七年级(上)数学全册期末考前专题复习
- 格式:doc
- 大小:706.66 KB
- 文档页数:19
七年级上册数学全册期末复习资料精典专题一有理数课本-中考-奥数一、单元典型题例1.有理数的分类易错题(1)π不是有理数;(2)0既不是正数,也不是负数;(3)-a是负数吗?2.有理数的大小比较3.利用绝对值的定义求值已知|a|=3,|b|=5,且a<b,求a-b的值4.逆用数学公式、法则若x+y<0,xy<0,x>y,则有()A x>0,y<0,x的绝对值较大;B x>0,y<0,y的绝对值较大;C x<0,y>0,x的绝对值较大;D x<0,y>0,y的绝对值较大.5.利用绝对值的非负性求值若|x-1|+|y+3|=0,求x+y的值6.有理数混合运算计算|-15|+15(-1)2013-52(-0.2)3二. 单元基础检测得分1.(济宁)在数轴上到原点距离等于2的点所表示的数为()A 2B -2C D不能确定2.若|a-2|+(b+3)2=0,则(a+b)2013的值为()A -1B 1CD 520133.下列说法:(1)绝对值等于与它本身的数是正数;(2)近似数2.34万精确到百分位;(3)-a+b与a-b 互为相反数;(4)一个数的倒数等于它的本身,这样的有理数有两个;(5)a2=(-a)2;(6)若|a|>b,则a2>b2,其中正确的个数有()A 2个 B 3个 C 4个 D 5个4.5.(盐城中考)6. 计算 -(-1)+32-21)(⨯+|-2|= 7.(永州)已知0=+bba a ,则ab ab 的值为 。
8. 2(-3)2-4×(-2)+10 9. (-30)×)1036531(--10 ])1(4[41)25.2(134--⨯⨯---11 若ab>0,a+b<0,且|a|=5,|b|=2,,则a 3+b 2的值是多少?12.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)三、有理数的计算提高版例1.求和2012...3211...432113211211++++++++++++++例2.已知a 、b 、c 都不等于0,且||||||||abc abc c c b b a a +++的最大值为m ,最小值为n ,求2012(m+n+1)的值。
七年级上数学期末复习资料学习是把学问、力量、思维(方法)等转化为你的私有产权的重要手段,是“公有转私”的重要途径。
你的一生,无法离开学习,学习是你最忠实的伴侣,它会听你的呼唤,它会关心你走向一个又一个胜利。
多看多学,才会进步。
下面就是我为大家梳理归纳的内容,盼望能够关心到大家。
七班级上数学期末复习资料第三章一次方程与方程组3.1一元一次方程及其解法①方程是含有未知数的等式。
②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
③留意推断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出访方程中等号左右两边相等的未知数的值,这个值就是方程的解。
方程的解代入满意,方程成立。
⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。
a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。
a=b得:a×c=b×c或a÷c=b÷c(c≠0)留意:运用性质时,肯定要留意等号两边都要同时+、-、×、÷;运用性质2时,肯定要留意0这个数。
⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不肯定完全用上,或有些步骤还需要重复使用.因此,解方程时,要依据方程的特点,敏捷选择方法.在解方程时还要留意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;留意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑴去括号:遵从先去小括号,再去中括号,最终去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑴移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑴合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑴系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来) --------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特殊留意关键的字和词的意义,弄清相关数量关系,留意单位统一,留意设未知数;①解:设出未知数(留意单位),②依据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。
第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.如果+20%表示增加20%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%2.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.98mm3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.452.010010001…中,有理数有()4.在-,3.1415,0,-0.333…,-,-,A.2个B.3个C.4个D.5个5.10月7日,铁路局“十一”黄金周运输收官,累计发送旅客640万人,640万用科学计数法表示为()A.6.4×102B.640×104C.6.4×106D.6.4×1056.若向北走27米记为-27米,则向南走34米记为()A.34米B.+7米C.61米D.+34米7.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大是()A.aB.bC.cD.d8.