2013年中考数学冲刺押题训练第五章 四边形
- 格式:doc
- 大小:156.50 KB
- 文档页数:4
2013中考数学压轴题函数平行四边形问题精选解析(三)例 5如图1,等边△ABC 的边长为4,E 是边BC 上的动点,EH ⊥AC 于H ,过E 作EF ∥AC ,交线段AB 于点F ,在线段AC 上取点P ,使PE =EB .设EC =x (0<x ≤2).(1)请直接写出图中与线段EF 相等的两条线段(不再另外添加辅助线);(2)Q 是线段AC 上的动点,当四边形EFPQ 是平行四边形时,求平行四边形EFPQ 的面积(用含x 的代数式表示);(3)当(2)中 的平行四边形EFPQ 面积最大值时,以E 为圆心,r 为半径作圆,根据⊙E 与此时平行四边形EFPQ 四条边交点的总个数,求相应的r 的取值范围.图1解析(1)BE 、PE 、BF 三条线段中任选两条.(2)如图2,在Rt △CEH 中,∠C =60°,EC =x ,所以x EH 23=.因为PQ =FE =BE =4-x ,所以x x x x EH PQ S EFPQ 3223)4(232+-=-=⋅=平行四边形. (3)因为x x S EFPQ 32232+-=平行四边形322232+--=)(x ,所以当x =2时,平行四边形EFPQ 的面积最大.此时E 、F 、P 分别为△ABC 的三边BC 、AB 、AC 的中点,且C 、Q 重合,四边形EFPQ 是边长为2的菱形(如图3).图2 图3过点E 点作ED ⊥FP 于D ,则ED =EH =3. 如图4,当⊙E 与平行四边形EFPQ 的四条边交点的总个数是2个时,0<r <3;如图5,当⊙E 与平行四边形EFPQ 的四条边交点的总个数是4个时,r =3; 如图6,当⊙E 与平行四边形EFPQ 的四条边交点的总个数是6个时,3<r <2; 如图7,当⊙E 与平行四边形EFPQ 的四条边交点的总个数是3个时,r =2时;如图8,当⊙E 与平行四边形EFPQ 的四条边交点的总个数是0个时,r >2时.图4 图5 图6图7 图8 考点伸展本题中E 是边BC 上的动点,设EC =x ,如果没有限定0<x ≤2,那么平行四边形EFPQ 的面积是如何随x 的变化而变化的?事实上,当x >2时,点P 就不存在了,平行四边形EFPQ 也就不存在了.因此平行四边形EFPQ 的面积随x 的增大而增大.例6如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.图1解析(1)A (-1,0),B (3,0),C (0,3).抛物线的对称轴是x =1.(2)①直线BC 的解析式为y =-x +3.把x =1代入y =-x +3,得y =2.所以点E 的坐标为(1,2).把x =1代入322++-=x x y ,得y =4.所以点D 的坐标为(1,4).因此DE =2.因为PF //DE ,点P 的横坐标为m ,设点P 的坐标为)3,(+-m m ,点F 的坐标为)32,0(2++-m m ,因此m m m m m FP 3)3()32(22+-=+--++-=.当四边形PEDF 是平行四边形时,DE =FP .于是得到232=+-m m .解得21=m ,12=m (与点E 重合,舍去).因此,当m =2时,四边形PEDF 是平行四边形时.②设直线PF 与x 轴交于点M ,那么OM +BM =OB =3.因此 BM FP OM FP S S S S CPF BPF BCF ⋅+⋅=+==∆∆∆2121 m m m m 29233)3(2122+-=⨯+-=. m 的变化范围是0≤m ≤3.图2 图3考点伸展在本题条件下,四边形PEDF 可能是等腰梯形吗?如果可能,求m 的值;如果不可能,请说明理由.如图4,如果四边形PEDF 是等腰梯形,那么DG =EH ,因此E P F D y y y y -=-. 于是2)3()32(42-+-=++--m m m .解得01=m (与点CE 重合,舍去),12=m (与点E 重合,舍去).因此四边形PEDF 不可能成为等腰梯形.图4例 7如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A 、B 、C 的坐标.(2)当△CBD 为等腰三角形时,求点D 的坐标.(3)在直线AB 上是否存在点E ,使得以点E 、D 、O 、A 为顶点的四边形是平行四边形?如果存在,直接写出BE CD的值;如果不存在,请说明理由.图1解析(1)在1y x =+中,当0y =时,1x =-,所以点B 的坐标为(1,0)-.在334y x =-+中,当0y =时,4x =,所以点C 的坐标为(4,0).解方程组1,33,4y x y x =+⎧⎪⎨=-+⎪⎩ 得87x =,157y =.所以点A 的坐标为815,77⎛⎫ ⎪⎝⎭. (2)因为点D 在直线334y x =-+上,设点D 的坐标为3(,3)4x x +.当△CBD 为等腰三角形时,有以下三种情况: ①如图2,当DB =DC 时,设底边BC 上的高为DM .在Rt △CDM 中,1522CM BC ==,所以31548DM CM ==.这时点D 的坐标为315,28⎛⎫ ⎪⎝⎭. ②如图3,当CD =CB =5时,点D 恰好落在y 轴上,此时点D 的坐标为(0,3).根据对称性,点D 关于点C 对称的点D ′的坐标为(8,-3).③如图4,当BC =BD 时,设BC 、DC 边上的高分别为DM 、BN .在Rt △BCN 中,BC =5,所以CN =4,因此DC =8.在Rt △DCM 中,DC =8,所以32455DM DC ==,43255DM DC ==.这时点D 的坐标为1224,55⎛⎫- ⎪⎝⎭. 综上所述,当△CBD 为等腰三角形时,点D 的坐标为315,28⎛⎫ ⎪⎝⎭、(0,3)、(8,-3)或1224,55⎛⎫- ⎪⎝⎭.图2 图3 图4(3)如图5,以点E 、D 、O 、A 为顶点的四边形是平行四边形有以下三种情形:①当四边形AEOD 为平行四边形时,3220BE CD =. ②当四边形ADEO 为平行四边形时,210BE CD =. ③当四边形AODE 为平行四边形时,27220BE CD =. 考点伸展如图5,第(3)题这样解:图5在△ABC中,已知BC=5,BC边上的高为157,解得AB=1527,AC=257.由'15BE BOBA BC==,得3'27BE=,所以2727BE=.由45CD COCA CB==,得207CD=,所以30'7CD=.结合图5,可以计算出3220BECD=,210或27220.。
【预测题】1、已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.(1)求直线AC的解析式;(2)试求出当t为何值时,△OAC与△PAQ相似;(3)若⊙P的半径为58,⊙Q的半径为23;当⊙P与对角线AC相切时,判断⊙Q与直线AC、BC的位置关系,并求出Q点坐标。
解:(1)42033 y x=-+(2)①当0≤t≤2.5时,P在OA上,若∠OAQ=90°时,故此时△OAC与△PAQ不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ∽△OCA,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ∽△∠OAC,∵t>2.5,∴符合条件.综上可知,当时,△OAC与△APQ相似.(3)⊙Q与直线AC、BC均相切,Q点坐标为(109,531)。
【预测题】2、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y 轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA 沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解(1)(31)E,;(12)F,.(2)在Rt EBF△中,90B∠= ,EF∴==设点P的坐标为(0)n,,其中n>, 顶点(12)F,,∴设抛物线解析式为2(1)2(0)y a x a=-+≠.①如图①,当EF PF=时,22EF PF=,221(2)5n∴+-=.解得1n=(舍去);24n=.(04)P∴,.24(01)2a∴=-+.解得2a=.∴抛物线的解析式为22(1)2y x=-+②如图②,当EP FP=时,22EP FP=,22(2)1(1)9n n∴-+=-+.解得52n=-(舍去).(第2题)③当EFEP =时,3EP =<,这种情况不存在.综上所述,符合条件的抛物线解析式是22(1)2y x =-+.(3)存在点M N ,,使得四边形MNFE 的周长最小.如图③,作点E关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=5==.又EF = ,∴5FN NM ME EF +++=,此时四边形MNFE的周长最小值是5【预测题】3、如图,在边长为2的等边△ABC 中,AD ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G ,设BP=x. (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。
中考考点总动员之三轮冲刺聚焦考点+名师点睛+能力提升专题05 四边形讲练测模块一:平行四边形【例1】如果一个四边形的两条对角线相等,那么称这个四边形为“等对角线四边形”.写出一个你所学过的特殊的等对角线四边形的名称____________.【难度】★【答案】答案不唯一,例:矩形,正方形,等腰梯形.【解析】考查常见的四边形的性质.【例2】下列判断错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是平行四边形【难度】★【答案】C【解析】对平行四边形,矩形,正方形,菱形的性质的考查.【例3】下列命题中,真命题是( )A.菱形的对角线互相平分且相等B.矩形的对角线互相垂直平分C.对角线相等且垂直的四边形是正方形D.对角线互相平分的四边形是平行四边形【难度】★【答案】D【解析】考查菱形,矩形,正方形,平行四边形的性质.【例4】 如图,在ABCD 中,AC 、BD 相交于点O ,请添加一个条件________________,可得ABCD 是矩形.【难度】★【答案】BD AC =或90DAB ∠=︒.【解析】矩形是有一个角为直角的平行四边形,或者矩形是对角线平分且相等的四边形. 【总结】考查矩形的判定.【例5】 已知四边形ABCD 是平行四边形,对角线AC 与BD 相交于点O ,那么下列结论中正确的是( )A .当AB = BC 时,四边形ABCD 是矩形 B .当AC ⊥BD 时,四边形ABCD 是矩形 C .当OA = OB 时,四边形ABCD 是矩形 D .当ABD CBD ∠=∠时,四边形ABCD 是矩形 【难度】★★ 【答案】C【解析】矩形是对角线平分且相等的四边形.【例6】 已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是( )A .AC = BD ,AB // CD ,AB = CD B .AD // BC ,A C ∠=∠ C .AO = BO = CO = DO ,AC BD ⊥D .AO = CO ,BO = DO ,AB = BC【难度】★★ 【答案】C【解析】正方形是对角线互相垂直平分且相等的四边形.【例7】 如果点K 、L 、M 、N 分别是四边形ABCD 的四条边AB 、BC 、CD 、DA 的中点,且四边形KLMN 是菱形,那么下列选项正确的是( )A .AB BC ⊥ B .AC BD ⊥C .AB BC =D .AC BD =【难度】★★ 【答案】D【解析】连接AC 、BD ,点K 、L 、M 、N 分别是四边形ABCD 的四条边AB 、BC 、CD 、DA 的中点,所以得四边形KLMN 为平行四边形,又它为菱形则相邻两边相等,而邻边正 好是四边形ABCD 的对角线的中位线,所以AC=BD .ABC DO【总结】考查三角形中位线定理的运用.【例8】 从①AB // CD ,②AD // B C ,③AB = CD ,④AD = BC 四个关系中,任选两个作为条件,那么选到能够判定四边形ABCD 是平行四边形的概率是______.【难度】★★ 【答案】23. 【解析】四种选2中共有6种情况,两组对边平行的四边形、两组对边相等的四边形、一组对边平行且相等的四边形均是平行四边形,共有4种情况,所以概率是42=63.【总结】考查平行四边形的判定及概率的综合运用.【例9】 在平行四边形ABCD 中,BC = 24,AB = 18,ABC ∠和BCD ∠的平分线交AD 于点E 、F ,则EF =______.【难度】★★ 【答案】12.【解析】由平行线和角平分线可知△ABE 和△CDF 都是等腰三角形, 所以18AE AB ==,18DF DC ==, 所以18182412EF AE DF AD =+-=+-=.【总结】本题主要考查“平行线+角平分线推出等腰三角形”的基本模型的运用.【例10】 如图,在四边形ABCD 中,90ABC ∠=︒,对角线AC 、BD 交于点O ,AO = CO ,AOD ADO ∠=∠,E是DC 边的中点.下列结论中,错误的是( ) A .12OE AD = B .12OE OB =C .12OE OC =D .12OE BC =【难度】★★ 【答案】DF EDCBAAB C D EO【解析】由AOD ADO ∠=∠得到AO OD =,又AO = CO ,得AO =AD =OC , 因为O 、E 都是中点,所以OE 是中位线,即12OE AD =, 又90ABC ∠=︒且O 为中点,则AO =OC =OB ,所以A 、B 、C 正确,D 错误. 【总结】本题主要考查直角三角形的性质与三角形中位线的综合运用.【例11】 设边长为3的正方形的对角线长为a .下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③34a <<;④a 是18的一个平方根.其中,所有正确说法的序号是( )A .①④B .②③C .①②④D .①③④【难度】★★ 【答案】C【解析】勾股定理可得:a = 一对应,所以②是对的,故选C .【总结】本题主要考查勾股定理及对实数的认识.【例12】 如图,在ABC ∆中,点D 、E 分别在AB 、AC 上,ADE C ∠=∠,如果AE = 2,ADE ∆的面积是4,四边形BCDE 的面积是5,那么AB 的长是______.【难度】★★ 【答案】3.【解析】因为ADE C A A ∠=∠=∠,,所以ADEACB ∆∆.因为4ADE S ∆=,459ABC S ∆=+=,根据相似三角形面积比等于相似比的平方,得:249ADE ABC S DE AB S ∆∆⎛⎫== ⎪⎝⎭,得:23DE AB =,因为AE = 2,所以AB=3. 