风力发电机的轴承解决方案
- 格式:doc
- 大小:103.00 KB
- 文档页数:7
风电齿轮箱高速轴轴承温度高处理方案摘要:本文针对现场出现的齿轮箱高速轴轴承的高温报警情况进行了科学研究。
首先,讨论了如何针对这种情况检查和分析常见故障,并将问题锁定在高速轴轴承的润滑油通道上。
随后,对高速轴轴承所需的总润滑流量进行了详细的计算和分析。
通过将高速轴轴承基本理论的总润滑流量与评估的总流量进行比较,可以弄清齿轮箱是在超低温自然环境下运行的。
总润滑流量太少是高速轴轴承出现高温警报的主要原因。
最后,现场提出整改意见。
它显示了一种合理的方法,可对高速轴的轴承进行全润滑,并对特定油路进行全润滑。
这也是现场检查和处理高速轴承高温报警常见故障的重要途径。
关键词:风电齿轮箱;高速轴轴承;油温高;处理方案引言:由于使用风力发电减速齿轮箱的独特工作条件,每个组件不仅必须承受轴向力,而且还必须承受轴向力,因此所有传动齿轮通常都采用锥齿轮设计。
对于高速轴系统,由于具有较高的速比,为了更好地在工作过程中平稳地传递力和扭矩,经常采用圆柱高速轴轴承和圆锥滚子轴承的设计方案。
由于结构设计的原因,通常圆锥形滚子轴承在顺风方向是所有高速轴轴承中最高的温度分量。
在设计方案中考虑了圆锥滚子轴承高速轴轴承的安装方便性,为圆锥滚子轴承高速轴承选择了零距离相互匹配的方法轴轴承。
高速轴高速轴轴承的内部设计结构包括上风向、下风向、箱体、端盖等结构。
一、高速轴轴承响高温影因素分析(一)摩擦力矩增大在高速轴轴承的特定安装中,摩擦扭矩将受到多种因素的限制。
在高速轴轴承的整个操作过程中,高速轴联轴器的对准误差和成品油的清洁度很可能会增大滑动摩擦力,并且温度会升高。
为了更好地确保风力发电减速箱的高速轴与发电机组驱动端之间的平行度,应使用联轴器进行连接。
如果平行度差大,联轴器和旋转轴的高速轴轴承将产生非常大的载荷,这将在高速轴轴承的中间引起过大的摩擦,从而导致上升温度。
为了更好地减少高速联轴器的对中误差,可以使用激光对中仪进行精确的标定,以消除额外产生的负荷量,减少负荷。
风力发电机组轴承常见问题及处理方法发布时间:2021-05-28T09:50:52.703Z 来源:《基层建设》2021年第2期作者:宋强[导读] 摘要:随着我国环保事业的发展,越来越多的人开始关注清洁能源,而风力发电设备就是较为引人注目的成果之一。
新锦风力发电有限公司内蒙古巴彦淖尔 015200摘要:随着我国环保事业的发展,越来越多的人开始关注清洁能源,而风力发电设备就是较为引人注目的成果之一。
对于风力发电最为核心的技术应该是发电机组轴承,轴承的好坏关系着整体发电的效率,本文将简单分析发电机组轴承常见问题,并基于一些原理探究处理的办法。
关键词:风力;发电机组;轴承;问题;方法一、风力发电机组轴承常见问题(一)疲劳剥落。
发电机组轴承的工作原理是滚动轴承进行运作,带动套圈不停的发生运动,进而带动这个风车的转动,在这一过程中,滚动体会随着转动而与套圈之间产生摩擦,接触面会受到这种循环的压力,长久以往会使得其物质特性发生变化,弹性变形会导致表面逐渐硬化,材料之间的相互接触会造成应力出现断层态分布。
这一压力下,容易形成细小的裂纹,随着时间的延续,裂纹会逐渐扩大,直到扩展到物体的表面,轴承内部与接触面会发生剥落效应,最终导致轴承之间不能有效工作,被成为疲劳剥落失效。
这种效应会使得机组在运行过程中,发生震动与冲击,对风电设备造成一定损害。