比较,,的大小,结果正确的是()A. B.C. D.9.如果,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<010.已知ab≠0,则+的值不可能的是()A.0B.1C.2D.﹣211.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若+=3,则原点是().A.M或NB.M或RC.N或PD.P或R12.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示-1的点B,则点A所表示的数是()A.-3或5B.-5或3C.-5D.313.已知=3,=4,且x>y,则2x-y的值为()A.+2B.±2C.+10D.-2或+1014.有理数a,b,c在数轴上的位置如图所示,则()A.-2bB.0C.2cD.2c-2b15.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣116.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、9517.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第6个图形中火柴棒根数是()A.60B.61C.62D.6318.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-719.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0B.2C.4D.820.计算(﹣2)2016+(﹣2)2015的结果是()A.﹣1B.﹣22015C.22015D.﹣22016二填空题:21.把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.(1)非负数集合:{,…};(2)负数集合:{,…};(3)正整数集合:{,…};(4)负分数集合:{,…}.22.近似数3.06亿精确到___________位.23.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.24.已知(x﹣2)2+|y+4|=0,则2x+y=_______.25.绝对值不大于5的整数有个.26.小韦与同学一起玩“24点”扑克牌游戏,即从一幅扑克牌(去掉大、小王)中任意抽出4张,根据牌面上的数字进行有理数混合运算(每张牌只能用一次)使运算结果等于24或-24,小韦抽得四张牌如图,“哇!我得到24点了!”他的算法是__27.有理数在数轴上的对应点如图所示,化简:.28.观察下列各题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…根据上面各式的规律,请直接写出1+3+5+7+9+…+99=________.29.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)30.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是三计算题:31.32.33.34.35.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).37.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?38.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=.(2)若|x﹣2|=5,则x=.(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是.39.阅读材料:求1+2+22+23+24+…+2200的值.解:设S=1+2+22+23+24+…+2199+2200,将等式两边同时乘以2得2S=2+22+23+24+25+…+2200+2201,将下式减去上式得2S-S=2201-1,即S=2201-1,即1+2+22+23+24+…+2200=2201-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n.(其中n为正整数)40.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.第一学期七年级数学期末复习专题有理数参考答案1、C2、C3、B4、D5、C6、D7、A8、D9、C10、B11、B12、B13、D14、B15、A16、A17、D18、B19、C20、C21、(1)15,0,0.15,,+20(2)-,-30,-128,-2.6(3)15,+20(4)-,-2.622、百万;23、5524、0.25、1126、23(1+2)__.27、-b+c+a;28、502.29、30、4.31、32、.33、;34、原式=-1×[-32-9+]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36.35、(1)抽取;(2)抽取;(3)抽取;(4)答案不唯一;例如抽取-3,-5,3,4;36、37、(1)4_7__(2)1_2__(3)—92__88__(4)m+n-p_38、【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.39、解:(1)211-1(2)设S=1+3+32+33+34+…+3n ,将等式两边同乘以3得3S=3+32+33+34+35+…+3n+1,所以3S-S=3n+1-1,即2S=3n+1-1,所以S=2131-+n ,即1+3+32+33+34+ (3)=2131-+n 40、【解答】解:(1)∵动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒,∴P 到点A 的距离为:PA=t,P 到点C 的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P 点在Q 点右侧,且Q 点还没有追上P 点时,3t+2=14+t 解得:t=6,∴此时点P 表示的数为﹣4,当P 点在Q 点左侧,且Q 点追上P 点后,相距2个单位,3t﹣2=14+t 解得:t=8,∴此时点P 表示的数为﹣2,当Q 点到达C 点后,当P 点在Q 点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P 表示的数为3,当Q 点到达C 点后,当P 点在Q 点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P 表示的数为4,综上所述:点P 表示的数为﹣4,﹣2,3,4.