−y=9+4√5+−9+4√5=8√5,xy=&9+4√5'&9−4√5'=81−80=1,∴1)=1!=&1=!=1)=1=(1&=)=>√+'×'>=0√+.;(3)!%&√%+!+√%&%√++!,√+&+√,+⋯+!..√.,&.,√..=2(3−√3)(3+√3)(3−√3)+2(5√3−3√5)(5√3+3√5)(5√3−3√5)+√97+97√99(7√5+5√7)(7√5−5√7)+⋯+2(99√97−97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+⋯+√9797−√9999=1−√99 99=1−√''%%.。
二次根式的化简求值
【知识梳理】二次根式化简求值就是运用整体代入、分解变形、构造关系式或图形等重要的技巧与方法,解题的关键是,有时需把已知条件化简,或把已知条件变形;有时需把待求式化简或变形;有时需把已知条件和待求式同时变形。
【例题精讲】
【例1】设55+=
x ,55-=y ,求66y x +的值。
【巩固】
1、设12121212-+=+-=
y x ,,求22y xy x +-的值。
2、已知321321-=+=
y x ,,求()()
221111+++y x 的值。
【拓展】已知32-=x ,求432565x x x x -+-的值。
【例2】已知21=+
x x ,那么191322++-++x x x x x x 的值等于______________。
【巩固】
1、若a a x -=1,则24x x +的值为( ) A.a a 1- B.a a -1 C.a
a 1+ D.不能确定
2、已知51=+
x x ,求1
122+--++x x x x x x 的值。
【例3】已知b a 、是实数,且
()()11122=++++b b a a ,问b a 、之间有怎样的关系?请推导。
【巩固】已知()()20082008200822=++++y y x x ,求58664322+----y x y xy x 的值。
【例4】已知b a 、均为正数,且2=+b a ,求1422+++=
b a U 的最小值
【巩固】求代数式()912422+-+
+x x 的最小值。
第04讲二次根式的化简与应用(核心考点讲与练)一.二次根式的化简求值二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.二.二次根式的应用把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.一.二次根式的化简求值(共10小题)1.(2020秋•会宁县期末)已知a=+2,b=﹣2,则a2+b2的值为()A.4B.14C.D.14+4【分析】根据二次根式的混合运算法则分别求出a+b,ab,根据完全平方公式把原式变形,代入计算即可.【解答】解:∵a=+2,b=﹣2,∴a+b=(+2)+(﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.2.(2021春•杭州期末)若a=+1,b=﹣1,则a2﹣ab+b2=5.【分析】根据配方法以及二次根式的运算法则即可求出答案.【解答】解:∵a=+1,b=﹣1,∴a+b=+1+﹣1=2,ab=(+1)(﹣1)=2﹣1=1,∴原式=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(2)2﹣3×1=8﹣3=5.故答案为:5.【点评】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式以及二次根式的运算法则,本题属于基础题型.3.(2021春•奉化区校级期末)已知x﹣2=,则代数式(x+1)2﹣6(x+1)+9的值为2.【分析】利用完全平方公式得到原式=(x﹣2)2,然后利用整体代入的方法计算.【解答】解:(x+1)2﹣6(x+1)+9=[(x+1)﹣3]2=(x﹣2)2,因为x﹣2=,所以原式=()2=2.故答案为2.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.4.(2021春•永嘉县校级期中)若|a﹣2|+b2+4b+4+=0,则=2.【分析】利用非负数的性质得到a﹣2=0,b+2=0,c﹣=0,解得a=2,b=﹣2,c=,然后根据二次根式的性质和二次根式的乘法法则计算.【解答】解:根据题意得|a﹣2|+(b+2)2+=0,∴a﹣2=0,b+2=0,c﹣=0,解得a=2,b=﹣2,c=,所以原式=××=2×=2×1=2.故答案为2.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.5.(2021秋•西湖区校级期末)已知:y=++5,化简并求的值.【分析】根据二次根式有意义的条件得到x=4,则y=5,再利用约分得到原式=+,然后通分得到原式=,最后把x、y的值代入计算即可.【解答】解:∵x﹣4≥0且4﹣x≥0,∴x=4,∴y=5,∴原式=+====﹣4.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.也考查了二次根式有意义的条件.也考查了根式有意义的条件.6.(2021春•上城区校级期中)已知a=,b=,求ab的值为1.【分析】a=,b=易得ab=1即可.【解答】解:a=,b=,∴ab=()()=3﹣2=1.故答案为:1.【点评】本题考查了二次根式的化简求值,根据二次根式的乘法可得ab的值.7.(2021•余杭区模拟)已知x=2+,则代数式(7﹣4)x2+(2﹣)x﹣的值为2﹣.【分析】将x=2+代入代数式(7﹣4)x2+(2﹣)x﹣,先利用完全平方公式和平方差公式化简计算,再进行实数的混合运算即可得出答案.