近距离放疗剂量学基础
- 格式:ppt
- 大小:1.07 MB
- 文档页数:53
立体定向放射外科治疗的物理剂量学第一节物理剂量学基础一,设计思想及相关技术的比较手术不用刀、无血无创杀灭肿瘤是医学界多年的愿望,曾做过各种探索。
居里发现放射性镭后有了契机,逐渐向此宿愿逼近。
1.近距离后装。
直接放入小放射源杀灭肿瘤,但需有腔道或有插植将源植入瘤内,病变边缘处剂量梯度小。
已有90余年的历史。
2.术中放疗(IORT)。
将病变暴露,直接从外面单次照射大剂量,剂量分布好,但绝对有创。
已有80多年的历史。
3.普通外照射。
在固定野射线路径内好坏细胞一起杀,仅利用正常组织放射敏感性差些,较易恢复,并使之受量小些,展开持久拉锯战。
4.多叶光栅、适形照射、交角照射等。
保护正常组织更多些,但在射线路径内的分散度仍不够。
5.SRS。
单次或分次立体定向放射外科采用空间立体会聚多弧非共面围歼病变,躲避重要器官,靶外剂量能最大限度地分散开,最好地实现了临床剂量学的原则,是变革性的大改进。
二,物理学特性(一)带电粒子的SRS。
利用回旋加速器产生的质子、氦核等离子在穿过的组织中产生的Bragg峰,用2~4个固定野交角照射,可获得理想的剂量分布。
可选择能量及旋转吸收体的厚度等,适用于不同深度和大小的肿瘤。
(二)γ刀的SRS。
(三)加速器的SRS(X刀)。
X刀在技术可分为:①Buenos Aires技术(阿根廷)。
始于1983年,当时用10MV加速器,坐椅式立体定向架,可沿导轨前后旋转,水平转轴通过固定头架的等中心,此等中心与加速器要架左右的旋转中心重合,多用床实现精确的多弧非共面等中心治疗。
准直筒直径为5~30mm或更大,病变中心与系统等中心重合。
②Heidelberg技术(德国)。
始于1984年,当时用4MV的加速器,属Couch Mount 型,对加速器机架和治疗床的等中心误差不做纠正,准直筒为4~40mm或更大,可做多弧非共面旋转治疗,TPS的典型设计是每个等中心11个弧。
③JCRT技术(美国)。
始于1985年,当时在6MV加速器上,用BRW头环固定头部。
第四章复习思考:1、照射量、比释动能、吸收剂量的定义照射量:高能光子在质量为dm的空气中释放出来的全部次级电子(负电子和正电子)完全被空气阻止时,在空气中所产生的任一种符号的离子总电荷的绝对值dQ与dm的比值。
X=dQ/dm比释动能(kinetic energy released inmaterial):指不带电电离粒子在质量dm的介质中释放的带电粒子的初始动能之和,Κ =d E t r / d m吸收剂量(absorbed dose):电离辐射在和物质的相互作用过程中,给予质量为d m的物质的平均授予能量d E,即D=dE/dm2、三者的适用范围,及相互关系照射量(X):是用来度量X射线或γ射线在空气中电离能力的物理量。
比释动能:适用于间接电离(光子、中子等)、任何介质吸收剂量:适用于任何类型的电离辐射(光子、中子、电子束等)和任何介质,是辐射效应中最重要的度量单位各辐射量之间的关系1)、照射量X和空气比释动能K关系X=K·e/w·(1-g); e:电荷1.6X10-19C;w:空气中平均电离功33.97J/C;g:比释动能中辐射部分所占份额2)、比释动能K和吸收剂量D关系在电子平衡时D=K·(1-g)建成区内D<K,保护了患者皮肤;平衡区内,D略大于K3)、空气吸收剂量和照射量关系Da=X·W/e3、高能光子在介质中产生吸收剂量的过程高能光子在介质中的能量转移和吸收两个步骤:1)、高能光子和物质核外电子作用,全部或部分能量转移给次级电子。
用比释动能度量。
2)、大部分次级电子在它运动经迹上继续和介质中的核外电子作用,使其电离或激发,能量被介质吸收。
用吸收剂量度量4、吸收剂量测量的基础第六章1、什么是源射线、散射线?它们的范畴是什么?原射线:电子打靶或放射源直接产生原始光子,穿透过程没有碰到任何介质。
散射线:包括①原射线与准直系统相互作用产生的散射线;②原射线和穿过准直器和挡块的漏射线和模体相互作用产生。
肿瘤放射治疗学备课笔记(讲稿)内容教师班级时间第九章近距离放射治疗近距离治疗(brachytherapy)是与远距离治疗(teletherapy)相对而言,brachy(近或短)及tele(远)均来源于希腊文。
远距离治疗是指外照射,即通过人体体外的照射,如钴-60远距离治疗,电子直线加速器的高能X线及电子束治疗等。
近距离治疗主要有腔内(intracavitary)、管内(intralumenal)、组织间(interstitial)、术中(intraoperative)和模(mould)治疗五种,即4I+1M。
第一节近距离放射治疗的历史1898年居里夫妇发现放射性元素镭。
1901年物理学家贝克勒尔意外受到镭的灼伤后,居里夫人将一小管镭盐交给Danlos,建议用于肿瘤治疗。
1904年,Danlos应用表面施用器将镭用于治疗皮肤病变,从此开创了镭疗的新纪元。
1905年进行了世界上第一例镭针插植。
1906年,Oudin首次阐述了剂量率效应,Beclere提出射线量值对疗效的主导作用。
1911年,提出用毫克镭(mgRa)作为放射性强度单位。
1913年,镭首次用于宫颈癌的治疗,奠定了腔内放疗的基础。
1921年,Sievert提出点源、线源的剂量计算公式,著名的Sievert积分公式一直沿用至今。
1930年,英国Paterson及Parker建立了Manchester系统,描述了插植规律、剂量学及计算方法,组织间照射得到迅猛发展。
1931年,Forssel首次提出以希腊文Brachtherapy代表近距离治疗。
1934年他们提出了更为严谨的布源规范和照射数据表,一直沿用至今。
20世纪50年代,外照射发展很快(60Co及电子直线加速器),其防护上的优势及深度剂量高,使近距离治疗的发展受到一定影响。
但同期,美国纪念医院的Henschke提出了后装技术并建议用192Ir取代226Ra,改善了医护人员的防护和剂量分布,使近距离治疗获得了新生。