【总结】本题主要考查相似三角形的性质的运用.【例13】 已知:如图,在四边形ABCD 中,AB // CD ,点E 是对角线AC 上一点,DEC ABC ∠=∠,且2CD CE CA =.(1)求证:四边形ABCD 是平行四边形;(2)分别过点E 、B 作AB 和AC 的平行线交于点F ,联结CF ,若FCE DCE ∠=∠, 求证:四边形EFCD 是菱形.【难度】★★ 【答案】略.【解析】证明:(1)∵AB // CD ,∴BAC ECD ∠=∠, ∵DEC ABC ∠=∠,∴CDE ACB ∆~∆,∴CD CEAC AB=. ∴CD AB CE CA ⋅=⋅,又∵2CD CE CA =,∴AB =CD , 又因为AB // CD ,所以四边形ABCD 为平行四边形;(2)∵//AE BF ,//AB EF ,∴四边形ABFE 是平行四边形,∴//AB EF 且AB EF =,又∵ABCD 为平行四边形,∴//AB CD 且AB CD = ∴//EF CD 且EF CD =,∴四边形EFCD 为平行四边形,∵//EF CD ,∴FEC ECD ∠=∠,∵FCE DCE ∠=∠,∴FEC FCE ∠=∠, ∴EF =CF ,∴四边形EFCD 为菱形.【总结】本题主要考查相似三角形与菱形性质的综合运用.【例14】 如图,在ABC ∆中,AB = AC ,点D 在边AC 上,AD = BD =DE ,联结BE ,72ABC DBE ∠=∠=︒.(1)联结CE ,求证:CE = BE ;(2)分别延长CE 、AB 交于点F ,求证:四边形DBFE 是菱形.【难度】★★ 【答案】见解析.A B C DEO A BCD EF【解析】证明:(1)设DE 与BC 的交点为O , ∵72ABC DBE ∠=∠=︒,AB = AC ,AD = BD =DE ,∴36ABD DBA DBC ∠=∠=∠=,72ABC ACB BDC DBE DEB ∠=∠=∠=∠=∠=, ∴BCD DBE ∆≅∆,∴DE =BC ,CD =DO =BO ,∴OC =OE , ∴36CEO OCE CBE ∠=∠=∠=︒,∴BE =CE .(2)∵36BDE CED ∠=∠=︒,∴//BD CF ,∵36ABD EDB ∠=∠=︒,∴//DE AB , ∴四边形DBFE 为平行四边形,又∵BD =DE ,∴四边形DBFE 为菱形. 【总结】本题主要考查等腰三角形的性质与菱形判定的综合运用.【例15】 已知:如图,在Rt ABC ∆中,90ACB ∠=︒,AC = BC ,点E 在边AC 上,延长BC 至D 点,使CE = CD ,延长BE 交AD 于F ,过点C 作CG // BF ,交AD 于点G ,在BE 上取一点H ,使HCE DCG ∠=∠. (1)求证:BCE ∆≌ACD ∆; (2)求证:四边形FHCG 是正方形.【难度】★★ 【答案】略.【解析】证明:(1)∵90ACB ACD ∠=∠=︒,CE =CD ,AC =BC , ∴BCE ∆≌ACD ∆;(2)∵BCE ∆≌ACD ∆,∴CEB CDA ∠=∠,又∵HCE DCG ∠=∠,CE =CD ,∴CEH CDG ∆≅∆,∴CH =CG , ∵HCE DCG ∠=∠且90ACB ∠=︒,∴90HCG CHF CGF ∠=︒=∠=∠,∴四边形FHCG 为矩形,又∵CH =CG ,∴四边形FHCG 为正方形. 【总结】本题主要考查矩形和正方形性质的综合运用.【例16】 如图,在四边形ABCD 中,AB // DC ,E 、F 为对角线BD 上两点,且BE = DF ,AF // EC .(1)求证:四边形ABCD 是平行四边形;(2)延长AF ,交边DC 于点G ,交边BC 的延长线于点H ,求证:AD DC BH DG =.【难度】★★★ 【答案】略.【解析】证明:(1)∵BE =DF ,∴BF =DF , ∵//AB DC ,∴ABF EDC ∠=∠,BAF AGD ∠=∠,∵AF // EC ,∴AGD ECD BAF ∠=∠=∠,∴AFB CED ∆≅∆, ∴AB =CD ,且AB // DC ,∴四边形ABCD 为平行四边形; (2)∵四边形ABCD 为平行四边形,∴HAB AGD ∆∆,∴AD DGBH AB=, 又∵CD =AB ,∴AD DC BH DG =.【总结】本题主要考查平行四边形的性质及相似的性质的综合运用.【例17】 如图,已知在矩形ABCD 中,过对角线AC 的中点O 作AC 的垂线,分别交射线AD 和CB 于点E 、F ,交边DC 于点G ,交边AB 于点H .联结AF 、CE . (1)求证:四边形AFCE 是菱形;(2)如果OF = 2GO ,求证:2GO DG GC =.A BCDEF H【难度】★★★ 【答案】略.【解析】(1)∵四边形ABCD 为矩形,∴AO =OC ,//AE DF , ∴EOA FOC ∆≅∆,∴OE =OF ,又∵EF AC ⊥,且AO =OC ,∴四边形AFCE 为菱形;(2)∵四边形AFCE 为菱形,∴90EOC EDC ∠=∠=︒, ∵EGD CGO ∠=∠,∴EGDCGO ∆∆,∴DG GOEG CG=, ∵OF = 2GO =OE ,∴OG =EG ,∴2GO DG GC =. 【总结】本题主要考查矩形及菱形性质的综合运用.【例18】 已知:如图,Rt ABC ∆和Rt CDE ∆中,90ABC CDE ∠=∠=︒,且BC 与CD 共线,联结AE ,点M为AE 中点,联结BM ,交AC 于点G ,联结MD ,交CE 于点H . (1)求证:MB = MD ;(2)当AB = BC ,DC = DE 时,求证:四边形MGCH 为矩形.【难度】★★★ 【答案】略.【解析】(1)过点M 作MN BD ⊥于N ,∵90ABC CDE ∠=∠=︒,且BC 与CD 共线,∴////AB MN DE ,又∵M 为AE 中点,∴N 也为BD 中点, ∴BM D ∆为等腰三角形,∴BM =MD ; (2)延长BM 交DE 延长线于点P ,∵//AB PE ,M 为AE 中点,∴AB =PE ,∵AB =BC ,DC =DE ,∴Rt ABC ∆和Rt CDE ∆都是等腰直角三角形,∴45CED ACB ∠=∠=︒, ∴CED P ∠=∠,ACB BDM ∠=∠,∴//CE BP ,//AC DM ,A BCDE M HN P∴四边形MGCH 为平行四边形,又∵90GMH ∠=︒,∴四边形MGCH 为矩形.【总结】本题主要考查等腰直角三角形性质和矩形判定的综合运用.【例19】 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,联结BE 、DF ,DF 交对角线AC于点G ,且DE = DG . (1)求证:AE = CG ; (2)求证:BE // DF .【难度】★★★ 【答案】略.【解析】(1)取AC 中点O ,连接DO∵AD =CD ,∴DO AC ⊥.又∵DE =DG ,∴EO =OG ,∴AE =CG ;(2)∵正方形ABCD ,∴45BAC ACD ∠=∠=︒,∵AE =CG ,AB =CD ,∴EAB CGD ∆≅∆,∴ABE GDC ∠=∠,又∵90DFC FDC EBC ABE ∠+∠=∠+∠=︒,∴DFC EBF ∠=∠,∴BE // DF . 【总结】本题主要考查正方形性质的运用.【例20】 已知:如图1,在平行四边形ABCD 中,点E 、F 分别在BC 、CD 上,且AE = AF ,AEC AFC ∠=∠.(1)求证:四边形ABCD 是菱形;(2)如图2,若AD = AF ,延长AE 、DC 交于点G ,求证:2AF AG DF =.(3)在第(2)小题的条件下,连接BD ,交AG 于点H ,若HE = 4,EG = 12,求AH 的长.A BCD E FOA BCD EF【难度】★★★ 【答案】略【解析】(1)∵AEC AFC ∠=∠, ∴AEB AFD ∠=∠,又∵四边形ABCD 为平行四边形,∴B D ∠=∠,又∵AE = AF ,∴ABE ADF ∆≅∆,∴AB =AD ,∴四边形ABCD 为菱形; (2)∵四边形ABCD 为菱形,∴BAG AGD FAD ∠=∠=∠,又∵D D ∠=∠, ∴AFDGDA ∆∆,∴AD FDGA AD=,又∵AD =AF ,∴2AF AG DF =; (3)∵//AB DC ,//AD BC ,∴AH BH HG HD =,BH EH HD AH =,∴AH EHHG AH=, 又∵HE =4,EG =12,∴416AH AH=,∴AH =8. 【总结】本题主要考查菱形的性质及相似性质的综合运用.【巩固1】(2019春•浦东新区校级月考)已知四边形ABCD ,在①//AB CD ;②AD BC =;③AB CD =;④A C ∠=∠四个条件中,不能推出四边形ABCD 是平行四边形的条件是( ) A .①②B .①③C .①④D .②③【分析】根据平行四边形的判定定理:有一组对边平行且相等的四边形是平行四边形;有两组对边相互平行的四边形是平行四边形;即可得出结论.【解答】解:根据“有一组对边平行且相等的四边形是平行四边形”可以选①③和①④; 根据两组对边分别相等的四边形是平行四边形,选②③; 所以不能推出四边形ABCD 为平行四边形的是①②; 故选:A .【巩固2】(2019春•浦东新区校级月考)在平行四边形ABCD 中,对角线AC ,BD 交于点O ,若10BD =,14AC =,那么BC 的取值范围为 .【分析】根据平行四边形的性质可得BO 、CO 的长,然后再根据三角形的三边关系可得BC 的取值范围. 【解答】解:如图:四边形ABCD 是平行四边形,12BO BD ∴=,12CO AC =,10BD =,14AC =, 5BO ∴=,7CO =, 212BC ∴<<,故答案为:212BC <<.【巩固3】(2018春•浦东新区期中)如图,以BC 为底边的等腰ABC ∆,点D ,E ,G 分别在BC ,AB ,AC 上,且//EG BC ,//DE AC ,延长GE 至点F ,使得BE BF =. (1)求证:四边形BDEF 为平行四边形;(2)当45C ∠=︒,4BD =时,联结DF ,求线段DF 的长.【分析】(1)由等腰三角形的性质得出ABC C ∠=∠,证出AEG ABC C ∠=∠=∠,四边形CDEG 是平行四边形,得出DEG C ∠=∠,证出F DEG ∠=∠,得出//BF DE ,即可得出结论;(2)证出BDE ∆、BEF ∆是等腰直角三角形,由勾股定理得出BF BE ===作FM BD ⊥于M ,连接DF ,则BFM ∆是等腰直角三角形,由勾股定理得出2FM BM ===,得出6DM =,在Rt DFM ∆中,由勾股定理求出DF 即可.【解答】(1)证明:ABC ∆是等腰三角形, ABC C ∴∠=∠,//EG BC ,//DE AC ,AEG ABC C ∴∠=∠=∠,四边形CDEG 是平行四边形, DEG C ∴∠=∠,BE BF =,BFE BEF AEG ABC ∴∠=∠=∠=∠,F DEG ∴∠=∠, //BF DE ∴,∴四边形BDEF 为平行四边形;(2)解:45C ∠=︒,45ABC BFE BEF ∴∠=∠=∠=︒,BDE ∴∆、BEF ∆是等腰直角三角形,BF BE ∴=== 作FM BD ⊥于M ,连接DF ,如图所示: 则BFM ∆是等腰直角三角形,2FM BM ∴===, 6DM ∴=,在Rt DFM ∆中,由勾股定理得:DF即D ,F 两点间的距离为【巩固4】(2018•上海)已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( ) A .A B ∠=∠B .AC ∠=∠C .AC BD =D .AB BC ⊥【分析】由矩形的判定方法即可得出答案.【解答】解:A 、A B ∠=∠,180A B ∠+∠=︒,所以90A B ∠=∠=︒,可以判定这个平行四边形为矩形,正确;B 、AC ∠=∠不能判定这个平行四边形为矩形,错误;C 、AC BD =,对角线相等,可推出平行四边形ABCD 是矩形,故正确;D 、AB BC ⊥,所以90B ∠=︒,可以判定这个平行四边形为矩形,正确;故选:B .【巩固5】(2018•上海)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该图形的高.如图2,菱形ABCD 的边长为1,边AB 水平放置.如果该菱形的高是矩形的宽的23,那么矩形的宽的值是 .【分析】先根据要求画图,设矩形的宽AF x =,则23CF x =,根据勾股定理列方程可得结论. 【解答】解:在菱形上建立如图所示的矩形EAFC , 设AF x =,则23CF x =, 在Rt CBF ∆中,1CB =,1BF x =-, 由勾股定理得:222BC BF CF =+,22221(1)()3x x =-+,解得:1813x =或0(舍), 即它的宽的值是1813, 故答案为:1813.【巩固6】(2017•上海)已知:如图,四边形ABCD 中,//AD BC ,AD CD =,E 是对角线BD 上一点,且EA EC =.(1)求证:四边形ABCD 是菱形;(2)如果BE BC =,且:2:3CBE BCE ∠∠=,求证:四边形ABCD 是正方形.【分析】(1)首先证得ADE CDE ∆≅∆,由全等三角形的性质可得ADE CDE ∠=∠,由//AD BC 可得ADE CBD ∠=∠,易得CDB CBD ∠=∠,可得BC CD =,易得AD BC =,利用平行线的判定定理可得四边形ABCD 为平行四边形,由AD CD =可得四边形ABCD 是菱形;(2)由BE BC =可得BEC ∆为等腰三角形,可得BCE BEC ∠=∠,利用三角形的内角和定理可得1180454CBE ∠=⨯=︒,易得45ABE ∠=︒,可得90ABC ∠=︒,由正方形的判定定理可得四边形ABCD 是正方形.【解答】证明:(1)在ADE ∆与CDE ∆中, AD CD DE DE EA EC =⎧⎪=⎨⎪=⎩, ADE CDE ∴∆≅∆,ADE CDE ∴∠=∠, //AD BC , ADE CBD ∴∠=∠, CDE CBD ∴∠=∠,BC CD ∴=, AD CD =, BC AD ∴=,∴四边形ABCD 为平行四边形,AD CD =,∴四边形ABCD 是菱形;(2)BE BC =BCE BEC ∴∠=∠,:2:3CBE BCE ∠∠=,218045233CBE ∴∠=⨯=︒++,四边形ABCD 是菱形, 45ABE ∴∠=︒, 90ABC ∴∠=︒,∴四边形ABCD 是正方形.【巩固7】(2019•杨浦区二模)已知:如图,在ABC ∆中,AB BC =,90ABC ∠=︒,点D 、E 分别是边AB 、BC 的中点,点F 、G 是边AC 的三等分点,DF 、EG 的延长线相交于点H ,连接HA 、HC .求证:(1)四边形FBGH 是菱形; (2)四边形ABCH 是正方形.