第一学期七年级数学期末复习专题整式的加减姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法中错误的是()A.-x2y的系数是-B.0是单项式C.xy的次数是1D.-x是一次单项式2.下列说法:①最大的负整数是;②的倒数是;③若互为相反数,则;④=;⑤单项式的系数是-2;⑥多项式是关于x,y的三次多项式。
七年级上册数学期末复习资料七年级上册数学期末复习资料1有理数★有理数的分类1.如果按定义分,有理数可以分为整数(正整数;负整数;0)和分数(正分数,负分数)。
如果按正、负分,有理数可以分为正有理数(正整数;正分数)、0、负有理数(负整数;负分数)。
2.所有的有理数都可以用分数表示,π不是有理数。
数轴★1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。
相反数1.只有符号不同的两个数叫做互为相反数。
(0的相反数是0)绝对值1.数轴上一点a到原点的距离表示a的绝对值。
★2.绝对值的性质:非负性。
3.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
有理数的大小1.正数大于0,负数小于0,正数大于负数。
2.两个负数,绝对值大的反而小。
有理数的加法1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。
一个数同0相加,仍得这个数。
3.在有理数的加法中,加法交换率:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
有理数的减法减去一个数,等于加这个数的相反数。
★有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘后得0。
倒数:乘积是1的两个数互为倒数。
乘法交换律:乘法交换律两个数相乘,交换因数的位置,积不变。
乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
★有理数的除法除以某个不为0数等于乘与这个数的倒数两数相除同号为正,异号为负,并把绝对值相除0除以任何一个不等于0的数,都等于0。
有理数的混合运算1.运算顺序:先算乘方,再算乘除,最后算加减。
如果是同级运算,则按从左到右的运算顺序计算。
如果有括号,先算小括号,再算中括号,最后算大括号。
七年级数学上册期末复习要点第一章有理数一、正数和负数1、大于0的数叫做正数,在正数前面加一个“—”的数叫做负数,0既不是正数,也不是负数;2、表示相反意义的量:盈利与亏损,存入与支出,增加与削减,运进与运出,上升与下降等3、正、负数所表示的实际意义:例题:北京冬季里某天的温度为—3°c~3°c,它确实切含义是什么?这一天北京的温差是多少?吐鲁番盆海拔—155米,世界最顶峰珠穆朗玛海拔8848.13米二、有理数2.1有理数的分类2.2 数轴1、定义:用一条直线上的点表示数,这条直线就叫做数轴。
2、满意的条件:〔1〕在直线上取一个点表示数0,这个点叫做原点;〔2〕通常规定直线从原点向右〔或上〕为正方向,从原点向左〔或下〕为负方向;〔3〕选取适当的长度为单位长度。
2.3相反数定义:只有符号不一样的两个数叫做相反数一般地:a和互为相反数,0的相反数仍旧是0。
在正数的前面添加负号,就得到这个正数的相反数;在分数的前面添加负号,就得到这个数的相反数。
2.4肯定值1、定义:数轴上表示数a的点与原点的距离叫做数a 的肯定值,记作∣a∣由定义可知:一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0。
〔1〕当a是正数时,∣a∣= ;〔2〕当a是负数时,∣a∣= ;〔3〕当a=0时,∣a∣= 。
2.5比拟两个数的大小〔1〕正数大于0,0大于负数,正数大于负数;〔2〕两个负数,肯定值大的反而小。
三、有理数的加减法1、加法法那么:〔1〕同号两数相加:取一样的符号,并把肯定值相加;〔2〕异号两数相加:肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值,互为相反数的两个数相加得0;〔3〕一个数和零相加:任何数和零相加都等于它本身。
2、加法交换律、结合律〔1〕有理数的加法交换律:两个数相加,交换加数的位置,和不变a+b=b+a〔2〕有理数的加法结合律:三个数相加,先把前面两个数相加,或先把后两个数相加,和不变(a+b)+c=a+(b+c)3、有理数的减法法那么:减去一个数,等于加上这个数的相反数:a-b=a+(-b)四、有理数的乘除法有理数的乘法法那么:1. 两数相乘,同号得正,异号得负,并把它们的肯定值相乘。
新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。
B。
-1 C。
2016 D。
-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。
第一章 有理数第一课 有理数 数轴 相反数 绝对值 倒数知识构造图⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫数轴倒数绝对值大小比较相反数有理数的分类热身练习:1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,那么“〞内应填的实数是〔 〕 A .32B .23C .23-D .32-3.-213的相反数是___ ____,—2的倒数是,|—311|=。