【解答】解:∵x=2+,∴(7﹣4)x2+(2﹣)x﹣=(7﹣4)(2+)2+(2﹣)(2+)﹣=(7﹣4)(7+4)+(4﹣3)﹣=49﹣48+1﹣=2﹣.故答案为:2﹣.【点评】本题考查了二次根式的化简求值,熟练掌握完全平方公式和平方差公式及二次根式的混合运算法则是解题的关键.8.(2021春•永嘉县校级期末)已知a+b=3,ab=2,则的值为.【分析】根据a+b=3,ab=2,可以判断出a>0,b>0,将所求数字化简,然后a+b=3,ab=2代入即可解答本题.【解答】解:===,∵a+b=3,ab=2,∴a>0,b>0,∴原式===,故答案为:.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.9.(2021春•永嘉县校级期末)已知x=,其中a是正整数,那么所有使得x为整数的a的取值之和为14.【分析】首先利用二次根式有意义的条件得到a≤178;然后<50,列举出满足条件的a的整数值,求和即可.【解答】解:①根据题意知,50﹣≥0.解得a≤178.因为a是正整数,且使得x为正整数,所以是正整数.当a=178时,<50,则在1、2、3、…、178中,满足14的倍数,即14n(n是正整数),同时又能整开方的数,只有14,即和为14.②故答案是:14.【点评】本题主要考查了二次根式的化简求值,二次根式有意义的条件,此题的难点是根据二次根式有意义的条件求得a的取值范围,结合条件确定a的取值.10.(2021春•永嘉县校级期末)已知x=+1,y=﹣1,则x2﹣5xy+y2+6=7.【分析】根据已知条件先求出x﹣y和xy的值,再把要求的式子变形为(x﹣y)2﹣3xy+6,然后代值计算即可.【解答】解:∵x=+1,y=﹣1,∴x﹣y=+1﹣(﹣1)=2,xy=1,∴x2﹣5xy+y2+6=(x﹣y)2﹣3xy+6=22﹣3+6=7;故答案为:7.【点评】此题考查了二次根式的化简求值,用到的知识点是完全平方公式和平方差公式,关键是对要求的式子进行变形.二.二次根式的应用(共8小题)11.(2021春•鄢陵县期末)方程的解为()A.B.C.D.【分析】两边同时除以后即可求得方程的解.【解答】解:方程两边同时除以得:x=====,故选:B.【点评】考查了二次根式的应用,解题的关键是能够进行分母有理化,难度不大.12.(2020秋•奉化区校级期末)已知max表示取三个数中最大的那个数,例如:当x=9时,max=81.当max时,则x 的值为()A.B.C.D.【分析】直接利用已知分别分析得出符合题意的答案.【解答】解:当max时,①=,解得:x=,此时>x>x2,符合题意;②x2=,解得:x=;此时>x>x2,不合题意;③x=,>x>x2,不合题意;故只有x=时,max.故选:C.【点评】此题主要考查了新定义,正确理解题意分类讨论是解题关键.13.(2021春•锡山区期末)如图,从一个大正方形中裁去面积为8cm2和18cm2的两个小正方形,则留下的阴影部分面积和为24cm2.【分析】直接利用正方形的性质得出两个小正方形的边长,进而得出大正方形的边长,即可得出答案.【解答】解:∵两个小正方形面积为8cm2和18cm2,∴大正方形边长为:+=2+3=5(cm),∴大正方形面积为(5)2=50(cm2),∴留下的阴影部分面积和为:50﹣8﹣18=24(cm2).故答案为:24cm2.【点评】此题主要考查了二次根式的应用,正确得出大正方形的边长是解题关键.14.(2021春•余姚市期末)如图,矩形内两个相邻正方形的面积分别为9和3,则阴影部分的面积为()A.8﹣3B.9﹣3C.3﹣3D.3﹣2【分析】根据有理数的乘方求出两个正方形的面积,然后根据阴影部分的面积的和为一个矩形的面积列式计算即可得解.【解答】解:∵两个相邻的正方形,面积分别为3和9,∴两个正方形的边长分别为,3,∴阴影部分的面积=×(3﹣)=3﹣3.故选:C.【点评】本题考查了有理数的乘方,正方形的性质,是基础题,熟记概念并求出两个正方形的边长是解题的关键.15.(2021春•盂县月考)阅读与计算:古希腊的几何学家海伦,在他的著作《度量》一书中,给出了下面一个公式:如果一个三角形的三边长分别为a,b,c,记p=(a+b+c),则三角形的面积为:S△ABC=(海伦公式),若△ABC中,BC=4,AC=5,AB=6,请利用上面公式求出△ABC的面积.【分析】先求出p,再代入海伦公式中计算即可.【解答】解:∵BC=4,AC=5,AB=6,∴p=(4+5+6)=,∴S====.【点评】本题考查了二次根式的应用,关键是读懂题意,理解公式的意思.16.(2021春•天河区校级月考)若矩形的长a=,宽b=.(1)求矩形的面积和周长;(2)求a2+b2﹣20+2ab的值.【分析】(1)直接利用二次根式的混合运算法则分别计算得出答案;(2)直接利用完全平方公式结合二次根式的混合运算法则计算得出答案.【解答】解:(1)∵矩形的长a=,宽b=.∴矩形的面积为:(+)(﹣)=6﹣5=1;矩形的周长为:2(++﹣)=4;(2)a2+b2﹣20+2ab=(a+b)2﹣20=(++﹣)2﹣20=(2)2﹣20=24﹣20=4.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.17.(2021春•永嘉县校级期末)解方程:,得x=.【分析】去分母、移项,据此求出方程的解是多少即可.【解答】解:去分母得:3x+=4x,移项得:x=,故答案为:.【点评】此题主要考查了解一元一次方程的方法和二次根式的乘法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(2021春•乌苏市期末)矩形相邻两边长分别为,,则它的周长是6,面积是4.【分析】利用矩形的周长和面积计算公式列式计算即可.