【分析】(1)由三角形中位线知识可得//DF BG ,//GH BF ,根据菱形的判定的判定可得四边形FBGH 是菱形;(2)连结BH ,交AC 于点O ,利用平行四边形的对角线互相平分可得OB OH =,OF OG =,又AF CG =,所以OA OC =.再根据对角线互相垂直平分的平行四边形得证四边形ABCH 是菱形,再根据一组邻边相等的菱形即可求解.【解答】证明:(1)点F 、G 是边AC 的三等分点, AF FG GC ∴==.又点D 是边AB 的中点, //DH BG ∴.同理://EH BF .∴四边形FBGH 是平行四边形,连结BH ,交AC 于点O , OF OG ∴=, AO CO ∴=,=,AB BC∴⊥,BH FG∴四边形FBGH是菱形;(2)四边形FBGH是平行四边形,=.∴=,FO GOBO HO==,又AF FG GC=.AF FO GC GO∴+=+,即:AO CO∴四边形ABCH是平行四边形.=,AC BH⊥,AB BC∴四边形ABCH是正方形.模块二:梯形【例21】顺次联结等腰梯形各边中点所得的四边形是__________形.【难度】★【答案】菱形.【解析】连接对角线,得出新的四边形的每条边为对角线的中位线且分别平行对角线,得出四边形为平行四边形,由因为等腰梯形的对角线相等,所以新的四边形为菱形.【总结】本题主要考查三角形中位线的运用.【例22】如果梯形的下底长为7,中位线长为5,那么其上底长为______.【难度】★【答案】3.【解析】梯形中位线等于上底加下底和的一半.【总结】本题主要考查梯形中位线的运用.【例23】梯形ABCD中,AD // BC,AD = 2,BC = 6,点E是边BC上的点,如果AE将梯形ABCD的面积平分,那么BE的长是______.【难度】★★【答案】4.【解析】设梯形的高为h,则1(26)42ABCDS h h=⨯+⨯=梯形,因为AE将梯形ABCD的面积平分,所以114222ABES BE h h h =⨯⨯=⨯=,所以4BE=.【总结】本题主要考查梯形的面积及三角形面积的运用.【例24】如果梯形ABCD中,AD // BC,E、F分别是AB、CD的中点,AD = 1,BC = 3,那么四边形AEFD与四边形EBCF的面积比是______.【难度】★★【答案】35.【解析】因为EF为梯形ABCD的中位线,所以EF=2,又因为四边形AEFD与EBCF为梯形,且他们的高相等,所以面积之比等于123 235 +=+.【总结】本题主要考查梯形中位线及面积的综合运用.【例25】如图,在梯形ABCD中,AD // BC,AB⊥BC,已知AD = 2,4cot3ACB∠=,梯形ABCD的面积是9.(1)求AB的长;(2)求tan ACD∠的值.【难度】★★【答案】(1)3;(2)617.E D CBAA B CDH【解析】(1)设AB x =,则43BC x =,梯形面积等于42392x x ⎛⎫+ ⎪⎝⎭=,解得:3x =, 即AB 的长为3;(2)过D 作DH AC ⊥于H ,∵AD // BC ,∴ACB CAD ∠=∠,∴4cot cot 3CAD ACB ∠=∠=, ∴65DH =,85AH =,∵AC=5,∴175CH =, ∴6tan 17DH ACD CH ∠==. 【总结】本题主要考查梯形的面积与锐角三角比的综合运用.【例26】 已知,如图,在梯形ABCD 中,AD // BC ,点E 是边CD 的中点,点F 在边BC 上,EF // AB . 求证:()12BF AD BC =+.【难度】★★ 【答案】略.【解析】取AB 的中点G ,连接EG ,∵点E 是边CD 的中点,∴EG 为梯形ABCD 的中位线,∴()12EG AD BC =+, 又∵//EF AB ,且//EG BC ,∴四边形BFEG 为平行四边形, ∴BF =EG ,∴()12BF AD BC =+.【总结】本题主要考查梯形的中位线和平行四边形性质的综合运用.【例27】 如图,在直角梯形纸片ABCD 中,DC // AB ,AB >CD >AD ,90A ∠=︒,将纸片沿过点D 的直线翻折,使点A 落在边CD 上的点E 处,折痕为DF ,联结EF 并展开纸片;AB C D EF GAB C D EF GA BC DH(1)求证:四边形ADEF 为正方形;(2)取线段AF 的中点G ,联结GE ,当BG = CD 时,求证:四边形GBCE 为等腰梯形.【难度】★★★ 【答案】略.【解析】(1)∵//CD AB ,∴90ADE A ∠=∠=︒, 由翻折性质,知ADF EDF ∆≅∆,∴90A DEF ∠=∠=︒, ∴四边形ADEF 为矩形,∵45ADF FDE ∠=∠=︒,∴DA =AF , ∴四边形ADEF 为正方形;(2)连接DG ,EG ,∵BG =CD ,//AB CD ,∴四边形DGBC 为平行四边形,∴BC =DG , 又∵AG =GF ,AD =EF ,90A EFA ∠=∠=︒,∴AGD FGE ≅,∴EG =DG , ∴BC =EG ,∵//BG CE 且不相等,∴四边形GBCE 为等腰梯形.【总结】本题综合性较强,一方面考查翻折的性质,另一方面考查特殊的平行四边形的性质 的运用.【例28】 如图,在ABC ∆中,D 、E 分别是AC 、BC 边上的点,AE 与BD 交于点O ,且CD = CE ,12∠=∠.(1)求证:四边形ABED 是等腰梯形;(2)若EC = 2,BE = 1,21AOD ∠=∠,求AB 的长.【难度】★★★ 【答案】(1)略;(2)32. 【解析】(1)∵C C ∠=∠,CD = CE ,12∠=∠, ∴ACE BCD ∆≅∆,∴BC =AC ,∴AD =BE ,CAB ABC ∠=∠,∴ABC DEC ∠=∠,∴//DE AB ,又∵DE AB ≠,∴四边形ABED 为等腰梯形;A BC DE 1 2 O AB CD E FGA B CD E FG(2)∵四边形ADEB 为等腰梯形,∴ADE BED ∠=∠.∵12∠=∠,∴EDO OED ∠=∠,又∵21AOD ∠=∠,∴1ODE ∠=∠, ∴DE =BE =1,∵//DE AB ,∴DE EC AB BC =,∴32AB =. 【总结】本题一方面考查等腰梯形的判定,另一方面考查三角形一边平行线性质定理的运用.【例29】 如图,已知ABC ∆和ADE ∆都是等边三角形,点D 在边BC 上,点E 在边AD 的右侧,联结CE . (1)求证:60ACE ∠=︒;(2)在边AB 上取一点F ,使BF = BD ,联结DF 、EF .求证:四边形CDEF 是等腰梯形.【难度】★★★ 【答案】略.【解析】(1)∵ABC ∆和ADE ∆都是等边三角形, ∴60BAC DAE ∠=∠=︒,AB =AC ,AD =AE , ∴BAD CAE ∠=∠,∴ABD ACE ∆≅∆, ∴60ACE ABC ∠=∠=︒;(2)∵CE =BD ,BF =BD ,60B ∠=︒,∴BDF ∆为等边三角形, ∴DF =BD =CE ,∵ACE ACB B ∠=∠=∠,∴120BCE ∠=︒, ∴180B BCE ∠+∠=︒,∴//BF CE ,∵BF =CE ,∴四边形BFEC 为平行四边形,∴//CD EF 且DF =CE , ∴四边形CDFE 为等腰梯形.【总结】本题主要考查等边三角形的性质与等腰梯形判定的综合运用.【例30】 如图,在梯形ABCD 中,AB // CD ,AD = BC ,E 是CD 的中点,BE 交AC 于F ,过点F 作FG // AB ,AB C D EF交AE 于点G . (1)求证:AG = BF ;(2)当2AD CA CF =时,求证:AB AD AG AC =.【难度】★★★ 【答案】略.【解析】(1)∵四边形ABCD 为等腰梯形, ∴AD BC =,D BCE ∠=∠.又∵E 是CD 的中点,∴DE =CE ,∴ADE BCE ∆≅∆,∴AE =BE . ∵//GF AB ,∴EGF ∆和AEB ∆均为等腰三角形,∴AG =BF ; (2)∵AD =BC ,且2AD CA CF =,∴2BC CA CF =, 又∵BCF FCB ∠=∠,∴BCFACB ∆∆,∴AB ACBF BC=.又∵AD =BC ,AG =BF ,∴AB AD AG AC =. 【总结】本题主要考查等腰梯形性质与相性质的综合运用.【巩固1】(2018•青浦区一模)在梯形ABCD 中,//AD BC ,下列条件中,不能判断梯形ABCD 是等腰梯形的是( )A .ABC DCB ∠=∠ B .DBC ACB ∠=∠C .DAC DBC ∠=∠D .ACD DAC ∠=∠【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可. 【解答】解:A 、ABC DCB ∠=∠, BD BC ∴=,∴四边形ABCD 是等腰梯形,故本选项错误;B 、DAC DBC ∠=∠,//AD BC ,ADB DBC ∴∠=∠,DAC ACB ∠=∠, OBC OCB ∴∠=∠,OAD ODA ∠=∠OB OC ∴=,OD OA =,AC BD ∴=,∴四边形ABCD 是等腰梯形,故本选项错误;C 、ADB DAC ∠=∠,//AD BC , ADB DAC DBC ACB ∴∠=∠=∠=∠,OA OD ∴=,OB OC =, AC BD ∴=, //AD BC ,∴四边形ABCD 是等腰梯形,故本选项错误;D 、根据ACD DAC ∠=∠,不能推出四边形ABCD 是等腰梯形,故本选项正确.故选:D .【巩固2】(2019•浦东新区二模)已知梯形的上底长为5厘米,下底长为9厘米,那么这个梯形的中位线长等于 厘米.【分析】根据梯形中位线定理计算,得到答案.【解答】解:梯形的中位线长1(59)72=⨯+=(厘米)故答案为:7.【巩固3】(2019春•浦东新区期末)已知,在梯形ABCD 中,//AD BC ,5AD =,6AB CD ==,60B ∠=︒,那么下底BC 的长为 .【分析】首先过A 作//AE DC 交BC 与E ,可以证明四边形ADCE 是平行四边形,进而得到4CE AD ==,再证明ABE ∆是等边三角形,进而得到6BE AB ==,从而得到答案. 【解答】解:如图,过A 作//AE DC 交BC 与E , //AD BC ,∴四边形AECD 是平行四边形,5AD EC ∴==,AE CD =, 6AB CD ==,6AE AB ∴==,60B ∠=︒,ABE ∴∆是等边三角形,6BE AB ∴==, 6511BC ∴=+=.故答案为:11.1.(2019春•嘉定区期末)如果平行四边形ABCD 两条对角线的长度分别为8AC m =,12BD cm =,那么BC 边的长度可能是( ) A .2BC cm =B .6BC cm =C .10BC cm =D .20BC cm =【分析】根据平行四边形的对角线互相平分确定对角线的一半的长,然后利用三角形的三边关系确定边长的取值范围,从该范围内找到一个合适的长度即可. 【解答】解:设平行四边形ABCD 的对角线交于O 点, 4OA OC ∴==,6OB OD ==,6464BC ∴-<<+ 210BC ∴<<, 6cm ∴符合,故选:B .2.(2019春•浦东新区期中)下列条件中不能判定一定是平行四边形的有( ) A .一组对角相等,一组邻角互补B .一组对边平行,另一组对边相等C .两组对边相等D .一组对边平行,且一条对角线平分另一条对角【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定逐一验证.【解答】解:A 、能用两组对角相等的四边形是平行四边形判定平行四边形;B 、不能判定平行四边形,如等腰梯形;C 、能用两组对边相等的四边形是平行四边形判定平行四边形;D 、能用两组对边分别平行的四边形是平行四边形判定平行四边形;故选:B .3.(2019春•杨浦区期中)如图,在平行四边形ABCD 中,对角线AC BD ⊥,10AC =,24BD =,则AD = .【分析】利用平行四边形的性质和勾股定理易求AO 的长. 【解答】解:ABCD 的对角线AC 与BD 相交于点O ,1122BO DO BD ∴===,152AO CO AC ===,AB AC ⊥,13AD ∴,故答案为:13.4.(2019•嘉定区二模)如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,过点O 的线段EF 与AD 、BC 分别交于点E 、F ,如果4AB =,5BC =,32OE =,那么四边形EFCD 的周长为 .【分析】根据平行四边形的性质知,4AB CD ==,5AD BC ==,AO OC =,OAD OCF ∠=∠,AOE ∠和COF ∠是对顶角相等,根据全等三角形的性质得到 1.5OF OE ==,CF AE =,所于是得到结论.【解答】解:四边形ABCD 平行四边形,4AB CD ∴==,5AD BC ==,AO OC =,OAD OCF ∠=∠,AOE COF ∠=∠,()OAE OCF AAS ∴∆≅∆, 1.5OF OE ∴==,CF AE =,∴四边形EFCD 的周长ED CD CF OF OE =++++ED AE CD OE OF =++++ AD CD OE OF =+++45 1.5 1.5=+++12=.故答案为:12.5.(2019春•浦东新区校级月考)如图,在平行四边形ABCD 中,60ABC ∠=︒,28BC AB ==,点C 关于AD 的对称点为E ,连接BE 交AD 于点F ,点G 为CD 的中点,连接EG ,BG ,则BEG S ∆= .【分析】如图,取BC 中点H ,连接AH ,连接EC 交AD 于N ,作EM CD ⊥交CD 的延长线于M .构建BEG BCE ECG BCG S S S S ∆∆∆=+-计算即可;【解答】解:如图,取BC 中点H ,连接AH ,连接EC 交AD 于N ,作EM CD ⊥交CD 的延长线于M .2BC AB =,BH CH =,60ABC ∠=︒,BA BH CH ∴==,ABH ∴∆是等边三角形,HA HB HC ∴==, 90BAC ∴∠=︒,30ACB ∴∠=︒,EC BC ⊥,180120BCD ABC ∠=︒-∠=︒, 60ACE ∴∠=︒,30ECM ∠=︒, 28BC AB ==,4CD ∴=,CN EN ==,EC ∴=EM =, BEG BCE ECG BCG S S S S ∆∆∆∴=+-11182224ABCD S =⨯⨯⨯⨯平行四边形==故答案为.6.(2019春•杨浦区期中)如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”,当协调边为6时,它的周长为 . 【分析】由平行四边形的性质和角平分线的定义得出AB AE =;分两种情况:①当2AE =,4DE =时;②当4AE =,2DE =时;即可求出平行四边形ABCD 的周长. 