(二)磨损问题。
轴承之间的相互作用,会使得整体之间相互滑动,引起零件接触面的磨损,对于这种磨损在理想情况下,是轴承之间的相互作用,但现实情况往往是由于密封不当以及轴承润滑系统失效等原因,使得金属粉末不均匀地分布在轴承内部,这些物体由于运动不规律,会对轴承产生不同力的效果,严重加剧磨损。
并且,这种摩擦的原因也可能会是在最初装配的过程中,装配不当,位置发生偏离也会导致这一情况。
还有一种原因,就是润滑油选择错误,在选择润滑油的过程中,需要密切注意轴承的转速、运行环境以及润滑油的润滑效果能否满足轴承的运行要求,不同的轴承所选择的润滑效果不甚相同,严禁随便对轴承润滑油进行替换;在使用过程中,还需严格按照风力发电机组设备厂家的要求,精确润滑油加注量,防止因加注量超标而造成轴承内部摩擦阻力加大,导致运行过程中轴承运行温度异常升高,长此以往产生更大的缝隙,降低轴承运转精度,最终造成轴承损坏而导致风力发电能效的下降。
第一部分:概述1.微摩擦力全永磁悬浮轴承概述微摩擦力全永磁悬浮轴承是一种先进的轴承技术,其使用永磁体和电磁悬浮技术,通过电磁场控制轴承的悬浮和旋转,实现无接触支撑和传动,从而降低摩擦和磨损,提高效率和可靠性。
2.风力发电机中的应用风力发电机是利用风能将其转化为机械能,再经过发电机将其转化为电能的设备。
在风力发电机中使用微摩擦力全永磁悬浮轴承能够提高转子的转速和稳定性,减少能源损耗和维护成本,从而提高发电效率和可持续性。
第二部分:微摩擦力全永磁悬浮轴承在风力发电机中的优势1.减少能源损耗微摩擦力全永磁悬浮轴承通过无接触支撑和传动,大大减少摩擦和磨损,降低能源损耗,提高机械效率。
2.提高转子转速和稳定性由于采用永磁悬浮技术,微摩擦力全永磁悬浮轴承可以实现高速旋转和稳定悬浮,从而提高风力发电机的转子转速和稳定性。
3.降低维护成本传统轴承由于摩擦和磨损会导致频繁的维护和更换,而微摩擦力全永磁悬浮轴承几乎没有摩擦和磨损,大大降低了维护成本。
第三部分:风力发电机中微摩擦力全永磁悬浮轴承的实际应用1.案例分析:某风力发电场的改造通过将微摩擦力全永磁悬浮轴承应用于该风力发电场的风力发电机中,转子的转速提高了20,发电效率提高了15,维护成本降低了30,为风力发电场带来了显著的经济效益。
2.行业趋势:微摩擦力全永磁悬浮轴承的未来发展随着风力发电行业的发展和需求增加,微摩擦力全永磁悬浮轴承在风力发电机中的应用前景广阔。
未来,随着技术的进步和成本的降低,这种先进的轴承技术将会得到更广泛的应用。
第四部分:总结与展望1.总结微摩擦力全永磁悬浮轴承在风力发电机中的应用能够显著提高发电效率和可靠性,降低能源损耗和维护成本,具有巨大的市场潜力。
2.展望未来随着新能源行业的快速发展,微摩擦力全永磁悬浮轴承将会在风力发电机等领域得到更多的应用,为新能源发电领域的可持续发展贡献力量。
个人观点和理解:对于微摩擦力全永磁悬浮轴承在风力发电机中的应用,我认为其能够有效提高风力发电机的整体性能,促进清洁能源的发展。
浅谈风力发电机主轴轴承失效分析及解决办法风力发电机主轴轴承是风能转换装置中的重要组成部分,其正常运转与否直接影响风力发电机的性能和寿命。
然而,在运行过程中,由于各种原因,风力发电机主轴轴承存在失效的风险。
本文将从失效原因、失效分析及解决办法等方面进行论述。