4.假设||2,3,x y x y ==+=则。
典例分析:1.把以下各数填入表示它所在的数集中:16,0.618, 3.14,260,2008,,0.21,5%37-----。
整数有 分数有 负数有 有理数有2.如果a ,b 是互为相反数,c ,d 是互为倒数,x 的绝对值等于2,那么b a cdx x 24--+ 的值是;3.假设23(2)0m n -++=,那么2m n +的值为〔 〕 A .4- B .1-C .0D .4点评:一个数的绝对值是指数轴上表示这个数的点到的距离,所以某数的绝对值是非负数。
几个非负数的和等于零,那么这几个非负数同时为零。
4.实数a 、b 在数轴上的位置如图1所示,那么a 与b 的大小关系是〔 〕A .a > bB . a = bC . a <b D . 不能判断 点评:有理数大小比拟:正数零负数,两个负数,大的反而小;数轴上表示的两个数边的数总比边的数大。
图1ba5.某工厂在上一星期的星期日生产了100台彩电,下表是本星期的生产情况:比前一天的产量多的记为正数,比前一天产量少的记为负数。
请算出本星期最后一天星期日的产量是台,本星期的总产量是台,星期的产量最多,星期的产量最少。
反应练习:1.如果水位升高3m 时水位变化记作+3m ,那么水位下降5米时水位变化记作:2.大于–3且不大于2的所有整数写出来是3.将有理数0,722-,2.7,-4,0.14按从小到大的顺序排列,用“<〞号连接起来应为_____________ ______.4.有理数a 、b 在数轴上的位置如下图,以下结论正确的选项是〔〕 A 、b <a B 、ab <0 C 、b —a >0 D 、a +b >0 5.与a-b 互为相反数的是( )A .a+bB .a-bC .-a-bD .b-a6.假设0>a ,0<b ,且b a <,试用“<〞号连接a ,b ,-a ,-b 。
-第一学期七年级数学全册期末考前专题复习一、选择题1. 的倒数是( ) A 、12011 B 、2011 C 、﹣2011 D 、﹣120112. 2011的相反数是( ) A.-2011 B.2011 C. 12011D. ±2011 3 .下列所给的数中,是2的相反数的是( )A .-2 B . 1 2 C .2 D .- 1 24. -7的绝对值是( ) A .7 B .-7 C . 1 7 D .- 1 75. 在实数2、0、-1、-2中,最小的实数是( ) A 、2 B 、0C 、-1D 、-2 6. 下列各组运算中,其值最小的是( ).A. 2(32)---B. (3)(2)-⨯-C. 22(3)(2)-÷-D. 2(3)(2)-÷-7.若0a b +>,0ab <,a b >,则下列各式正确的是( )A .b a a b <-<<-B .a b b a -<<-<C .a b b a <-<<-D .b a a b -<<-<8. 若a <0,b >0,则b 、b+a 、b -a 中最大的一个数是 ( )A 、aB 、b+aC 、b -aD 、不能确定9.若,则,,从小到大排列正确的是 ( ) A B C D 10. 下列各对数中,互为相等的一对数是 ( )A 2332--与B .()3322--与C .()2233--与D .()222323⨯-⨯-与 11. 在1()2-- ,1-,0,22-,4(3)-,2--,328-,2(2)--中,是正有理数的有( )A. 1个B. 2个C. 3个D. 4个 12. 有理数2-- ,1002- ,(1)-- ,0, -2(2)-中负数的个数有( )A 、2B 、3C 、4D 、513. 下列说法正确的是( )A.-a 一定是负数 B .|a|一定是正数 c.-|a|一定是负数 D .|a|一定不是负数 14. 下列说法中正确的是( )10<<a a a12a a a a 12<<21a a a <<21a a a <<aa a 12<<A .平方是它本身的数是正数。
B .绝对值是它本身的数是零。
C .立方是它本身的数是±1。
D .倒数是它本身的数是±1。
15. 无论x 取什么值,下列代数式中,值一定是正数的是( )A 、122-xB 、()212+x C 、∣2x +1∣ D 、122+x 16. 涠洲岛是全国假日旅游新热点,上岛休闲度假,体验海岛风情,感受火山文化已成为众多游客的首选,据统计该景区去年实现门票收入约598000元.用科学记数法表示598000 是( )A .0.598×106 B .59.8×104 C .5.98×104 D .5.98×10517. 据国家统计局2011年4月28日发布的《2011年第六次全国人口普查主要数据公报(第一号)》,总人口为1370536875人,这一数字用科学记数法(保留四个有效数字)表示为( )A 、1.37×109B 、1.37×109C 、1.371×109D 、1.371×10818.1.614×104的精确度和有效数字的个数分别为( )A .精确到千分位,有四个有效数字B .精确到十位,有四个有效数字C .精确到千分位,有五个有效数字D .精确到十位,有五个有效数字 19.下列说法正确的是( )A 0.720有两个有效数字B 3.6万精确到个位C 5.078精确到千分位D 3000有一个有效数字20.下列说法正确的是( )A .0.720有两个有效数字 B. 3.6万精确到个位C .5.078×104精确到千分位 D.2.90×105精确到千位,有3个有效数字 21.巴黎与北京的时间差为-8时(正数表示同一时刻比北京时间早的时数),如果北京时间是1月2日14:00,那么巴黎时间是( )A .1月1日8时B .1月2日6时C .1月2日8时D .1月2日22时 22. 若︱x -1︱= 3,则x=( )A.4B.-2C.±4D. 4或-223 .如果)0(1≠-=b ba ,那么,两个实数一定是( ) A. 一正一负 B. 