【解答】解:如图所示:①当2AE =,4DE =时, 四边形ABCD 是平行四边形, 6BC AD ∴==,AB CD =,//AD BC , AEB CBE ∴∠=∠,BE 平分ABC ∠,ABE CBE ∴∠=∠,ABE AEB ∴∠=∠,2AB AE ∴==,∴平行四边形ABCD 的周长2()16AB AD =+=;②当4AE =,2DE =时, 同理得:4AB AE ==,∴平行四边形ABCD 的周长2()20AB AD =+=;故答案为:16或20.7.(2019春•金山区期末)已知:如图,ABCD 中,AE 、CF 分别是BAD ∠和BCD ∠的角平分线,分别交边DC 、AB 于点E 、F ,求证:AE CF =.【分析】根据平行四边形的性质及角平分线的定义,证明ADE CBF ∆≅∆即可判断AE CF =. 【解答】解:四边形ABCD 是平行四边形, DAB DCB ∴∠=∠,D B ∠=∠,AD BC =.AE 、CF 分别是BAD ∠和BCD ∠的角平分线,DAE BCF ∴∠=∠.()ADE CBF ASA ∴∆≅∆. AE CF ∴=.8.(2019春•杨浦区期中)在平行四边形ABCD 中,45A ∠=︒,BD AD ⊥,2BD =. (1)求平行四边形ABCD 的周长和面积; (2)求A 、C 两点间的距离.【分析】(1)由等腰直角三角形的性质得出2AD BD ==,由勾股定理求出AB =行四边形的性质得出DC AB ==,2BC AD ==,即可得出平行四边形的周长和面积; (2)连接AC ,与BD 相交于点O ,由平行四边形的性质得出112OD BD ==,2AC AO =,由勾股定理求出OA ,得出AC =【解答】(1)解:90BD AD ADB ⊥∴∠=︒ 又45452A ABD AD BD ∠=︒∴∠=︒∴==,AB ∴=,四边形ABCD 是平行四边形,DC AB ∴==2BC AD ==,∴()22224ABCD C AB AD =+==平行四边形,224ABCD S AD BD ∴=⨯=⨯=平行四边形;(2)解:连接AC ,与BD 相交于点O ,如图所示:四边形ABCD 是平行四边形, ∴112OD BD ==,2AC AO =, 在Rt AOD ∆中,90ADO ∠=︒,∴OA∴AC =所以A 、C 两点间的距离为.9.(2018秋•黄浦区校级月考)已知:如图,在ABCD 中,4AC =,6BD =,CA AB ⊥,求ABCD 的周长和面积.【分析】依据平行四边形的对角线互相平分,即可得到2AO =,3BO =,再根据勾股定理即可得出AB 与BC 的长,进而得到ABCD 的周长和面积. 【解答】解:如图所示,4AC =,6BD =,2AO ∴=,3BO =,又CA AB ⊥,Rt AOB ∴∆中,AB ==Rt ABC ∴∆中,BC ,ABCD ∴的周长==,ABCD 的面积4AB AC =⨯=.10.(2018春•金山区期中)已知,如图,在等边ABC ∆中,D 是BC 边上一点,F 为AB 边上一点,且CD BF =,以AD 为边作等边ADE ∆,联结EF 、FC .求证: (1)ADC CFB ∆≅∆;(2)四边形EFCD 是平行四边形.【分析】(1)ACD ∆和CBF ∆中,已知的条件有:AC BC =,CD BF =,60ACD CBF ∠=∠=︒;根据SAS 即可判定两个三角形全等.(2)由(1)的全等三角形知:AD CF =,即DE CF AD ==;因此只需判断DE 与CF 是否平行即可,由(1)的全等三角形,可得DAC BCF ∠=∠,而60BCF ACG ∠+∠=︒,即60CAD ACG ∠+∠=︒;根据三角形外角的性质,可得60AGF CGD ∠=︒=∠,由此可判定//DE FC ,即可得出四边形CDEF 的形状. 【解答】证明:(1)ABC ∆为等边三角形, AC BC ∴=, 60ACD B ∠=∠=︒,CD BF =,()ACD CBF SAS ∴∆≅∆;(2)四边形CDEF 为平行四边形; ACD CBF ∆≅∆;DAC BCF ∴∠=∠,CF AD =;AED ∆是等边三角形; AD DE ∴=;CF DE ∴=①;60ACG BCF ∠+∠=︒; 60ACG DAC ∴∠+∠=︒;180()120AGC ACG DAC ∴∠=︒-∠+∠=︒; 120DGF AGC ∴∠=∠=︒;AED ∆是等边三角形;60ADE ∴∠=︒;180DGF ADE ∴∠+∠=︒;//CF DE ∴②;综合①②可得四边形CDEF 是平行四边形.11.(2018春•浦东新区期中)如图,ABCD 中,E 、F 是直线AC 上两点,且AE CF =. 求证:(1)BE DF =; (2)//BE DF【分析】(1)利用平行四边形的性质借助全等三角形的判定与性质得出即可; (2)利用全等三角形的性质结合平行线的判定方法得出即可. 【解答】证明:(1)四边形ABCD 是平行四边形, AD BC ∴=,//AD BC , DAC BCA ∴∠=∠,DAF BCE ∴∠=∠, AE CF =, AF EC ∴=,在FAD ∆和ECB ∆中, AF CE FAD ECB AD BC =⎧⎪∠=∠⎨⎪=⎩, ()FAD ECB SAS ∴∆≅∆,BE DF ∴=;(2)FAD ECB ∆≅∆,F E ∴∠=∠,//BE DF ∴.12.(2018春•浦东新区期中)在平行四边形ABCD 中,分别以AD 、BC 为边向内作等边ADE ∆和等边BCF ∆,连接BE 、DF .求证:四边形BEDF 是平行四边形.【分析】由题意先证60DAE BCF ∠=∠=︒,再由SAS 证DCF BAE ∆≅∆,继而题目得证. 【解答】证明:四边形ABCD 是平行四边形, CD AB ∴=,AD CB =,DAB BCD ∠=∠.又ADE ∆和CBF ∆都是等边三角形,DE BF ∴=,AE CF =.60DAE BCF ∠=∠=︒. DCF BCD BCF ∠=∠-∠,BAE DAB DAE ∠=∠-∠,DCF BAE ∴∠=∠.()DCF BAE SAS ∴∆≅∆.DF BE ∴=.∴四边形BEDF 是平行四边形.13.(2017•上海)已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .BAC DCA ∠=∠B .BAC DAC ∠=∠C .BAC ABD ∠=∠ D .BAC ADB ∠=∠【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A 、BAC DCA ∠=∠,不能判断四边形ABCD 是矩形;B 、BAC DAC ∠=∠,能判定四边形ABCD 是菱形;不能判断四边形ABCD 是矩形;C 、BAC ABD ∠=∠,能得出对角线相等,能判断四边形ABCD 是矩形;D 、BAC ADB ∠=∠,不能判断四边形ABCD 是矩形;故选:C .14.(2019•杨浦区三模)如图,在四边形ABCD 中,AC 与BD 相交于点O ,90BAD ∠=︒,BO DO =,那么添加下列一个条件后,仍不能判定四边形ABCD 是矩形的是( )A .90ABC ∠=︒B .90BCD ∠=︒C .AB CD =D .//AB CD【分析】根据矩形的判定定理:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形分。
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第1节平行四边形与多边形(建议答题时间:50分钟)基础过关1. (2017北京)若正多边形的一个内角是150°,则该正多边形的边数是( )A. 6B. 12C. 16D. 182. (2017乌鲁木齐)如果正n边形每一个内角等于与它相邻外角的2倍,则n的值是( )A. 4B. 5C. 6D. 73. (2017 湘西州)如图,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是( )A. OA=OCB. ∠ABC=ADCC. AB=CDD. AC=BD第3题图第4题图第5题图4. (2018原创)如图,点E,F是▱ABCD对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB=∠CFD中,添加一个条件,使四边形DEBF是平行四边形,可添加的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④5. (2017苏州)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A. 30°B. 36°C. 54°D. 72°6. (2017宜昌)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )A. ①②B. ①③C. ②④D. ③④7. (2017重庆九龙坡区适应性考试)如图,在平行四边形ABCD中,AE平分∠DAB,∠AED=26°,则∠C的度数为( )A. 26°B. 42°C. 52°D. 56°第7题图第8题图8. (2017丽水)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )A. 2B. 2C. 2 2D. 49. (2017青岛)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC =2,BD=4,则AE的长为( )A.32B.32C.217D.2217第9题图第10题图10. (2017眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为( )A. 14B. 13 C . 12 D. 1011.(2017大连)五边形的内角和为________.12.(2017扬州)在▱ABCD中,若∠B+∠D=200°,则∠A=________°.13. (2017怀化)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是AB的中点,OE=5 cm,则AD的长为________cm.第13题图第14题图14.(2017武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE,若AE=AB,则∠EBC的度数为________.15. (2017连云港)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若∠EAF=56°,则∠B=________.第15题图16. (2017山西)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.第16题图17. (2017乌鲁木齐)如图,四边形ABCD是平行四边形,E、F是对角线BD上的两点,且BF =ED,求证:AE∥CF.第17题图18. (2017咸宁)如图,点B,E,C,F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF,BD,求证:四边形ABDF是平行四边形.第18题图19. (2017西宁)如图,四边形ABCD中,AC、BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.第19题图20. (2017攀枝花)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD交于点G和H,且AB=2 5.(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.第20题图满分冲关1. (2018原创)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4两部分,则平行四边形ABCD周长是( )A. 22B. 20C. 22或20D. 182. (2017临沂)如图,在▱ABCD中,对角线AC,BD相交于点O.若AB=4,BD=10,sin∠BDC=35,则▱ABCD的面积是__________.第2题图第3题图3. (2017南充)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S △BPG=1,则S▱AEPH=________.4. (2017 泰安)如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.第4题图答案基础过关1. B 【解析】设多边形的边数为n ,根据正多边形内角和公式可得(n -2)×180°=n ×150°,解得n =12.2. C 【解析】设该正n 边形的一个外角为x ,则与它相邻的内角为2x ,根据题意得,2x +x =180°,解得x =60°,∵多边形的外角和为360°,∴n =360°÷60°=6.3. D 【解析】∵四边形ABCD 是平行四边形,∴AO =CO ,∠ABC =∠ADC ,AB =CD ,∴A ,B ,C 选项都正确,而AC 与BD 不一定相等.4. D 【解析】由平行四边形的判定方法可知:若是四边形的对角线互相平分,可证明这个四边形是平行四边形,①不能证明对角线互相平分,只有②③④可以.5. B 【解析】∵五边形ABCDE 是正五边形,∴∠A =180°×(5-2)5=108°,∵AB =AE ,∴∠ABE =∠AEB =12(180°-∠A )=36°.6. B 【解析】要使得两个多边形的内角和相等,则这两个多边形的边数应该相同,故①和③符合条件.7. C 【解析】∵平行四边形ABCD ,∴CD ∥AB ,∴∠AED =∠EAB ,∴∠EAB =26°,∵AE 平分∠DAB ,∴∠DAB =52°,∴∠C =52°.8. C 【解析】∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠ACB =∠CAD ,又∵∠ABC =∠CAD =45°,∴∠ACB =∠ABC =∠CAD =45°,∴∠BAC =180°-45°-45°=90°,AB =AC ,∵在Rt △ABC 中,AB =AC =2,∴BC =AB 2+AC 2=22+22=2 2.9. D 【解析】∵四边形ABCD 是平行四边形且AC =2,BD =4,∴AO =OC =1,BO =OD =2,又∵AB =3,∴AB 2+AO 2=BO 2,∴∠BAO =90°,在Rt △BAC 中, BC =AB 2+AC 2=(3)2+22=7,∵S △ABC =12AB ·AC =12BC ·AE ,∴AE =AB ·AC BC =3×27=2217.10. C 【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AD ∥BC ,∴∠DAC =∠ACB ,在△OAE 和△OCF 中,⎩⎪⎨⎪⎧∠DAC=∠ACB OA =OC∠AOE=∠COF,∴△OAE ≌△OCF , ∴CF =AE ,OE =OF ,∵OE =1.5,∴EF =2OE =3,∵▱ABCD 的周长为18,∴AD +DC =9,∴四边形EFCD 的周长=DE +EF +CF +CD =DE +AE +CD +EF =AD +CD +EF =9+3=12.11. 