【解答】解:矩形的周长是2×(+)=2×(+2)=6,矩形的面积是×=4.故答案为:6,4.【点评】此题考查二次根式的实际运用,掌握矩形的周长和面积计算方法是解决问题的关键.分层提分题组A 基础过关练一.选择题(共6小题)1.(2019春•诸暨市月考)将一组数据,,3,2,,…,3,按下面的方法进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)【分析】根据题意可以得到每行五个数,且根号里面的数都是3的倍数,从而可以得到3所在的位置.【解答】解:由题意可得,每五个数为一行,3=,90÷3=30,30÷5=6,故3位于第六行第五个数,位置记为(6,5),故选:D.【点评】本题考查的是二次根式的性质,掌握二次根式的性质、正确找出规律是解题的关键.2.(2020•越城区模拟)已知a=+,b=﹣,那么a、b的关系为()A.a+b=B.a﹣b=0C.ab=1D.=2【分析】利用a、b的值分别计算出它们的和、差和积,然后对各选项进行判断.【解答】解:∵a=+,b=﹣,∴a+b=2,a﹣b=2,ab=3﹣2=1,==(+)2=5+2.故选:C.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.3.(2020春•温州期中)若x=2﹣,则代数式x2﹣4x+7的值为()A.7B.6C.﹣6D.﹣7【分析】先移项得到x﹣2=﹣,两边平方得到x2﹣4x=﹣1,然后利用整体代入的方法计算.【解答】解:∵x=2﹣,∴x﹣2=﹣,∴(x﹣2)2=3,∴x2﹣4x+4=3,即x2﹣4x=﹣1,∴x2﹣4x+7=﹣1+7=6.故选:B.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.4.(2020春•鹿城区校级期中)已知a=3﹣,b=2+,则代数式(a2﹣6a+9)(b2﹣4b+4)的值是()A.20B.16C.8D.4【分析】先将(a2﹣6a+9)(b2﹣4b+4)变形为[(a﹣3)(b﹣2)]2,再将a=3﹣,b=2+,代入求值即可.【解答】解:(a2﹣6a+9)(b2﹣4b+4)=(a﹣3)2(b﹣2)2=[(a﹣3)(b﹣2)]2当a=3﹣,b=2+时,原式=[(3﹣﹣3)(2+﹣2)]2=(﹣2)2=4.故选:D.【点评】本题考查了整式的化简求值,熟练运用完全平方公式是解题的关键.5.(2019秋•镇海区期末)已知直角三角形的两条直角边的长分别为和,则这个直角三角形的面积为()A.16B.8C.163D.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:∵直角三角形的两条直角边的长分别为:和,∴这个直角三角形的面积为:.故选:D.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.6.(2019春•椒江区校级期中)如图,长方形内有两个相邻的正方形,面积分别为3和9,那么图中阴影部分的面积为()A.B.C.D.【分析】设两个正方形的边长是x、y(x<y),得出方程x2=3,y2=9,求出x=,y=3,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形的边长是x、y(x<y),则x2=3,y2=9,x=,y=3,则阴影部分的面积是(y﹣x)x=(3﹣)×=3﹣3,故选:B.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.二.填空题(共4小题)7.(2019春•天台县期末)已知x=+1,y=﹣1,则x2﹣y2=.【分析】先分解因式,再代入比较简便.【解答】解:x2﹣y2=(x+y)(x﹣y)=2×2=4.【点评】注意分解因式在代数式求值中的作用.8.(2019春•西湖区期末)已知a=﹣2,则+a=0.【分析】根据二次根式的性质即可求出答案.【解答】解:当a=﹣2时,原式=|a|+a=﹣a+a=0;故答案为:0【点评】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.9.(2019春•温州期中)当x=﹣时,二次根式的值是2.【分析】把x=﹣代入已知二次根式,通过开平方求得答案.【解答】解:把x=﹣代入中,得==2,故答案为:2.【点评】本题考查了二次根式的化简求值.此题利用代入法求得二次根式的值.10.(2020秋•奉化区校级期中)如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为3﹣3.【分析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形的边长是x、y(x<y),则x2=3,y2=9,x=,y=3,则阴影部分的面积是(y﹣x)x=(3﹣)×=3﹣3,故答案为:3﹣3.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.三.解答题(共3小题)11.(2020春•越城区校级月考)点P(x,y)是平面直角坐标系中的一点,点A(1,0)为x轴上的一点.(1)用二次根式表示点P与点A的距离;(2)当x=4,y=时,连接OP、PA,求PA+PO;(3)若点P位于第二象限,且满足函数表达式y=x+1,求+的值.【分析】(1)利用两点间的距离公式进行解答;(2)利用两点间的距离公式求得OP、PA,然后求PA+PO;(3)把y=x+1代入所求的代数式进行解答.【解答】解:(1)点P与点A的距离:;(2)∵x=4,y=,P(x,y),A(1,0),∴P(4,),∴PA==2,PO==3,则PA+PO=2+3;(3)∵点P位于第二象限,∴x<0,y>0,又∵y=x+1,∴+=|x|+|y|=﹣x+y=﹣x+x+1=1.