首先,风力发电机主轴轴承失效原因多种多样,主要包括以下几方面:1.过载与负荷不均匀:由于发电机长期工作在高速旋转状态下,风力过大或过小都会导致主轴轴承受到不同程度的负载,使其过载或负荷不均匀,从而引起失效。
2.润滑不良:风力发电机主轴轴承工作环境恶劣,尘埃多,容易导致润滑油污染,进而引发润滑不良,造成主轴轴承失效。
3.轴承偏心和振动:由于安装和使用不当,风力发电机主轴轴承可能出现偏心磨损,同时,振动也会在一定程度上加剧轴承失效。
常见的轴承失效形式主要包括以下几种:1.疲劳失效:轴承长期在复杂动载荷下工作,容易导致疲劳失效,主要表现为轴承表面的磨损和龟裂。
2.磨损失效:因为润滑不良、杂质进入轴承等原因,主轴轴承可能出现磨损失效,主要表现为表面磨损、脱落和腐蚀等现象。
3.弯曲失效:过载或负荷不均匀都会导致主轴弯曲变形,造成主轴轴承失效。
为了解决风力发电机主轴轴承失效问题1.加强检查和维护:定期对风力发电机主轴轴承进行检查,确保其润滑状态良好,及时更换磨损严重的轴承。
2.提高轴承负荷承载能力:采用高强度材料制造轴承,增加轴承的负荷承载能力以及寿命。
3.减小振动幅度:通过优化设计和加强安装质量,降低风力发电机的振动幅度,减少对主轴轴承的影响。
4.加强润滑管理:严格控制风力发电机主轴轴承的润滑油品质和污染控制,确保轴承良好润滑,减少摩擦磨损。
总之,风力发电机主轴轴承的失效对风力发电机的性能和寿命具有重要影响。
通过加强检查和维护、提高轴承负荷承载能力、减小振动幅度、加强润滑管理等措施,可以有效预防和解决风力发电机主轴轴承失效问题,提高风力发电机的可靠性和经济性。
1.5MW双馈风力发电机轴承超温原因分析及措施摘要:随着清洁能源的发展壮大,双馈风力发电机组的装机量越来越大,保证风力发电机组的安全稳定运行成为风场的主要任务。
早期投产的1.5MW双馈风力发电机是风力发电机组重要的组成部分,运行中发电机轴承温度过高造成系统故障频繁报出,降低了风机的可利用率。
本文介绍了发电机轴承温度升高的原因,并根据实际情况提出几项解决措施,以供风电行业工作者参考。
关键词:风力发电机;轴承超温;超温原因;超温措施双馈风力发电机是风力发电机组重要的组成部分,轴承温度高是风力发电机组常见且危害较大的故障,将减少轴承的使用寿命,增加检修费用,当温度升高较快、温度达95℃时,将导致机组非计划停运或减负荷运行,这不仅降低了风电机组风能利用率,同时也增加了损失电量,导致风场发电量效益下降。
因此,迅速判断故障产生的原因,采取得当的措施,切实减少或消除该故障发生,保证风力发电机组的安全稳定运行成为风场的主要任务。
1发电机轴承配置发电机组通常采用绝缘深沟球轴承,前、后轴承平时采用自动注油泵通过注油嘴加注油脂,油脂为美孚复合锂基润滑脂,型号:SHC GREASE 460WT或克鲁勃轴承润滑脂,型号:Kluberplex BEM 41-141,多余的油脂从轴承盖中甩出,轴承盖底部开有泄油口和集油器。
发电机转子轴采用单、双端轴接地碳刷方式,将转轴上的电流经接地装置进行导流,避免轴电流对轴承影响。
2发电机冷却和通风发电机采用风冷方式,发电机内部通过前置及顶部风机作用,形成外部至内部循环风道,把发电机内部产生热量通过后部碳刷室上导风置排至机舱外部,并将碳粉经过滤器过滤后由机舱底部吹出。
3发电机轴承超温原因分析3.1润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求、变质或有杂物。
