第11章 一元非线性回归分析
- 格式:ppt
- 大小:343.50 KB
- 文档页数:22
第11章 回归分析设x 为普通变量,Y 为随机变量。
如果当x 变化时,Y 随着x 的变化大体上按某种趋势变化,则称x 与Y 之间存在相关关系,即),0(~,)(2σεεN x f Y +=例如,某地人均收入x 与某种商品的消费量Y 之间的关系;森林中树木的断面直径x 与高度Y 之间的关系;某种商品的价格x 与销售量Y 之间的关系;施用氮肥、磷肥、钾肥数量1x ,2x ,3x 与某种农作物产量Y 之间的关系。
在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的近似函数关系或得到样点之外的数据。
我们确定的函数要求在某种距离意义下的误差达到最小(通常用最小二乘法,即考虑使各数据点误差平方和最小)。
由一个(或几个)普通变量来估计或预测某个随机变量的取值时,所建立的数学模型及所进行的统计分析称为回归分析。
§11.1 一元线性回归假设有一批关于x 与Y 的离散样点),(,),,(),,(2211n n y x y x y x集中在一条直线附近,说明x 与Y 之间呈线性相关关系,即),0(~,2σεεN bx a Y ++=称为一元线性回归模型。
一、模型中的参数估计 1、b a ,的估计 首先引进记号∑∑∑∑∑=====-=-=-===ni i i xy ni i yy ni i xx ni ini iyx n y x S y n y S x n x S y n y x n x 11221221111按最小二乘法可得到xxxyS S b =ˆ x b y a ˆˆ-= 称x b a yˆˆˆ+=为Y 关于x 的一元线性回归方程。
2、2σ的估计)ˆ(21ˆ22xx yy S b S n --=σ求出关于的一元线性回归方程。
解:先画出散点图如下计算出 3985193282503.6714510======xy yy xx S S S y x n483.0ˆ==xxxyS S b 735.2ˆˆ-=-=x b y a所求的回归方程是x y483.0735.2ˆ+-=。
十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
⼀元⾮线性回归⼀元⾮线性回归有时,回归函数并⾮是⾃变量的线性函数,但通过变换可以将之化为线性函数,从⽽利⽤⼀元线性回归对其分析,这样的问题是⾮线性回归问题。
为了检验X射线得到杀菌作⽤。
⽤200kv的X射线照射杀菌,每次照射6分钟,照射次数为x,照射后所剩的细菌数为y,下表是⼀组试验结果x y x y x y1 783 815415282 621 912916203 433 1010317164 431 117218125 287 12501996 251 13432077 175 1431根据经验知道y关于x的曲线回归⽅程如bxyae试给出具体的回归⽅程,并对其对应的决定系数R^2和剩余标准差s。
⼀、⾸先描出数据的散点图,如下图散点图呈现出⼀个明显的向下且下凸的趋势,可能选择的函数关系很多,⽐如我们可以给出如下三个曲线函数:1.1bay x=+(1)2.baxy=(2)3.bxy ae=(3)⼆、参数估计1.为了能采⽤⼀元线性回归分析⽅法,我们做如下变换yv ln=u=x则(1)式的曲线图就化为如下的散点图u i∑= 3655 i v ∑=87.22497u =182.75 v =4.3612482ui∑=1611149 u i i v ∑=21281.692nu =667951.3 nuv =15940.36uu l = 943197.8 uv l =5341.3291B =uuuvl l =130.9375 0B=v - B1=-388.301得出⽅程v=-388.301+130.9375x四、结束语对于可化为线性模型的回归问题,⼀般先将其化为线性模型,然后再⽤最⼩⼆乘法求出参数的估计值,最后再经过适当的变换,得到所求回归曲线。
在熟练掌握最⼩⼆乘法的情况下,解决上述问题的关键是确定曲线类型和怎样将其转化为线性模型。
确定曲线类型⼀般从两个⽅⾯考虑:⼀是根据专业知识,从理论上推导或凭经验推测、⼆是在专业知识⽆能为⼒的情况下,通过绘制和观测散点图确定曲线⼤体类型。
.学号姓名学院专业化学工程与技术成绩一元非线性回归分析的应用——以流化床中不同床层高度处的气泡直径为例摘要:一元非线性回归预测法是分析一个因变量与一个自变量之间的非线性关系的预测方法。
在实际现实问题中,变量之间的关系往往都是比较复杂的非线性相关关系。
本文运用一元非线性回归的分析方法,构建了简单的分析模型,求出模型参数,并对分析结果的显著性进行了假设检验,从而了解到流化床中床层高度与气泡直径之间的关系呈非线性相关(双曲线关系)。
正文:一、问题提出鼓泡流化床由于气体和固体之间有较高的传热、传质速率,已广泛应用于工业领域。
气泡是气固鼓泡流化床中一种重要的现象,气泡结构以及流动过程的变化对反应有较大的影响,气泡的出现、聚并、破裂对床层内颗粒的混合和床层浓度、温度的均匀分布有至关重要的作用,因而研究鼓泡流化床内的气泡行为对提高反应器的效率具有十分重要的意义。
二、数据描述流化床中气泡直径与床层高度之间有一定关系,运用这一关系可以根据流化床中床层高度求出气泡直径,下表是实测14对气泡直径与床层高度的数据记录,用一元非线性回归法分析他们之间的关系。
表1 气泡直径u 与床层高度v 的试验数据三、模型建立(1)构建模型由上表中的数据,做出气泡直径u 与相应的床层高度v 数据的散点图,如下图所示.图一 实验数据散点图该图形显示气泡直径u 与相应的床层高度v 之间存在非线性相关关系。
根据图中散点图的特点,选用双曲线1/u=a + b/v作为回归函数来表示气泡直径u 与床层高度v 之间的关系。
y=1/u x=1/v ①则得线性函数 y=a + b*x (2)模型求解由v、u的试验数据去倒数得x, y的数据,见表2。
表2 u, v的试验数据利用上面的数据,按线性回归公式算得x= 0.080311/14=0.005736, y=0.261725/14=0.018695,Lxx=∑xi2-14x2 =0.000106Lyy=∑yi2-14y2 =0.000548Lxy=∑xiyi-14x y=0.00024ß^= Lxy/ Lxx=0.00024/0.000106=2.263298â =y-ß^x =0.018695-2.263298*0.005736=0.005711 得到样本回归直线方程y^=2.263298x+0.005711 ②下图为用excel拟合的直线图图二实验数据拟合图四、检验用相关系数检验法检验上式,对α=0.01,查相关系数临界值,得r0.01 (12) =0.661,由于│r│=│Lxy│/( Lxx Lyy)^1/2 =0.995938>0.661所以线性回归方程②式的作用高度显著。