即+的值是1.【点评】本题考查了二次根式的应用.熟记两点间的距离公式是解题的难点.12.(2019春•临海市期末)计算:(1)+|﹣|;(2)已知x=+1,求代数式x2﹣2x+3的值.【分析】(1)根据二次根式的性质、绝对值的性质计算即可;(2)根据完全平方公式把原式变形,代入计算,得到答案.【解答】解:(1)+|﹣|=2+=3;(2)当x=+1时,x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2=5+2=7.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质、合并同类二次根式的法则是解题的关键.13.(2019秋•二道区期末)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出2块这样的木条.【分析】(1)根据二次根式的性质分别求出两个正方形的边长,结合图形计算得到答案;(2)求出3和范围,根据题意解答.【解答】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为3dm和4dm,∴剩余木料的面积为(4﹣3)×3=6(dm2);(2)4<3<4.5,1<<2,∴从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出2块这样的木条,故答案为:2.【点评】本题考查的是二次根式的应用,掌握二次根式的性质、无理数的估算是解题的关键.题组B 能力提升练一.选择题(共3小题)1.(2020春•铁东区期中)如图,从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,则余下的面积为()A.16cm2B.40 cm2C.8cm2D.(2+4)cm2【分析】根据已知部分面积求得相应正方形的边长,从而得到大正方形的边长,易得大正方形的面积,利用分割法求得余下部分的面积.【解答】解:从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,大正方形的边长是+=4+2,留下部分(即阴影部分)的面积是(4+2)2﹣16﹣24=16+16+24﹣16﹣24=16(cm2).故选:A.【点评】此题主要考查了二次根式的应用,正确求出阴影部分面积是解题关键.2.(2019秋•永嘉县期中)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为cm,宽为4cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4cm B.16cm C.2(+4)cm D.4(﹣4)cm 【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=,则图②中两块阴影部分周长和是2+2(4﹣2y)+2(4﹣x)=2+4×4﹣4y﹣2x=2+16﹣2(x+2y)=2+16﹣2=16(cm).故选:B.【点评】本题主要考查了二次根式的应用,整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.3.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3B.C.2D.【分析】根据根号下的数要是非负数,得到a(x﹣a)≥0,a(y﹣a)≥0,x﹣a≥0,a﹣y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=﹣x,把y=﹣x代入原式即可求出答案.【解答】解:由于根号下的数要是非负数,∴a(x﹣a)≥0,a(y﹣a)≥0,x﹣a≥0,a﹣y≥0,a(x﹣a)≥0和x﹣a≥0可以得到a≥0,a(y﹣a)≥0和a﹣y≥0可以得到a≤0,∴a只能等于0,将a=0代入等式得﹣=0,∴x=﹣y,即:y=﹣x,由于x,y,a是三个不同的实数,∴x>0,y<0.将x=﹣y代入原式得:原式==.故选:B.【点评】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.二.填空题(共6小题)4.(2021春•永嘉县校级期中)若,则=6.【分析】对变形,得,因为各项均为非负数,故可求得x、y、z的值,代入中即可.【解答】解:根据题意,,即,得x=2,y=6,z=3;所以.【点评】本题考查的是非负数的性质及二次根式的化简和求值.5.(2020春•萧山区期末)已知x=+1,则代数式x2﹣2x+1的值为2.【分析】根据x的值和完全平方差公式可以解答本题.【解答】解:∵x=+1,∴x2﹣2x+1=(x﹣1)2=(+1﹣1)2=()2=2,故答案为:2.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.6.(2020•浙江自主招生)设a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣ac﹣bc=15.【分析】将a﹣b=2+和b﹣c=2﹣相加,得到a﹣c=4,再将a2+b2+c2﹣ab﹣ac﹣bc转化成关于a﹣b,b﹣c,a﹣c的完全平方的形式,再将a﹣b=2+,b﹣c=2﹣和a﹣c=4整体代入即可.【解答】解:∵a﹣b=2+,b﹣c=2﹣,两式相加得,a﹣c=4,原式=a2+b2+c2﹣ab﹣bc﹣ac======15.【点评】此题考查了对完全平方公式及整体代入的掌握情况,有一定的综合性,但难度不大.7.(2019秋•锦江区校级期中)若,则m=3,n=2.