3.2冷却不够,如冷却风扇选用不合适或损坏,冷却效果差。
3.3轴承异常,如轴承损坏,轴承装配工艺差,轴承箱各部间隙调整不符合要求。
风电主轴轴承维护目录主轴轴承的贮存主轴轴承的安装主轴轴承的润滑选择主轴轴承初次润滑主轴轴承涉及的齿轮箱与发电机对中主轴轴承的补充润滑主轴轴承的状态监测主轴轴承的润滑分析主轴轴承的贮存一、贮藏室要求A、室内温度控制存放主轴轴承仓库的室温4~28℃的温度范围,存放轴承的仓库内应设有空调和除湿设备。
室温过低,防锈油会在低温下硬化收缩并产生裂纹,湿气等有害物质会通过裂纹直接接触轴承表面而使其锈蚀;室温过高,防锈油会熔化变薄,防锈性能下降,失去对轴承表面的保护作用;日夜温差过大或温度变幅度过大,大气中湿气会在轴承表面上凝结成水珠,从而引起轴承锈蚀。
如果温度低于4℃时应使用空调或其它加热方式升温,如远红外电炉,但要注意加热时,不能产生有害气体损坏轴承,引起轴承生锈。
加热设备的数量与分布应以保证轴承存放处温度能比较均匀地升高为原则。
在高于28℃时,最好用自然对流法降温,避免使用易扬起灰尘或带来潮气的强制电扇风冷法,如果必须使用电扇,宜用高处安装百页窗式排风扇,风扇的数量和分布的选择原则应使室内存放轴承处尽可能温度均匀地冷却,同时气流无涡旋死角。
切忌对着轴承吹风,在门户经常开启的进口处应尤其要注意,因为较高温度的轴承陡遇冷风也会凝结水滴,凝结的水滴可能引起轴承生锈,这一点在早上入库调换房间空气时也应注意。
B、仓库湿度控制存放轴承的仓库,其室内相对湿度应保持在45%~60%,当湿度超过60%时应采取去湿措施。
最好在通风道的入口端设置去湿装置。
过高的湿度,易导致轴承的锈蚀,缩短轴承的“库存寿命”在库存安全期,阴雨天禁止雨衣、湿鞋等入室。
以下时温度、湿度对轴承仓贮的影响:相对湿度,% 环境温度,℃轴承最长仓贮时间,年60 25-30 1075 25-30 575 35-40 3典型的对贮存环境状态不控制的方法 1对已填充润滑脂的密封轴承最长的贮存期限为3年因此,对轴承仓库的控制对轴承使用会产生较大的影响!C、室内空气条件存放主轴轴承的仓库,其室内空气应洁净、无尘、干燥、不含酸碱性气体、水蒸气或其他腐蚀性气体。
风力发电轴承的解决方案随着新能源应用的发展,作为新能源中开发较早的风能,在电网中占据了越来越大的比重。
同时,越来越多的制造商开发了各种不同的风力发电机主机,为了增强其产品在市场上的竞争实力,从传动链设计的改进,到各种零部件不同功能的考虑,都成为风力发电机主机设计改进的不同考虑因素。
作为风力发电机的主要零部件,轴承的选用一直是主机生产厂商最关心的问题,不论是轴承本身的设计,还是轴承配置的选择,都决定着风力发电机主机的运行性能及使用寿命。
由于风力发电机运行工况复杂,主机维修成本较高,保证其运行的可靠性,即风力发电机的使用寿命,一直都是困扰主机制造商的重要问题。
其中轴承的应用对主机效率的影响极为重要。
因此,基于风力发电机的复杂性,SKF专门为其并开发了一种特殊的轴承,即“Nautilus”轴承——一种具有特殊的大接触角的双列圆锥滚子轴承风力发电机主机轴承配置传统的风力发电机轴承配置为双轴承支撑。
根据风力发电机的工作原理,传动链通常采用如下设计:主轴、齿轮箱(增速箱)和发电机。
在主轴上,采取双轴承的配置是比较传统且比较常用的形式,采用的轴承类型根据设计要求的不同而有所不同,但通常较为传统的轴承配置为球面滚子轴承配置或圆锥滚子轴承配置。