540° 【解析】由n 边形的内角和为(n -2)×180°可知,五边形的内角和为(5-2)×180°=3×180°=540°.12. 80 【解析】在▱ABCD 中,∠B =∠D ,∵∠B +∠D =200°,∴∠B =100°,∵AD ∥BC ,∴∠A +∠B =180°,∴∠A =80°.13. 10 【解析】∵点O 和点E 分别是边BD 和BA 的中点,∴OE 是△BAD 的中位线,即OE =12AD =5 cm ,∴AD =10 cm . 14. 30° 【解析】∵在▱ABCD 中,∠D =100°,AB ∥DC ,∴∠ABC =∠D =100°,∴∠AED =∠BAE , ∵AE 平分∠DAB ,∴∠AED =∠BAE =∠DAE =40°,又∵AE =AB ,∴∠ABE =70°,∴∠EBC =30°.15. 56° 【解析】在四边形AECF 中,有两个内角是直角,根据“四边形内角和等于360°”得∠EAF +∠C =180°,又因为四边形ABCD 是平行四边形,所以∠B +∠C =180°,所以∠B =∠EAF =56°.16. 证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,∵BE =DF ,∴AB +BE =CD +DF , 即AE =CF .∵AB ∥CD ,∴AE ∥CF , ∴∠E =∠F ,∠CAB =∠ACD , ∴△AOE ≌△COF (ASA ), ∴OE =OF .17. 证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,且AD =BC , ∴∠ADE =∠CBF , 又∵BF =ED ,∴△AED ≌△CFB (SAS ), ∴∠AED =∠CFB , ∴AE ∥CF .18. 证明:(1)∵BE =FC ,∴BC =FE .在△ABC 和△DFE 中,⎩⎪⎨⎪⎧AB =DF AC =DE BC =FE ,∴△ABC ≌△DFE (SSS );(2)如解图,连接AF ,BD ,由(1)知△ABC ≌△DFE ,第18题解图∴∠ABC =∠DFE , ∴AB ∥DF , 又∵AB =DF ,∴四边形ABDF 是平行四边形. 19. (1)证明:∵O 是AC 的中点, ∴OA =OC , ∵AD ∥BC , ∴∠ADO =∠CBO ,在△AOD 和△COB 中,⎩⎪⎨⎪⎧∠ADO =∠CBO ∠A OD =∠COB OA =OC ,∴△AOD ≌△COB (AAS ), ∴OD =OB ,∴四边形ABCD 是平行四边形;(2)解:∵四边形ABCD 是平行四边形,AC ⊥BD , ∴四边形ABCD 是菱形, ∴▱ABCD 的面积是12AC ·BD =24.20. (1)解:∵AE ⊥BC ,CF ⊥AD ,AD ∥BC , ∴AE =CF ,∵tan ∠ABE =2=AEBE,∴BE =12AE , ∴AB =AE 2+BE 2=52AE , 即AB ∶AE =5∶2,∵AB =25,∴CF =AE =2×255=4; (2) 证明:∵四边形ABCD 是平行四边形,∴AB =CD 且AB ∥CD ,∠ABE =∠CDF ,∴∠ABD =∠BDC ,∵AE ⊥BC ,CF ⊥AD ,∴∠ABE +∠BAE =∠CDF +∠DCF =90°,∴∠BAE =∠DCF ,∴△ABG ≌△CDH (ASA ),∴BG =DH .满分冲关1. C 【解析】如解图,在平行四边形ABCD 中,AD ∥BC ,则∠DAE =∠AEB .∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠BEA ,∴AB =BE ,BC =BE +EC ,①当BE =3,EC =4时,平行四边形ABCD 的周长为:2(AB +AD )=2×(3+3+4)=20.②当BE =4,EC =3时,平行四边形ABCD 的周长为:2(AB +AD )=2×(4+4+3)=22.第1题解图2. 24 【解析】如解图,过点C 作CE ⊥BD 交BD 于点E ,在▱ABCD 中,AB =4可得CD =AB=4,再由sin ∠BDC =35得CE CD =35,即CE 4=35,所以CE =125,所以S △BDC =12BD ·CE =12×10×125=12,则S ▱ABCD =2S △BDC =12×2=24.第2题解图3. 4 【解析】由四边形ABCD 是平行四边形,可得AB ∥CD ,AD ∥BC ,又知EF ∥BC ,GH ∥AB ,因而得到四边形BEPG 、四边形GPFC 、四边形PHDF 、四边形AEPH 都是平行四边形.∵BD 、BP 、DP 分别是平行四边形ABCD 、平行四边形BEPG 、平行四边形PHDF 的对角线,根据平行四边形的对角线将平行四边形分成两个全等的三角形.得到S △ABD =S △CBD ,S △PHD =S △PFD ,S △BPG =S △BPE ,从而得出S 四边形AEPH =S 四边形GPFC ,又∵CG =2BG ,∴S 四边形AEPH =S 四边形GPFC =2S 四边形BGPE =4S △BPG =4.4. (1)证明:在▱ABCD 中,∵AD =AC ,AD ⊥AC .∴AC =BC ,AC ⊥BC ,第4题解图如解图,连接CE ,∵E 为AB 中点,∴AE =EC .∴∠ACE =∠BCE =45°,∴∠DAE =∠ECF =135°,又∠AED +∠CED =∠CEF +∠CED =90°,∴∠AED =∠CEF ,∴△AED ≌△CEF (ASA ),∴ED =EF ;(2)解:∵△AED ≌△CEF ,∴AD =CF ,∴AC =CF ,又CP ∥AE ,∴CP 为△FAB 的中位线,∴CP =12AB =AE , ∴四边形ACPE 是平行四边形;(3)解:垂直;证明:过点E作EH⊥AF于H,作EG⊥DA交DA延长线于点G,∵AE=EC,∴∠EAC=∠HCE=45°,∴△AGE≌△CHE,∴EG=EH,又ED=EF,∴Rt△DEG≌Rt△FEH,∴∠ADE=∠CFE,∴∠DEA=∠FEC,∴∠FEC+∠DEC=∠DEA+∠DEC=90°,∴∠DEF=90°,∴ED⊥EF.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
2013年中考数学模拟试题汇编 四边形综合题一、选择题1. 如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( ) ①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4a b+ ④四边形A n B n C n D n 的面积是12n ab+.A 、①②B 、②③C 、②③④D 、①②③④2.如图,在平行四边形 ABCD 中(AB≠BC),直线EF 经过其对角线的交点O,且分别交AD 、BC 于点M 、 N ,交BA 、DC 的延长线于点E 、F ,下列结论: ①AO=BO;②OE=OF; ③△EAM∽△EBN; ④△EAO≌△CNO,其中正确的是A. ①②B. ②③C. ②④D.③④9题图B3. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .44. 己知直角梯形ABCD 中,AD∥BC.∠BCD=90°,BC=CD=2AD ,E 、F 分别是BC 、CD 边的中点.连接BF 、DF 交于点P .连接CP 并延长交AB 于点Q ,连揍AF ,则下列结论不正确...的是( ). A .CP 平分∠BCDB .四边形ABED 为平行四边形C ,CQ 将直角梯形ABCD 分为面积相等的两部分 D .△A BF 为等腰三角形5.如图,在平行四边形ABCD 中,E 为AB 的中点,F 为AD 上一点,EF 交AC 于G ,AF=2cm ,DF=4cm ,AG=3cm ,则AC 的长为( )A 、9cmB 、14cmC 、15cmD 、18cm6.下列四边形中,对角线相等且互相垂直平分的是( ) A 、平行四边形 B 、正方形 C 、等腰梯形 D 、矩形ABC D FE G10题图8.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=2OA;(4)AE2+CF2=2OP•OB,正确的结论有()个.A、1B、2C、3D、49.)A、6B、12C、D、二、填空题1.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是60 °.2. 1.已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是3. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC 边上一动点,则DP长的最小值为 4 .三、解答题1. 如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证四边形ABFC是矩形.2.如图5所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=12BE.EDCBA3.如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.AB EGCDF24题图图54. 如图,四边形ABCD 是矩形,直线l 垂直平分线段AC ,垂足为O ,直线l 分别与线段AD 、CB 的延长线交于点E 、F .(1)△ABC 与△FOA 相似吗?为什么? (2)试判定四边形AFCE 的形状,并说明理由.5. 如图,矩形ABCD 中,AB =6,BC点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧.设运动的时间为t 秒(t ≥0). (1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存大,求出对应的t 的值;若不存在,请说明理由.AD26题图6.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=32,求AG,MN的长.7.如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.8.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.9.如图,已知矩形ABCD的两条对角线相交于O,∠ACB=30°,AB=2.(1)求AC的长.(2)求∠AOB的度数.(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.11.如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.12.以四边形ABCD的边AB.BC.CD.DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E.F.G.H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.13.如图,在▱ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.14.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=2,求EB的长.15.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.16.如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).17.如图,四边形ABCD是平行四边形,AC是对角线,BE⊥AC,垂足为E,DF⊥AC,垂足为F.求证:DF=BE.18.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.19.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.20.如图,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.21.如图.矩形ABCD的对角线相交于点0.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为AC的长.22.矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的相等;或者先证明四边形是菱形,在证明这个菱形有一个角是.(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.23. 把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F两点均在BD 上),折痕分别为BH 、DG 。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题第20讲平行四边形与多边形重难点1与平行四边形性质有关的计算在▱ABCD中,AD=10,AB=7.(1)如图1,∠BCD的平分线CE交AD于点E,则AE=3;(2)在(1)的条件下,若∠CED=65°,则∠A=130°;图1 图2 图3(3)在(1)的条件下,延长CE交BA的延长线于点F,如图2所示,则AE+AF的值等于6;(4)如图3,若BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E,则EF的长为4.【拓展问题】问题(4)中,CE与BF的位置关系是垂直.方法指导利用平行四边形的性质进行相关计算,一般运用平行四边形性质转化角度或线段之间的等量关系:(1)对边平行可得相等的角,进而得到相似三角形;(2)对边相等、对角线互相平分可得相等的线段;(3)当有角平分线的条件时,可利用“平行+角平分线⇒等腰三角形”的结论得到等角、等边.如:例1,图1中△CED,图2中△BCF,△CED均是等腰三角形.(4)①当有一条线段过对角线的交点和一边的中点时,可利用三角形中位线的性质进行计算.如:例2中OE是△BCD或△ACD的中位线.②当有一条线段过对角线的交点且与其中的一条对角线垂直时,得到线段的垂直平分线、等腰三角形,进而可以用线段垂直平分线、等腰三角形的性质进行计算.如:例2中拓展问题2,OF是线段AC的垂直平分线,△AFC 是等腰三角形.提示平行四边形中常涉及整体思想,如▱ABCD,已知AB+BC的长,则C▱ABCD=2(AB+BC).【变式训练1】如图,四边形ABCD是平行四边形,P是CD上的一点,且AP和BP分别平分∠DAB和∠CBA,且AD =5 cm,AP=8 cm,则∠APB=90°,DC=10cm,△APB的周长是24cm.