【分析】将已知的等式的左边被开方数中的5变形为2+3,根据平方根的定义将2变为,3变为,同时将2化为2••,符合完全平方公式的特点,利用完全平方公式变形后,再利用二次根式的化简公式=|a|化简后,根据大于,利用绝对值的代数意义化简,与等式右边比较,即可求出m与n的值.【解答】解:∵>,即﹣>0,∴====|﹣|=﹣,又∵=﹣,则m=3,n=2.故答案为:3;2【点评】此题考查了二次根式的化简求值,涉及的知识有:平方根的定义,二次根式的化简公式,完全平方公式,以及绝对值的代数意义,其技巧性较强,灵活变换等式左边的被开方数是解本题的关键.8.(2018春•绍兴期中)求当a=1+,b=时,代数式2a2+b2﹣4a+2的值为12.【分析】原式配方变形后,将已知等式代入计算即可求出值.【解答】解:原式=2(a2﹣2a+1)+b2=2(a﹣1)2+b2,当a=1+,b=时,原式=10+2=12,故答案为:12【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.9.(2018春•台州期中)若a=3﹣,则a2﹣6a+9的值为7.【分析】将a的值代入a2﹣6a+9=(a﹣3)2计算可得.【解答】解:当a=3﹣时,a2﹣6a+9=(a﹣3)2=(3﹣﹣3)2=(﹣)2=7,故答案为:7.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握完全平方公式和二次根数的运算顺序及运算法则.三.解答题(共6小题)10.(2021秋•鄞州区月考)已知a=.(1)求a2﹣4a+4的值;(2)化简并求值:.【分析】(1)先将a化简,然后通过配方法将原式化简,最后代入a求值.(2)将原式先化简,然后代入a的值求解.【解答】解:(1)a===2﹣,a2﹣4a+4=(a﹣2)2,将a=2﹣代入(a﹣2)2得(﹣)2=3.(2),=﹣=(a﹣1)﹣,∵a=2﹣,∴a﹣1=1﹣<0,∴原式=a﹣1+=2﹣﹣1+2+=3.【点评】本题考查分式的化简求值,解题关键是熟练掌握因式分解与分式化简的方法,掌握分母有理化的方法.11.(2021•仙桃校级模拟)(1)计算:.(2)已知x2=2x+15,求代数式的值.【分析】(1)根据算术平方根、负整数指数幂、绝对值可以解答本题;(2)根据完全平方公式可以将所求式子化简,然后根据x2=2x+15,可以得到x的值,然后代入化简后的式子即可解答本题.【解答】解:(1)=2+9﹣2=9;(2)=x2+2x+2﹣(x2﹣2x+2)=x2+2x+2﹣x2+2x﹣2=4x,由x2=2x+15,可得x1=﹣3,x2=5,当x=﹣3时,原式=﹣12;当x=5时,原式=20.【点评】本题考查二次根式的化简求值、负整数指数幂、绝对值,解答本题的关键是明确它们各自的计算方法.12.(2020秋•镇海区期末)计算:(1)×;(2)已知|﹣a|+=0,求a2﹣2+2+b2的值.【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据|﹣a|+=0,可以得到a、b的值,然后将所求式子变形,再将a、b的值代入即可解答本题.【解答】解:(1)×=4÷﹣+2=4﹣+2=4+;(2)∵|﹣a|+=0,∴﹣a=0,b﹣2=0,∴a=,b=2,∴a2﹣2+2+b2=(a﹣)2+b2=(﹣)2+22=02+4=0+4=4.【点评】本题考查二次根式的化简求值、非负数的性质,解答本题的关键是明确二次根式混合运算的计算方法.13.(2020春•长岭县期末)已知x=2﹣,y=2+,求x2+xy+y2的值.【分析】先分别求出x+y,xy的值,再根据完全平方公式进行变形,最后代入求出即可,【解答】解:∵x=2﹣,y=2+,∴x+y=4,xy=4﹣3=1,∴x2+xy+y2=(x+y)2﹣xy=42﹣1=15.【点评】本题考查了二次根式的性质和完全平方公式的应用,主要考查学生的计算能力.14.(2019春•西湖区校级期中)(1)计算()+;(2)已知x=,y=2,求3x2﹣2xy+3y2的值.【分析】(1)先化简各二次根式,再计算乘法,最后计算加减可得;(2)先计算出x+y和xy的值,再代入原式=3(x+y)2﹣8xy计算可得.【解答】解:(1)原式=×(﹣2)+6(+)=﹣6+6(+)=﹣6+6+6=7;(2)∵x=,y=2,∴x+y=2,xy=﹣1.∴3x2﹣2xy+3y2=3(x2+2xy+y2﹣2xy)﹣2xy=3(x+y)2﹣8xy=3×(2)2﹣8×(﹣1)=44.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.15.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.【分析】根据点D为AB的中点,三角形ABC为等腰三角形,可得CD⊥AB,并且求出AD和BD的长度,在Rt△ACD中求出AC的长度,同理可求出BC的长度,继而以求得△ABC的周长及面积.【解答】解:在等腰三角形ABC中,∵点D是边AB的中点,∴CD⊥AB,AD=BD=,在Rt△ACD中,∵AD=,CD=2,∴AC==3,同理可得,BC=3,则△ABC的周长为3+3+2=8,面积为×2×2=6.【点评】本题考查了二次根式的应用以及勾股定理的应用,解答本题的关键是得出CD为三角形ABC的高,并且运用勾股定理求出等腰三角形的腰长,难度一般.。
「初中数学」常见二次根式化简求值的几种
技巧
二次根式的化简求值是初中数学的重要内容,也是中考试题中的常见题型,对于特殊的二次根式的化简,除了掌握基本的概念和运算法则外,还应根据根式的具体结构特征,灵活一些特殊的方法和技巧,现就几种常用的方法和技巧举例说明如下:
一.巧用乘法公式
由于平方差公式:(a+b)(a一b)=a²一b²的结构特征的优越性,在根式的化简求值中简捷明了.