双轴承配置的好处在于主轴轴承承受了大部分复杂的风力载荷,除扭矩外,基本上没有其他载荷会传递到传动链的齿轮箱里,给齿轮箱的设计带来了极大便利。
但这种配置也有其自身的缺点,比如传动链较长,除主轴长度外,还要考虑主轴与齿轮箱连接的联轴器的长度。
因此,在小功率的风力发电机中,这种配置比较常见。
在大功率的风力发电机中,过长的传动链则意味着更大的体积以及更高的制造成本。
现最新的主轴轴承配置解决方案为单轴承支撑。
随着风力发电机的发展,大功率风力发电机成为市场发展的趋势,较高的能量密度也成为各主机制造商争相追赶的目标,给轴承设计带来了极大挑战。
在大功率风力发电机里,要保证有足够的载荷能力承受较大的风力载荷。
风力发电机组轴承的典型故障模式及原因分析摘要:风力发电是一种可再生能源,近年来在全球范围内得到了广泛应用和发展。
然而,由于风力发电机组长期运行、恶劣环境条件和振动等因素的作用,其各个部件容易出现故障,其中轴承是最常见的故障部件之一。
本文将针对风力发电机组轴承的典型故障模式进行分析,并提出相关原因分析,以期对轴承故障的预防和维修提供参考。
一、引言风力发电是一种利用风能产生电能的技术,其具有环保、可再生和经济等诸多优势,因此在全球范围内得到了广泛应用。
然而,由于风力发电机组长期运行、复杂的工作环境以及高速旋转的转子和叶片等因素的作用,其各个部件容易出现故障,其中轴承是最常见的故障部件之一。
二、风力发电机组轴承的典型故障模式经过对大量风力发电机组实际应用数据的收集和故障统计分析,可以总结出以下几种典型的轴承故障模式:1. 疲劳失效疲劳失效是轴承故障中最常见的一种模式。
在风力发电机组运行过程中,轴承承受频繁的载荷和振动,导致轴承内部产生微裂纹。
随着时间的推移,这些微裂纹逐渐扩展,最终导致轴承的疲劳失效。
2. 磨损故障由于风力发电机组长期运行,轴承表面会因为摩擦而产生磨损。
如果机组的润滑系统不够完善,或者存在润滑油质量不合格等问题,轴承表面的磨损会加剧,最终导致轴承的失效。
3. 弹性变形故障风力发电机组运行过程中,轴承会承受大量的载荷和振动,从而引起轴承的弹性变形。
当弹性变形超出轴承的可承受范围时,轴承会出现形状变形和功能损失,进而导致故障。
4. 渣滓沉积故障风力发电机组运行环境通常存在大量的沙尘和颗粒物,这些物质会随风进入轴承内部,形成渣滓沉积。
过多的渣滓会导致轴承不正常运转,甚至造成卡死等严重故障。
三、风力发电机组轴承故障原因分析针对以上几种典型的轴承故障模式,可以进行如下原因分析:1. 运行时间和振动风力发电机组长时间运行会导致轴承频繁承受载荷和振动,轴承内部可能产生微裂纹,进而引起疲劳失效。
因此,合理控制机组的运行时间和振动水平,可以有效预防轴承故障。
大型风力发电机主轴轴承故障分析及预防方法摘要:在直驱风电机组中,由于受偏航、变桨、刹车等冲击的影响,其动态特性十分复杂。
根据直驱风机的工作特性,采用常规的振动监测方法,因其工作状态复杂,故障演变机制不清楚,致使风机发生重大事故。
传统的振动检测方法存在着缺陷,目前国内外尚无一套行之有效的状态监控理论。
本文针对直驱式风扇的主轴轴承进行了故障机理和动力学特性的研究。
探讨了动态交变应力条件下的故障演变机制,揭示了故障的主轴承动力特性和故障信息特征之间的定量关系。