相等的数 C.互为相反数 D.互为倒数24.已知实数a 、b 在数轴上的位置如图所示,则下列等式成立的是 ( )a b(A)a b a b +=+; (B)a b a b +=-;(C)11b b +=+; (D)11a a +=+.25. 如右上图,a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( ). A . 0<+b a B . 0<ab C . 0<-a b D . 0>ba 26.现规定一种运算:ab ab a b *=+-,其中a ,b 为有理数,则35*的值为( ).A .11B .12C .13D .1427.按下列所示的程序计算,若开始输入x=1,则最后输出的结果是( )A.15B. 25 C .235 D .25528.如果一个两位数,十位上数字是a,个位上数字是b ,那么这个两位数( )A.abB.a+bC. 10a+bD.10b+a29.式子-2-(-1)+3-(+2)省略括号后的形式是( )A.2+1-3+2B.-2+1+3-2C.2-1+3-2 D .2-1-3-230.若3-=b a ,则a b -=( ). A .3 B .3- C .0 D .631.若单项式223x y -的系数是m ,次数是n ,则mn 的值为 ( ) A .2- B .6- C .4- D .43- 32. 下列说:①x 的系数是1,次数是1;②24与43是同类项;③23xy 2-5x 2y +1是6次三项式;④-axy 2对字母x 的次数是1,系数是-ay 2,其中正确的是( ).A .①②④B .①②③C .②③④D .①③④33.下列各组代数式中,是同类项的是( )A .23p -与32pB .2xy 与2abC .23b a 与32b aD .mn 5-与mn 1034.下列各式中去括号正确的是( ).A .2222(2)2a a b b a a b b --+=--+B .2223(5)235x x x x --=-+C .2222(2)()2x y x y x y x y -+--+=-++-D .3232[4(13)]413a a a a a a ---+-=-+-+35. 下列整式加减运算结果正确的是( ). O a 1A .7a – 8b = -1B .—3a +8a =11aC .-6ab – (-7ab ) = abD .3a 2b - (- 8ab 2)=11a 2b36.下列计算正确的是( ).A .235x x xB . 2242x x xC .xy y x 32=+D . 2222y y y37.下列运算正确的是( ).A .3-(x -1)=2-xB .3-(x -1)=2+xC .3-(x -1)=4-xD .3-(x -1)=4+x38.已知多项式3x 2-4x +6的值为9,则多项式x x 342-+6的值为( ) A .7 B .9 C .12D .18 39. 已知整式x x 22-的值为3,则6422+-x x 的值为( )A .18B .12C .9D .740.已知代数式x +2y 的值是3,则代数式2x +4y +1的值是( )A. 1B. 4C. 7D. 不能确定41. 已知-2m+3n 2=-7,则代数式,则9n 2-6m+4的值等于( )A. 17B. 21C. -17D. 2542.下列运用等式性质进行的变形,不一定正确.....的是( ) A. 如果a =b ,那么a -c =b -c B. 如果a =b ,那么a +c =b +cC. 如果a =b ,那么c a =cb D. 如果a =b ,那么ac =bc 43.下列运用等式的性质进行的变形中,正确的是 ( )A.若a=b,则a+c=b-cB.若c b c a =,则a=bC.若a=b 则cb c a = D.若a 2=3a 则a=3 44. 已知x =2是关于x 的方程31-x +k =k (x +2)的解,则k 的值应为 ( ) A .91 B .9 C .31 D .145. 若2=x 是关于x 的方程0132=-+m x 的解,则m 的值为( )A -1B 0C 1D 3146.关于x 的方程3x + 2m + 1 = x -3m -2的解为x = 0,则m 的值为( )A .35-B .15-C .15D .2547. 若方程3(2x -1)=2-3x 的解与关于的方程的解相同,则的值为( )A .B .C .D . 48. 若k 是方程2x+l=3的解,则6k+3的值是( )A .9 B .-9 C . 15 D .-349.已知:2|m 2|(n 1)0+一一=,则方程2m+x=n 的解为( )A.x=-4B.x=-3C.x=-2D.x=-150. 关于x 的整式方程12mx x -=的解为正数,则m 的取值范围是( )A .m >2B .m <2C .m >2且m ≠0D .m <2且m ≠051. 一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( )A. 甲或乙或丙B. 乙C. 丙D. 乙或丙52. 某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .不赔不赚B .赚了10元C .赔了10元D .赚了50元53.某校把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获得一等奖的学生人数为x 人,其中列方程不正确的是( )A .200x +50(22-x )=1400B .1400-200x =50(22-x )C .x x -=-22502001400D .50x +200(22-x )=1400 53. 中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”。
若设甲有x 只羊,则下列方程正确的是( )A.12(2)x x +=-B.32(1)x x +=-C.1112x x +-=+D.12(3)x x +=-54.足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分。