1.化简:(√2+√3+√5)(3√2+2√3一√30).
关键:对第二个因式提取√6后,发现与第一个因式的数量关系.
解:原式=(√2+√3+√5)√6(√3+√2一√5)=√6[(√2+√3)+√5][(√2+√3)一√5]=√6[(√2十√3)²一(√5)²]=√6(2+2√6+3一5)=√6×2√6=12.
2.化简:(√5+√6+√7)(√5+√6一√7)(√5十√7一√6)(√6十√7一√5).
解:原式=[(√5+√6)²一(√7)²][(√7)²一(√6一√5)²]=(4+2√30)(2√30一4)=(2√30)²一4²=104.
二.巧运逆运算
三.巧拆项
四.巧换元
五.巧因式分解
六.巧配方
七.巧平方
八.巧添项
九.巧取倒数
十.巧用1”代换
【总结】二次根式的化简求值题型多变,有较强的灵活性、技巧性、综合性。
在求解的过程中应根据根式的具体结构特征,灵活选用一些特殊的方法和技巧,不仅可以化难为易,迅捷获解,而且对于培养和提高同学们的数学思维能力,激发学习兴趣是大有帮助的。
第三节二次根式的化简求值-学而思培优第三节二次根式的化简求值二、核心纲要如果二次根式的被开方数(式)中含有二次根式,这样的式子叫做双重二次根式,例如3-2.8+7.2.化简双重二次根式对于双重二次根式a±2b,设法找到两个正数x、y(x>y),使得x+y=a,xy=b,则a±2b=(x±y)²=x²±2xy+y²。
3.二次根式化简求值的方法1) 直接代入:将已知条件代入所求代数式即可。
2) 变形代入:将条件或结论进行适当的变形,再代入求值。
4.共轭根式形如a+b和a-b(其中a,b是有理数)的两个最简二次根式称为共轭根式。
5.解无理方程解无理方程的方法就是转化为有理方程进行求解,然后检验。
本节重点讲解二次根式的化简和求值。
三、全能突破基础训练1.若x=m-n,y=m+n,则xy的值是( )。
A。
2m B。
2n C。
m+n D。
m-n2.已知若2x-1+y-3=√2,则4x×xy÷2y等于( )。
A。
2 B。
2√2 C。
2 D。
13.已知a=5+2,b=5-2,则a+b+7的值为( )。
A。
3 B。
4 C。
5 D。
64.代数式a+2a-2-2-a+3的值等于a-b=5.若a+b=5,ab=4,则:5.先化简,再求值:1) 2a³ab³-131/27a³b³+2abab,其中a=964,b=3.2) 3(a+3)(a-3)-a(a-6)-(a+2)²+13,其中a=2-1.a²-a-23) xy+(x+y)²/3-2,其中a=2-1.a²-4a+47.已知x=值,y=,求代数式xy-(x+y)²/3+2的值。
8.已知x=2+3,y=2-3,求下列代数式的值:1) x²-xy+y²2) x+y9.星期天,XXX的妈妈和XXX做了一个小游戏,XXX的妈妈说:“你现在研究了二次根式,若x表示10的整数部分,y代表它的小数部分,我这个纸包里的钱是(10+x)y元,你猜一猜这个纸包里的钱数是多少?10.某同学作业本上有这样一道题:“当a=□时,试求a+a-2a+1的值”。
专题07 二次根式化简求值【考点归纳】1、二次根式的化简求值,一定要先化简再代入求值.2、二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.3、二次根式的化简求值的常见题型及方法常见题型:与分式的化简求值相结合.解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简.(2)代入求值:将含有二次根式的值代入,求出结果.(3)检验结果:所得结果为最简二次根式或整式.【好题必练】一、选择题1.(2020秋•天心区期末)已知x=+2,则代数式x2﹣x﹣2的值为()A.9B.9C.5D.5【答案】D.【解析】解:∵x=+2,∴x﹣2=,∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x=+2时,原式=3(+2)﹣1=3+5.故选:D.2.(2020秋•会宁县期末)已知a=+2,b=﹣2,则a2+b2的值为()A.4B.14C.D.14+4【答案】B.【解析】解:∵a=+2,b=﹣2,∴a+b=(+2+﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.3.(2020秋•乐亭县期末)已知x=+1,y=﹣1,则x2+2xy+y2的值为()A.20B.16C.2D.4【答案】A.【解析】解:当x=+1,y=﹣1时,x2+2xy+y2=(x+y)2=(+1+﹣1)2=(2)2=20,故选:A.4.(2020•石家庄模拟)当,分式的结果为a,则)A.a>1B.C.D.【答案】B.【解析】解:+=+==,当x=+1时,原式===,即a=,∵<<1,∴<a<1,故选:B.5.(2020秋•渝中区校级月考)已知m=+,n=﹣,则代数式的值为()A.5B.C.3D.【答案】B.【解析】解:∵m=+,n=﹣,∴m+n=2,mn=5﹣2=3,∴原式===.