关键词:大型风力发电;主轴轴承;故障;预防1 项目背景(1)风机设计时通常由风机主机厂向风机轴承供应商提出技术要求,风机轴承供应商据已有标准规范:GL 2010风机认证指南,IEC 61400风电标准,ISO 281滚动轴承,额定动载荷和额定寿命,ISO 16281滚动轴承,通用装载轴承用改良参考额定寿命的计算方法,JB/T 10705-2016 滚动轴承,风力发电机轴承,GB/T29718-2013 滚动轴承风力发电机组主轴轴承,GB-T 4662-2003 滚动轴承,额定静载荷,GB-T 6391-2003滚动轴承,额定动载荷和额定寿命,GB/T18254-2002高碳铬轴承钢等标准进行轴承选型计算提供相应型号轴承,在某些情况下由于轴承选型不合理导致轴承在实际运行过程中发生开裂、断裂及过早磨损等失效,而使用轴承的风机主机厂商并没有掌握风机轴承选型的方法,当风机轴承发生故障后很难分析出引起轴承故障的原因及预防轴承发生故障。
本项目通过对已颁布的风机轴承相关标准进行整理,掌握风机轴承在选型过程中注意事项及计算方法,编制轴承选型规范,为后续风机设计轴承选型提供选型依据。
(2)目前公司机组使用轴承(变桨轴承、偏航轴承、主轴轴承)集中润滑系统是贝卡(国外)生产的轴承集中润滑系统,贝卡的轴承集中润滑系统成本较高,本项目通过开发国产轴承集中润滑系统来降低轴承集中润滑系统成本,拟降低成本30%。
风力发电机的轴承解决方案
来源:互联网作者:佚名发布时间: 2011-1-26 9:52:36
随着新能源应用的发展,作为新能源中开发较早的风能,在电网中占据了越来越大的比重。
同时,越来越多的制造商开发了各种不同的风力发电机主机,为了增强其产品在市场上的竞争实力,从传动链设计的改进,到各种零部件不同功能的考虑,都成为风力发电机主机设计改进的不同考虑因素。
作为风力发电机的主要零部件轴承的选用一直是主机生产厂商最关心的问题,不论是轴承本身的设计,还是轴承配置的选择,都决定着风力发电机主机的运行性能及使用寿命。
由于风力发电机运行工况复杂,主机维修成本较高,保证其运行的可靠性,即风力发电机的使用寿命,一直都是困扰主机制造商的重要问题。
其中轴承的应用对主机效率的影响极为重要。
因此,基于风力发电机的复杂性,SKF专门为其并开发了一种特殊的轴承,即“Nautilus”轴承——一种具有特殊的大接触角的双列圆锥滚子轴承(图1)。
图1 SKF公司研发的Nautilus轴承
风力发电机主机轴承配置
传统的风力发电机轴承配置为双轴承支撑。
根据风力发电机的工作原理,传动链通常采用如下设计:主轴、齿轮箱(增速箱)和发电机。
在主轴上,采取双轴承的配置是比较传统且比较常用的形式,采用的轴承类型根据设计要求的不同而有所不同,但通常较为传统的轴承配置为球面滚子轴承配置或圆锥滚子轴承
配置。
双轴承配置的好处在于主轴轴承承受了大部分复杂的风力载荷,除扭矩外,基本上没有其他载荷会传递到传动链的齿轮箱里,给齿轮箱的设计带来了极大便利。
但这种配置也有其自身的缺点,比如传动链较长,除主轴长度外,还要考虑主轴与齿轮箱连接的联轴器的长度。
因此,在小功率的风力发电机中,这种配置比较常见。
在大功率的风力发电机中,过长的传动链则意味着更大的体积以及更高的制造成本。
现最新的主轴轴承配置解决方案为单轴承支撑。
随着风力发电机的发展,大功率风力发电机成为市场发展的趋势,较高的能量密度也成为各主机制造商争相追赶的目标,给轴承设计带来了极大挑战。
在大功率风力发电机里,要保证有足够的载荷能力承受较大的风力载荷。