【变式训练2】在▱ABCD中,AE平分∠BAD交边BC于点E,DF平分∠ADC交边BC于点F.若AD=11,EF=5,则AB=8或3.如图1,▱ABCD的对角线AC,BD相交于点O,E是CD的中点,且DE+EO=4,则▱ABCD的周长为(B)A.20 B. 16 C. 12 D.8图1 图2【拓展问题1】如图1,若∠ABC=60°,∠BAC=80°,则∠1的度数为40°.【拓展问题2】如图2,OF⊥AC,交AD于点F,连接CF.若△CDF的周长是8,则▱ABCD的周长是16.重难点2平行四边形的性质与判定的综合如图1,点E,F是▱ABCD对角线AC上的两点,AE=CF.图1 图2 图3(1)①求证:DF=BE;②如图2,连接DE,BF,求证:四边形DFBE是平行四边形.(请至少用两种判定方法证明)(2)如图3,若BE⊥AC,DF⊥AC,延长BE,DF分别交CD,AB于点N,M.①求证:四边形DMBN是平行四边形;②已知CE=4,FM=3,求AM的长.【自主解答】解:(1)证明:①∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC.∴∠DAF=∠BCE.∵AE=CF,∴AE-EF=CF-EF,即AF=CE.∴△ADF≌△CBE.∴DF=BE.②解法1:已证△ADF≌△CBE,∴∠AFD=∠CEB.∴∠DFC=∠BEA.∴DF∥BE.又∵DF=BE,∴四边形DFBE是平行四边形.解法2:同(1)①中的方法可证△CDE≌△ABF.∴DE=BF.又∵DF=BE,∴四边形DFBE是平行四边形.解法3:连接BD交AC于点O.∵四边形ABCD是平行四边形.∴DO=OB,AO=OC.又∵AE=CF,∴AE-AO=CF-OC,即OE=OF.∴四边形DFBE是平行四边形.(2)①证明∵BE⊥AC,DF⊥AC,∴BE∥DF.∵四边形ABCD是平行四边形,∴DC∥AB.∴四边形DMBN是平行四边形.②∵四边形DMBN是平行四边形,∴DN=BM.∵四边形ABCD 是平行四边形, ∴DC =AB. ∴CN=AM. ∵AB∥CD,∴∠DCA=∠BAC.又∵BE⊥AC,DF⊥AC , ∴∠CEN=∠AFM=90°. ∴△AFM≌△CEN. ∴AF=CE =4.在Rt △AFM 中,AM =AF 2+FM 2=5. 方法指导判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行; (2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等; (3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分.【变式训练3】 (2018·永州)如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F.(1)求证:四边形BCFD 为平行四边形; (2)若AB =6,求平行四边形BCFD 的面积.解:(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°, ∴∠ABC=60°.在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°. ∴BC∥AD.在△ABC 中,∠ACB=90°,E 为AB 的中点, ∴CE=AE =BE.∴∠EAC=∠ECA=30°.∴∠BEC=∠EAC+∠ECA=60°. 又∵∠ABD=60°, ∴CF∥BD.∴四边形BCFD 是平行四边形.(2)在Rt △ABC 中,∵∠BAC=30°,AB =6, ∴BC=12AB =3,AC =3BC =3 3.∴S ▱BCFD =3×33=9 3.考点1 多边形1.(2018·福建)一个n 边形的内角和为360°,则n 等于(B )A .3B .4C .5D .62.(2018·菏泽)若正多边形的每一个内角为135°,则这个正多边形的边数是8. 3.(2018·宿迁)一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.4.(2018·山西)图1是古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美,图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=360°.图1 图25.(2018·陕西)如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为72°.6.(2018·聊城)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是360°或540°.考点2 平行四边形的性质7.(2017·眉山)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F.若▱ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为(C )A .14B .13C .12D .108.(2018·台州)如图,在▱ABCD 中,AB =2,BC =3.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是(B )A .12B .1C .65D .329.(2018·兰州)如图,将▱ABCD 的对角线BD 折叠,使点A 落在点E 处,交BC 于点F.若∠ABD=48°,∠CFD=40°,则∠E 为(B )A .102°B .112°C .122°D .92°10.如图,在▱ABCD 中,BE⊥AB 交对角线AC 于点E.若∠1=20°,则∠2的度数是110°.11.(2018·临沂)如图,在▱ABCD 中,AB =10,AD =6,AC⊥BC,则BD12.(2018·大连)如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在AC 上,且AF =CE.求证:BE =DF.证明:∵四边形ABCD 是平行四边形, ∴OA=OC ,OD =OB , ∵AF=CE , ∴OE=OF.在△BEO 和△DFO 中, ⎩⎪⎨⎪⎧OB =OD ,∠BOE=∠DOF,OE =OF ,∴△BEO≌△DFO(SAS ). ∴BE=DF.13.(2018·曲靖)如图,在▱ABCD 的边AB ,CD 上截取AF ,CE ,使得AF =CE ,连接EF ,点M ,N 是线段EF 上两点,且EM =FN ,连接AN ,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF 的度数.解:(1)证明:∵四边形ABCD 是平行四边形, ∴CD∥AB.∴∠AFN=∠CEM. ∵FN=EM ,AF =CE , ∴△AFN≌△CEM(SAS ). (2)∵△AFN≌△CEM, ∴∠NAF=∠ECM.∵∠CMF=∠CEM+∠ECM, ∴107°=72°+∠ECM. ∴∠ECM=35°. ∴∠NAF=35°.考点3 平行四边形的判定14.(2018·呼和浩特)顺次连接平面上A ,B ,C ,D 四点得到一个四边形,从①AB∥CD;②DC=AD ;③∠A=∠C;④∠B=∠D.四个条件中任取两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有(C )A .5种B .4种C .3种D .1种 15.(2018·岳阳)如图,在▱ABCD 中,AE =CF ,求证:四边形BFDE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB∥CD,且AB =CD. 又∵A E =CF , ∴BE=DF.∴BE∥DF 且BE =DF.∴四边形BFDE 是平行四边形.16.(2018·济宁)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP ,CP 分别平分∠EDC 和∠BCD,则∠P 的度数是(C )A .50°B .55°C .60°D .65°17.(2018·通辽)如图,▱ABCD 的对角线AC ,BD 相交于点O ,DE 平分∠ADC 交AB 于点E ,∠BCD =60°,AD =12AB ,连接OE.下列结论:①S ▱ABCD =AD·BD;②DB 平分∠CDE;③AO=DE ;④S △ADE =5S △OFE .其中正确的个数有(B )A .1个B .2个C .3个D .4个18.(2018·哈尔滨)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,点F 分别是OA ,OD 的中点,连接EF ,∠CEF=45°,EM⊥BC 于点M ,EM 交BD 于点N ,FN =10,则该线段BC 的长为19.(2018·兰州)如图,在△ABC 中,过点C 作CD∥AB,E 是AC 的中点,连接DE 并延长交AB 于点F ,交CB 的延长线于点G ,连接AD ,CF.(1)求证:四边形AFCD 是平行四边形;(2)若GB =3,BC =6,BF =32,求AB的长.解:(1)证明:∵CD∥AB,∴∠DCA=∠FAC.又∵E 是AC 的中点,∴AE=EC. 在△CDE 和△AFE 中, ⎩⎪⎨⎪⎧∠DCE=∠FAE,EC =EA ,∠AEF=∠CED,∴△CDE≌△AFE(ASA ). ∴CD=AF. 又∵CD∥AB,∴四边形AFCD 是平行四边形. (2)∵AB∥CD,∴GB GC =FB DC ,即33+6=32DC .解得DC =92. ∴AB=AF +BF =CD +BF =92+32=6.。
一、平行四边形真题与模拟题分类汇编(难题易错题)1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62或23.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,3AE=CK,∴FK=2,在Rt△EFK中,tan∠3∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,3OH=23∴()2212362+-=如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=233, 综上所述:OP 的长为62 或233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.2.已知:如图,在平行四边形ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,连结BE ,DF .(1)求证:△DOE ≌△BOF .(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE =90°时,四边形BFED 为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE ≌△BOF (ASA );(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD 是平行四边形,进而利用垂直平分线的性质得出BE=ED ,即可得出答案.试题解析:(1)∵在▱ABCD 中,O 为对角线BD 的中点,∴BO=DO ,∠EDB=∠FBO ,在△EOD 和△FOB 中,∴△DOE ≌△BOF (ASA );(2)当∠DOE=90°时,四边形BFDE 为菱形,理由:∵△DOE ≌△BOF ,∴OE=OF ,又∵OB=OD ,∴四边形EBFD 是平行四边形,∵∠EOD=90°,∴EF ⊥BD ,∴四边形BFDE 为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.3.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =5455-32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4, 代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩,∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x =54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG , ∴EH HG AF AG =, ∴124222x x x -=--,∴12x x ==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE , ∴CE DE CD DF=, ∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32,综上,x =54或32. 【点睛】 本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.4.菱形ABCD 中、∠BAD =120°,点O 为射线CA 上的动点,作射线OM 与直线BC 相交于点E ,将射线OM 绕点O 逆时针旋转60°,得到射线ON ,射线ON 与直线CD 相交于点F . (1)如图①,点O 与点A 重合时,点E ,F 分别在线段BC ,CD 上,请直接写出CE ,CF ,CA 三条段段之间的数量关系;(2)如图②,点O在CA的延长线上,且OA=13AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=27,当CF=1时,请直接写出BE的长.【答案】(1)CA=CE+CF.(2)CF-CE=43AC.(3)BE的值为3或5或1.【解析】【分析】(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题;(2)结论:CF-CE=43AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可解决问题;(3)分四种情形画出图形分别求解即可解决问题.【详解】(1)如图①中,结论:CA=CE+CF.理由:∵四边形ABCD是菱形,∠BAD=120°∴AB=AD=DC=BC,∠BAC=∠DAC=60°∴△ABC,△ACD都是等边三角形,∵∠DAC=∠EAF=60°,∴∠DAF=∠CAE,∵CA=AD,∠D=∠ACE=60°,∴△ADF≌△ACE(SAS),∴DF=CE,∴CE+CF=CF+DF=CD=AC,(2)结论:CF-CE=43 AC.理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.