故选:B.6.(2020秋•大洼区月考)当m=3时,m+的值等于()A.6B.5C.3D.1【答案】B.【解析】解:原式=m+=m+|m﹣1|,当m=3时,原式=3+|3﹣1|=3+2=5.故选:B.二、填空题7.(2020春•高密市期中)若a=+1,则a2﹣2a+1的值为.【答案】6【解析】解:∵a=+1,∴原式=(a﹣1)2=(+1﹣1)2=6.故答案为:6.8.(2020春•明水县校级期中)已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2=;(2)x2﹣y2=.【答案】(1)12(2)4.【解析】解:(1)∵x=+1,y=﹣1,∴x+y=2,∴x2+2xy+y2=(x+y)2=(2)2=12,故答案为:12;(2)∵x=+1,y=﹣1,∴x+y=2,x﹣y=2,∴x2﹣y2=(x+y)(x﹣y)=2×2=4,故答案为:4.9.已知a=1+,b=,则a2+b2﹣2a+1的值为.【答案】5【解析】解:∵a=1+,b=,∴a2+b2﹣2a+1=(a2﹣2a+1)+b2=(a﹣1)2+b2=(1+﹣1)2+()2=2+3=5,故答案为:5.10.(2020春•武昌区期中)若a=2+,b=2﹣,则ab的值为.【答案】1【解析】解:∵a=2+,b=2﹣,∴ab=(2+)×(2﹣)=4﹣3=1.故答案为:1.11.(2019秋•高安市校级期末)若x=﹣1,则x3+x2﹣3x+2020的值为.【答案】2019【解析】解:∵x=﹣1,∴x+1=,∴(x+1)2=2,即x2=﹣2x+1,∴x3=﹣2x2+x=﹣2(﹣2x+1)+x=5x﹣2,∴x3+x2﹣3x+2020=5x﹣2﹣2x+1﹣3x+2020=2019.故答案为2019.三、解答题12.(2020春•常熟市期中)已知x=﹣2,y=+2,求代数式x2+y2+xy﹣2x﹣2y的值.【答案】解:∵x=﹣2,y=+2,∴x+y=2,xy=﹣1,∴x2+y2+xy﹣2x﹣2y=(x+y)2﹣xy﹣2(x+y)=(2)2﹣(﹣1)﹣2×2=12+1﹣4=13﹣4.【解析】先计算出x+y与xy的值,再利用完全平方公式得到x2+y2+xy﹣2x﹣2y=(x+y)2﹣xy﹣2(x+y),然后利用整体代入的方法计算.13.(1)计算:()2﹣3;(2)如果a=﹣,求﹣的值.【答案】解:(1)原式=3﹣3×3=3﹣9=﹣6;(2)∵a=﹣,∴a+1=﹣+1<0,a﹣1=﹣﹣1<0,则原式=|a+1|﹣|a﹣1|=﹣a﹣1+a﹣1=﹣2.【解析】(1)根据()2=a,=|a|求解可得;(2)先由a=﹣判断出a+1和a﹣1的符号,再根据=|a|化简可得.14.(2020春•大悟县期中)先化简再求值:已知a=,b=,求.【答案】解:∵a==+2,b==﹣2,∴a+b=2,ab=1,∴====4.【解析】先分母有理化,再计算出a+b与ab,再利用完全平方公式得到原式,然后利用整体的方法计算.15.(2020春•闵行区校级期中)先化简,再求值:已知a=2﹣,b=2,求的值.【答案】解:==,当a=2﹣,b=2时,原式===﹣.【解析】先化简分式,然后将a=2﹣,b=2代入求值.16.(2020春•江汉区期中)已知x=,y=,m=﹣,n=+(1)求m,n的值;(2)若﹣=n+2,=m,求+的值.【答案】解:(1)∵x=,y=,∴x+y=,x﹣y=﹣1,xy=,∴m=﹣==﹣=﹣=2;n=+====4;(2)∵﹣=6,=2,∴(﹣)2=36,∴(+)2﹣4=36,∴(+)2=36+4×2=44,∴+=2.【解析】(1)先利用x与y的值计算出x+y=,x﹣y=﹣1,xy=,再把m、n变形为m=﹣=﹣;n=+=;然后利用整体代入的方法计算m、n的值;(2)由于﹣=6,=2,利用完全平方公式得到(+)2﹣4=36,最后利用算术平方根的定义得到+的值.。
二次根式的化简求值二次根式是数学中一个常见的概念,我们通过化简可以将一个复杂的二次根式简化为更为简洁的形式,方便计算和理解。
下面我们将介绍化简二次根式的具体方法和求值的步骤。
1. 化简二次根式的基本规则化简二次根式的基本原则是将根号内的式子化为平方数的乘积,通常采用以下两种方法:①合并同类项:将根号内的式子合并同类项,将它们看作一个整体,比如√6 + √24 就可以合并为√6 + 2√6 = 3√6。
②有理化分母:通过有理化分母,将分母中的根式化为整数,比如√2/2 这个二次根式,在分母上下乘以√2,就可以化为 1。
2. 化简二次根式的具体方法对于形如a√n 或a + b√n 的二次根式,我们可以通过以下方法进行化简:① a√n + b√n = (a + b)√n② a√n - b√n = (a - b)√n③ (a + b)√n + (c + d)√n = (a + b + c + d)√n④ (a + b)√n - (c + d)√n = (a + b - c - d)√n⑤ (√n + a)(√n + b) = n + a√n + b√n + ab = (a + b)√n + n⑥ (√n + a)(√n - b) = n - ab - b√n - a√n = (a - b)√n + n - ab3. 求解二次根式的具体步骤求解二次根式通常需要进行以下步骤:①化简二次根式,提取出公因数或合并同类项,得到一个简化后的式子。