因此,主轴,包括轴承的尺寸势必要增大,而这必定会造成主机整体重量的增加,随之而来的则是主机相关部件,包括塔架等零部件制造成本的增加。
那么是否有能够在提高风力发电机功率的同时还能减轻重量并降低整个风力发电机的制造成本呢?这成为主机厂商和零部件厂商所面临的日益紧迫的问题,因为成本的下降,意味着产品竞争能力的提高。
基于以上种种目的,SKF专门为大功率风力发电机开发了大接触角的圆锥滚子轴承(图2)。
Nautilus轴承的突出特性
该轴承为背对背配置的圆锥滚子轴承,拥有较大的接触角(45)。
其不仅让单轴承的主轴配置成为可能,同时大大缩短了传统设计中的传动链长度,使紧凑型的风力发电机设计成为可能。
当然,特殊的设计同样保证了轴承或者说传动系统的所有功能。
1.较大的接触角
传统的配对(或者双列)圆锥滚子轴承,接触角一般只有20左右,在保证其较大的径向承载能力以外,轴承的轴向承载能力以及承受倾覆力矩的能力都有一定的限制。
因此,在一根主轴上要保证设计能够满足应用的要求,必须要有另外一个轴承作为第二个支点承受另外的径向力,而且两个轴承的配置,才能满足整个轴在受到倾覆力矩时,不会发生变形。
而Nautilus轴承突破了传统接触角的设计,将每个单列轴承的接触角放大到45。
与传统的双轴承配置相比较,Nautilus轴承两个单列轴承接触点的连线间的距离远远高于一般圆锥滚子轴承,这两个接触点连线的交点可以作为整个轴系中的两个焦点,成为支撑轴系运行的作用点。
2.分段式的工程塑料保持架
除较大的接触角外,该轴承另一个显著的特点就是采用了分段式工程塑料保持架。
对于轴承的内部部件来说,滚动体是重要的承载部件,而保持架除保持滚动的运行状态外,还有分隔滚动体避免其相互间产生摩擦的功能。
保持架不是一个受力元件,不能承受任何形式的外力。
因此,其往往采用较轻的材料来生产,同时,保持架材料要满足另一个要求,即足够的强度。
由于保持架在轴承运行中的旋转所需要的动力是由滚动体所提供的,因此,保持架的材料需要一定的强度来保证其正常的运行。
对于SKF Nautilus轴承来说,为了保证接触角连线足以承受系统中的受力,轴承的尺寸往往都很大,目前市场上应用较多的是直径为2~2.5 m的轴承产品。
因此,降低轴承本身重量成为其设计中亟待突破的技术难题。
作为承载部件的内外圈和滚动体,为要保证轴承的承载能力,在选材上不能有丝毫马虎。
SKF Nautilus轴承采用的工程塑料,不仅能保证足够的强度,而且重量较轻,保证了轴承的旋转性能,同时降
低了轴承内部的摩擦。
分段式设计是SKF Nautilus轴承另一大特色(图3)。
在该轴承中四五个滚动体共用一个保持架组件,而各保持架组件之间没有任何其他链接。
如果在该轴承中使用传统的一体式保持架,由于尺寸过大,保持架本身的重量就会使其发生变形,在轴承运行过程中,这种变形会导致滚动体与保持架的额外接触,产生额外摩擦。
这不仅会增加轴承的运行温度,而且摩擦对保持架和滚动体材料的磨损也会导致保持架甚至滚动体的变形,最终影响轴承的承载能力甚至使用寿命。
分段式保持架,每个组件的个体都很小,即使很多组件放在一起,也不会产生变形。
同时,由于每个组件只有四到五个滚动体,因此,保持架所产生的摩擦也会被降低到最小范围内。
3.应用特点
Nautilus轴承现已被广泛应用在大功率风力发电机中,取代了双轴承设计,缩短了传动链的尺寸。
那么这种应用到底能带来什么好处,在应用中又会产生哪些问题呢?