∵∠GOC=∠FOE=60°,∴∠FOG=∠EOC,∵OG=OC,∠OGF=∠ACE=120°,∴△FOG≌△EOC(ASA),∴CE=FG,∵OC=OG,CA=CD,∴OA=DG,∴CF-EC=CF-FG=CG=CD+DG=AC+13AC=43AC,(3)作BH⊥AC于H.∵AB=6,AH=CH=3,∴BH=33,如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.∵7,∴22OB BH=1,∴OC=3+1=4,由(1)可知:CO=CE+CF,∴CE=3,∴BE=6-3=3.如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.由(2)可知:CE-CF=OC,∴CE=4+1=5,∴BE=1.如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.同法可证:OC=CE+CF,∵OC=CH-OH=3-1=2,CF=1,∴CE=1,∴BE=6-1=5.如图③-4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时.同法可知:CE-CF=OC,∴CE=2+1=3,∴BE=3,综上所述,满足条件的BE的值为3或5或1.【点睛】本题属于四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的关系是___;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.试题解析:解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE =∠CEG ,∴∠BCF =∠CEG ,∴CF ∥EG ,∴四边形CEGF 平行四边形,∴FG ∥CE ,FG =CE .6.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME. 特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系; (2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME =3MB .证明见解析;(3)ME =MB·tan 2α.【解析】 【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可; (2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan 2α.证明方法类似; 【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD , ∴MC=MA=MD , ∵BA=BC ,∴BM垂直平分AC,∵∠ABC=90°,BA=BC,∠ABC=45°,∠ACB=∠DCE=45°,∴∠MBE=12∵AB∥DE,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED,∵MC=MD,∴EM垂直平分线段CD,EM平分∠DEC,∴∠MEC=45°,∴△BME是等腰直角三角形,∴BM=ME,BM⊥EM.故答案为BM=ME,BM⊥EM.(2)ME=3MB.证明如下:连接CM,如解图所示.∵DC⊥AC,M是边AD的中点,∴MC=MA=MD.∵BA=BC,∴BM垂直平分AC.∵∠ABC=120°,BA=BC,∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°.∴∠MBE=12∵AB∥DE,∴∠ABE+∠DEC=180°,∴∠DEC=60°,∴∠DCE=∠DEC=60°,∴△CDE是等边三角形,∴EC=ED.∵MC=MD,∴EM垂直平分CD,EM平分∠DEC,∠DEC=30°,∴∠MEC=12∴∠MBE+∠MEB=90°,即∠BME=90°.在Rt△BME中,∵∠MEB=30°,∴ME =3MB .(3) 如图3中,结论:EM=BM•tan2α.理由:同法可证:BM ⊥EM ,BM 平分∠ABC , 所以EM=BM•tan 2α. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.7.在矩形纸片ABCD 中,AB=6,BC=8,现将纸片折叠,使点D 与点B 重合,折痕为EF ,连接DF .(1)说明△BEF 是等腰三角形; (2)求折痕EF 的长.【答案】(1)见解析;(2).【解析】 【分析】(1)根据折叠得出∠DEF =∠BEF ,根据矩形的性质得出AD ∥BC ,求出∠DEF =∠BFE ,求出∠BEF =∠BFE 即可;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,根据矩形的性质得出EM =AB =6,AE =BM ,根据折叠得出DE =BE ,根据勾股定理求出DE 、在Rt △EMF 中,由勾股定理求出即可. 【详解】(1)∵现将纸片折叠,使点D 与点B 重合,折痕为EF ,∴∠DEF =∠BEF .∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF ,即△BEF 是等腰三角形;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,所以EM =AB =6,AE =BM . ∵现将纸片折叠,使点D 与点B 重合,折痕为EF ,∴DE =BE ,DO =BO ,BD ⊥EF . ∵四边形ABCD 是矩形,BC =8,∴AD =BC =8,∠BAD =90°. 在Rt △ABE 中,AE 2+AB 2=BE 2,即(8﹣BE )2+62=BE 2,解得:BE ==DE =BF ,AE =8﹣DE =8﹣==BM ,∴FM =﹣=.在Rt △EMF 中,由勾股定理得:EF ==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.8.如图,在平面直角坐标系xOy 中,四边形OABC 的顶点A 在x 轴的正半轴上,OA=4,OC=2,点D 、E 、F 、G 分别为边OA 、AB 、BC 、CO 的中点,连结DE 、EF 、FG 、GD . (1)若点C 在y 轴的正半轴上,当点B 的坐标为(2,4)时,判断四边形DEFG 的形状,并说明理由.(2)若点C 在第二象限运动,且四边形DEFG 为菱形时,求点四边形OABC 对角线OB 长度的取值范围.(3)若在点C 的运动过程中,四边形DEFG 始终为正方形,当点C 从X 轴负半轴经过Y 轴正半轴,运动至X 轴正半轴时,直接写出点B 的运动路径长.【答案】(1)正方形(2)256OB <<(3)2π【解析】分析:(1)连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.(2)由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=25,当点C 在x 轴上时,AC=6, 故可得结论; (3)根据题意计算弧长即可.详解:(1)正方形,如图1,证明连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形. (2)256OB <<如图2,由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=25,当点C 在x 轴上时,AC=6, ∴256OB << ; (3)2π.如图3,当四边形DEFG 是正方形时,OB ⊥AC ,且OB=AC ,构造△OBE ≌△ACO ,可得B 点在以E (0,4)为圆心,2为半径的圆上运动.所以当C 点从x 轴负半轴到正半轴运动时,B 点的运动路径为2π .图1 图2 图3点睛:本题主要考查了正方形的判定,菱形的性质以及弧长的计算.灵活运用正方形的判定定理和菱形的性质运用是解题的关键.9.如图,在菱形ABCD 中,AB=6,∠ABC=60°,AH ⊥BC 于点H .动点E 从点B 出发,沿线段BC 向点C 以每秒2个单位长度的速度运动.过点E 作EF ⊥AB ,垂足为点F .点E 出发后,以EF 为边向上作等边三角形EFG ,设点E 的运动时间为t 秒,△EFG 和△AHC 的重合部分面积为S .(1)CE= (含t 的代数式表示). (2)求点G 落在线段AC 上时t 的值. (3)当S >0时,求S 与t 之间的函数关系式. (4)点P 在点E 出发的同时从点A 出发沿A-H-A 以每秒2个单位长度的速度作往复运动,当点E 停止运动时,点P 随之停止运动,直接写出点P 在△EFG 内部时t 的取值范围.【答案】(1)6-2t;(2)t=2;(3)当<t≤2时,S=t2+t-3;当2<t≤3时,S=-t2+t-;(4)<t<.【解析】试题分析:(1)由菱形的性质得出BC=AB=6得出CE=BC-BE=6-2t即可;(2)由菱形的性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形的性质和三角函数得出∠GEF=60°,GE=EF=BE•si n60°=t,证出∠GEC=90°,由三角函数求出CE==t,由BE+CE=BC得出方程,解方程即可;(3)分两种情况:①当<t≤2时,S=△EFG的面积-△NFN的面积,即可得出结果;②当2<t≤3时,由①的结果容易得出结论;(4)由题意得出t=时,点P与H重合,E与H重合,得出点P在△EFG内部时,t的不等式,解不等式即可.试题解析:(1)根据题意得:BE=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CE=BC-BE=6-2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GEF=60°,GE=EF=BE•sin60°=t,∵EF⊥AB,∴∠BEF=90°-60°=30°,∴∠GEB=90°,∴∠GEC=90°,∴CE==t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分两种情况:①当<t≤2时,如图2所示:S=△EFG的面积-△NFN的面积=××(t)2-××(-+2)2=t2+t-3,即S=t2+t-3;当2<t≤3时,如图3所示:S=t2+t-3-(3t-6)2,即S=-t2+t-;(4)∵AH=AB•sin60°=6×=3,3÷2=,3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,-<(t-)×2<t-(2t-3)+(2t-3),解得:<t<;即点P在△EFG内部时t的取值范围为:<t<.考点:四边形综合题.10.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。
备战中考数学压轴题之平行四边形(备战中考题型整理,突破提升)含详细答案一、平行四边形1.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°.【解析】试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;(2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立;(3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO 平分∠BHG,即∠BHO=45°.试题解析:(1)①∵四边形ABCD为正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四边形ABCD为正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(2)由(1)可知AG⊥BE.如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON与△BOM中,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN为正方形,∴HO平分∠BHG.(3)将图形补充完整,如答图2示,∠BHO=45°.与(1)同理,可以证明AG ⊥BE .过点O 作OM ⊥BE 于点M ,ON ⊥AG 于点N ,与(2)同理,可以证明△AON ≌△BOM ,可得OMHN 为正方形,所以HO 平分∠BHG ,∴∠BHO=45°.考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质2.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB 2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE ,又∵AC 平分∠DAB ,∴∠CAB=45°,∴∠E=45°.∴AC=CE .又∵∠D+∠ABC=180°,∠D=∠CBE ,∴△CDA ≌△CBE ,∴AD=BE ,∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°,∴AE =245AC AC cos ︒= ∴2AD AB AC +=.3.如图,△ABC 是等边三角形,AB=6cm ,D 为边AB 中点.动点P 、Q 在边AB 上同时从点D 出发,点P 沿D→A 以1cm/s 的速度向终点A 运动.点Q 沿D→B→D 以2cm/s 的速度运动,回到点D 停止.以PQ 为边在AB 上方作等边三角形PQN .将△PQN 绕QN 的中点旋转180°得到△MNQ .设四边形PQMN 与△ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(0<t <3).(1)当点N 落在边BC 上时,求t 的值.(2)当点N 到点A 、B 的距离相等时,求t 的值.(3)当点Q 沿D→B 运动时,求S 与t 之间的函数表达式.(4)设四边形PQMN 的边MN 、MQ 与边BC 的交点分别是E 、F ,直接写出四边形PEMF 与四边形PQMN 的面积比为2:3时t 的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题4.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.5.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C 关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为2,请直接写出△ACC′的面积最大值.【答案】(1)45°;(2)BP+DP2AP,证明详见解析;(32﹣1.