②根据需要,进行有理化分母,消去分母中的根式,使分母变为整数。
③如果需要求具体的值,将已有的数字代入式子中,进行计算。
4. 实际应用场景二次根式在现代数学和物理学中有着广泛的应用,比如:①网站安全性的评估:用于计算在用户的密码长度和密码字典的规模之下,恶意攻击者能够穷尽所有密码的最大数量。
②统计分析:用于计算标准差和方差。
③金融学:用于计算股票价格的变化幅度, volatility index。
第八讲 二次根式的化简求值
【例l 】已知21
=+x x ,那么191322++-++x x x
x x x 的值等于 .
【例2】 满足等式2003200320032003=+--+xy y x x y y x 的正整数对(x ,y)的个数是( )
A .1
B .2
C . 3
D . 4
【例3】已知a 、b 是实数,且1)1)(1(22=++++b b a a ,问a 、b 之间有怎样的关系?请推导.
【例4】 已知:a a x 1
+= (0<a<1),求代数式4
2422362222----+---+÷-+x x x x x x x x x x x 的值. 【例5】 (1)设a 、b 、c 、d 为正实数,a<b ,c<d ,bc>ad ,有一个三角形的三边长分别为22c a +,22d b +,22)()(c d a b -+-,求此三角形的面积;
(2)已知a ,b 均为正数,且a+b=2,求U=1422+++b a 的最小值.
学力训练
1.已知2323-+=x ,232
3+-=y ,那么代数式22
)()(y x xy y x xy +-++值为 .
2.若41
=+a a (0<a<1),则a a 1
-= .
3.已知1231
23
++=++x x ,则)225
(423
---÷--x x x x 的值.
4.已知a 是34-的小数部分,那么代数式)4
()2442(222
a a a a a
a a a a -⋅++++-+的值为 .
5.若13+=x ,则53)321()32(23+-+++-x x x 的值是( )
A .2
B .4
C .6
D .8
6.已知实数a 满足a a a =-+-20012000,那么22000-a 的值是( )
A .1999
B .2000
C .2001
D .2002
7.设9971003+=a ,9991001+=a ,10002=c ,则a 、b 、c 之间的大小关系是( )
A .a<b<c
B .c<b<a
C . c<a<b
D .a<c<b
8.设a a x -=1,则24x x +的值为( )
A .a a 1
- B .a a -1
C .a a 1
+ D .不能确定
9.若a>0,b>0, 且)5(3)(b a b b a a +=+,求ab b a ab
b a +-++32的值.
10.已知x x =--2)1(1,化简x x x x +++-+41
41
22.
11.已知31+=x ,那么21
4121
2---++x x x = .
12.已知514=-++a a ,则a 26-= .
13.已知9)12(42+-++x a 的最小值为= .
14.已知2002)2002)(2002(22=++++y y x x ,则58664322+----y x y xy x = .
15.1+a2如果22002+=+b a ,22002-=-b a ,3333c b c b -=+,那么a 3b 3-c 3的值为( )
A .20022002
B .2001
C .1
D .0
16.已知12-=a ,622-=b ,26-=c ,那么a 、b 、c 的大小关系是( )
A .a<b<c
B .b<a<c
C .c<b<a c<a<b
17.当22002
1+=x 时,代数式20033)200120054(--x x 的值是( )
A . 0
B .一1
C . 1
D .- 22003
18.设a 、b 、c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( )
A .1999
B . 2000
C . 2001
D .不能确定
19.某船在点O 处测得一小岛上的电视塔A 在北偏西60°的方向,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问再向西航行多少海里,船离电视塔最近?
20.已知实数 a 、b 满足条件1<=-a b b a ,化简代数式2)1()11(--⋅-b a b
a ,将结果表示成不含
b 的形式. 21.已知a a x 2
1+=(a>0),化简:2222-++--+x x x x .
22.已知自然数x 、y 、z 满足等式062=+--z y x ,求x+y+z 的值.。