传统风力发电机主轴的设计,其轴承的受力分工一般是固定端的轴承承受所有的轴向载荷和部分径向载荷,而另一个轴承作为浮动端承受部分的径向载荷。
风场风力载荷的大小决定了所需轴承的尺寸,而轴承尺寸则决定了两轴承间的距离,也决定了整个传动链的长度。
单轴承(Nautilus)设计是在保证同样轴承受力条件下,由一个轴承承受所有的轴向和径向载荷,缩小了整个传动链的尺寸。
单轴承设计中除需考虑内部预紧力外,对于轴承的应用来讲,与双轴承没有任何区别。
而且单轴承特殊的保持架设计,使其在脂润滑和油润滑条件下都具有非常好的运行性能。
在主轴上只有一个轴承,却要实现两个轴承的作用,那么,这个轴承的刚度就成为在轴承设计中必须考虑的关键因素。
Nautilus轴承的内圈为两个分离的部件,通过对风力发电机应用的校核,在生产中将轴承的内部游隙设计到理想范围,在轴承安装后,就能达到最优化的预紧力,简化轴承的安装过程,同时满足轴承正常运行的需要。
圆锥滚子轴承的设计
在早期的市场上,为了满足单轴承的设计要求,通常采用的轴承为三列圆柱滚子轴承。
该轴承的设计类似于回转支承,一列滚动体(类似于圆柱滚子轴承)承受所有的径向力,另外两列滚动体(类似于滚子推力轴承)承受系统中的双向轴向力。
该轴承似乎可以满足单轴承配置的一些功能,但通过轴承运行的分析发现作为推力轴承功能的两列滚动体在轴承做整圈旋转时,滚动体的两个端面不能达到同样的线速度,这就意味着在轴承运行过程中存在大量的滑动摩擦。
而作为滚动轴承,滑动摩擦是要极力避免的,因为它不仅会带来更多的轴承发热,同时滑动摩擦的润滑在轴承润滑中也是非常棘手的一个问题。
由于设计上的一些问题,该轴承现在已不能满足日益走向大功率化的风力发电机的需求。
不同设计保持架的比较
除SKF Nautilus轴承的保持架设计外,市场上还有几种不同的保持架设计。
现分别比较一下几种保持架的优缺点。
图4为金属一体的穿销式保持架。
顾名思义,该轴承的滚动体为通孔式设计,在滚动体中间有一根销子分别连接在保持架侧圈的两端。
在设计上,这种轴承的滚动体尺寸要比相同尺寸的其他轴承大得多,因为不仅要满足足够的承载能力,还要在滚动体内部开一个通孔以便穿销式保持架的安装。
另外,滑动部件
的润滑是一个很重要的问题,这在上文中已经提及。
该轴承滚动体内孔与保持架穿销之间全部都是滑动摩擦,不仅润滑问题不好解决,它所带来的轴承发热也是必须要关注的问题。
另一种典型设计是没有保持架的满滚子轴承设计。
当然,从主轴轴承较低的转速来看,满滚子轴承所带来的旋转能力的下降不足以成为该轴承应用的阻碍。
但是,滚动体之间的摩擦则是一个不可忽视的关键。
轴承中之所以要设计保持架,一个重要的功能就是将相邻的两个滚动体分开,在轴承运行时避免轴承滚动体内部的摩擦,降低摩擦及噪声。
因此,满滚子轴承虽然具有很高的承载能力,但是在主轴轴承上,由于滚动体内部的摩擦其仍然不是理想的选择。
另外,上文中提及的另一种保持架设计,即与传统轴承相似的一体式保持架。
在SKF Nautilus轴承中没有选择一体式保持架,主要是由于其尺寸过大,自身重量会引起保持架的变形,带来更多的滚动体与保持架之间的摩擦。
此外,作为产生能源的设备,风力发电机设计中的一个重要问题就是提高能量密度,最大化的降低其零部件的能量损失。
从此角度出发,一体式保持架也有着局限性。
风力发电机,因其特殊的应用工况,对零部件的选择至关重要。
据研究报告显示,到2012年,风力发电的装机容量将由2007年的90000 MW上升至290000MW。
风力发电机制造商及运营商,都越来越倾向于高
可靠性的风力发电机主机,以达到经济效益与生态效益的平衡。