【解析】【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=12∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【详解】(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=12∠ADC=45°;(2)结论:BP+DP=2AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠PAP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵BA DABAP DAP AP AP'=⎧⎪∠=∠⎨='⎪⎩,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'2AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=12AC•C'G,Rt △ABC 中,AB =BC =2, ∴AC =22(2)(2)2+=,即AC 为定值,当C 'G 最大值,△AC 'C 的面积最大,连接BD ,交AC 于O ,当C '在BD 上时,C 'G 最大,此时G 与O 重合,∵CD =C 'D =2,OD =12AC =1, ∴C 'G =2﹣1,∴S △AC 'C =112(21)2122AC C G '•=⨯-=-. 【点睛】本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.6.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证△ADB ≌△AOB ;②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344+. 【解析】【分析】(1)如图①,在Rt △ACD 中求出CD 即可解决问题;(2)①根据HL 证明即可;②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A (5,0),B (0,3),∴OA =5,OB =3,∵四边形AOBC 是矩形,∴AC =OB =3,OA =BC =5,∠OBC =∠C =90°,∵矩形ADEF 是由矩形AOBC 旋转得到,∴AD =AO =5,在Rt △ADC 中,CD =22AD AC -=4,∴BD =BC -CD =1,∴D (1,3).(2)①如图②中,由四边形ADEF 是矩形,得到∠ADE =90°,∵点D 在线段BE 上,∴∠ADB =90°,由(1)可知,AD =AO ,又AB =AB ,∠AOB =90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-34)=30334-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(3430334+综上所述,303344-≤S≤303344+.【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.7.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.【答案】(1)见解析;(2)S平行四边形ADBC273【解析】【分析】(1)在Rt△ABC中,E为AB的中点,则CE=12AB,BE=12AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S平行四边形BCFD=3×3393,S△ACF=12×3×3393,S平行四边形ADBC273.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为?【答案】4655或22【解析】【分析】分两种情况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=2222+DN=22B N'+;【详解】如图1,当∠AB′F=90°时,此时A、B′、E三点共线,∵∠B=90°,∴AE=2222AB BE=86++=10,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,在Rt△CB′N中,由勾股定理得,B′D=2222+DN= 3.2 5.6B N'+ =4655;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,在Rt△CB′N中,由勾股定理得,2222+DN=22B N'+ =22;综上,可得B′D的长为4655或22.【点睛】本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.9.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.10.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.11.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【答案】(1)AG2=GE2+GF2(2)【解析】试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.试题解析:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质12.(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.【答案】(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3)41【解析】分析:(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 详解:(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中, AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩ , ∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN , ∵2AB AM BC AN ==, ∴AB AC AM AN =, ∴△ABM ~△ACN∴BM AB CN AC =, ∴CN AC BM AB ==cos45°=22, ∴222BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC , AM=2222108241AC MC +=+=,∴EF=AM=241.点睛:本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.13.如图1,矩形ABCD 中,AB=8,AD=6;点E 是对角线BD 上一动点,连接CE ,作EF ⊥CE 交AB 边于点F ,以CE 和EF 为邻边作矩形CEFG ,作其对角线相交于点H . (1)①如图2,当点F 与点B 重合时,CE= ,CG= ;②如图3,当点E 是BD 中点时,CE= ,CG= ;(2)在图1,连接BG ,当矩形CEFG 随着点E 的运动而变化时,猜想△EBG 的形状?并加以证明;(3)在图1,CG CE的值是否会发生改变?若不变,求出它的值;若改变,说明理由; (4)在图1,设DE 的长为x ,矩形CEFG 的面积为S ,试求S 关于x 的函数关系式,并直接写出x 的取值范围.【答案】(1)245,185 ,5,154 ;(2)△EBG 是直角三角形,理由详见解析;(3)34 ;(4)S=34x 2﹣485x+48(0≤x≤325). 【解析】【分析】(1)①利用面积法求出CE ,再利用勾股定理求出EF 即可;②利用直角三角形斜边中线定理求出CE ,再利用相似三角形的性质求出EF 即可;(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;(3)只要证明△DCE ∽△BCG ,即可解决问题;(4)利用相似多边形的性质构建函数关系式即可;【详解】(1)①如图2中,在Rt △BAD 中,BD=22AD AB +=10, ∵S △BCD =12•CD•BC=12•BD•CE , ∴CE=245.CG=BE=2224186()=55-. ②如图3中,过点E 作MN ⊥AM 交AB 于N ,交CD 于M .∵DE=BE,∴CE=12BD=5,∵△CME∽△ENF,∴CM ENCE EF=,∴CG=EF=154,(2)结论:△EBG是直角三角形.理由:如图1中,连接BH.在Rt△BCF中,∵FH=CH,∴BH=FH=CH,∵四边形EFGC是矩形,∴EH=HG=HF=HC,∴BH=EH=HG,∴△EBG是直角三角形.(3)F如图1中,∵HE=HC=HG=HB=HF,∴C、E、F、B、G五点共圆,∵EF=CG,∴∠CBG=∠EBF,∵CD∥AB,∴∠EBF=∠CDE,∴∠CBG=∠CDE,∵∠DCB=∠ECG=90°,∴∠DCE=∠BCG,∴△DCE∽△BCG,∴6384CG BCCE DC===.(4)由(3)可知:34CG CDCE CB==,∴矩形CEFG∽矩形ABCD,∴2264CEFGABCDS CE CES CD==矩形矩形(),∵CE2=(325-x)2+245)2,S矩形ABCD=48,∴S矩形CEFG=34[(325-x)2+(245)2].∴矩形CEFG的面积S=34x2-485x+48(0≤x≤325).【点睛】本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题.14.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°.∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF.又∵∠A=∠B=90°,∴△AHE≌△BEF.同理可证△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)过点G作GM⊥BC交BC的延长线于M,连接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90°,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面积不能等于2.说明一:∵若S△GFC=2,则12-a=2,∴a=10.此时,在△BEF中,.在△AHE中,,∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2.说明二:△GFC的面积不能等于2.∵点H在AD上,∴菱形边EH的最大值为,∴BF的最大值为.又∵函数S△GFC=12-a的值随着a的增大而减小,∴S△GFC的最小值为.又∵,∴△GFC的面积不能等于2.15.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CP FP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.。
四边形解答题1、(2013湖南省张家界市)如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC. 设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1) 求证:OE=OF(2)若CE =12,CF =5,求OC 的长;(3) 当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.2、(2013娄底市)23.某校九年级学习小组在探究学习过程中,用两块完全相同的且含︒60角的直角三角板ABC 与AFE 按如图(1)所示位置放置放置,现将AEF t △R 绕A 点按逆时针方向旋转角()︒<<︒900αα,如图(2),AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P . (1)求证:AN AM =;(2)当旋转角︒=30α时,四边形ABPE 是什么样的特殊四边形?并说明理由.3(2013年河南省)如图,在等边三角形ABC 中,BC=6cm. 射线AG//BC ,点E 从点A 出发沿射线AG 以1cm/s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为t(s). (1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ; (2)填空:①当t 为_________s 时,四边形ACFE 是菱形;②当t 为_________s 时,以A 、F 、C 、E 为顶点的四边形是直角梯形.4、(贵州遵义)如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N. (1)求证:CM=CN ; (2)若ΔCMN 的面积与ΔCDN 的面积比为3:1,求DNMN的值5.(2013•玉林)如图,在直角梯形ABCD 中,AD ∥BC ,AD ⊥DC ,点A 关于对角线BD 的对称点F 刚好落在腰DC 上,连接AF 交BD 于点E ,AF 的延长线与BC 的延长线交于点G ,M ,N 分别是BG ,DF 的中点. (1)求证:四边形EMCN 是矩形;(2)若AD=2,S 梯形ABCD =,求矩形EMCN 的长和宽.6、(2013年农垦牡丹江管理局)如图,平面直角坐标系中,矩形OABC 的对角线AC=12,tan ∠ACO=33, (1) 求B 、C 两点的坐标;(2) 把矩形沿直线DE 对折使点C 落在点A 处,DE 与AC 相交于点F ,求直线DE 的解析式;(3) 若点M 在直线DE 上,平面内是否存在点N,使以O 、F 、M 、N 为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.将三角板放在正方形ABCD 上,使三角板的直角顶点与D 点重合。
2013年中考备考往年数学真题汇编——四边形1、(2012芜湖)如图,在梯形ABCD 中,AD BC ∥,9038BD CD BDC AD BC =∠===,°,,求AB 的长.(2012北京市)如图,在梯形ABCD 中,AD ∥BC ,∠B=90 ,∠C=45 ,AD=1,BC=4,E 为AB 中点,EF ∥DC 交BC 于点F,求EF 的长.(2012甘肃定西)如图13,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点,求证: (1)、A C E B C D △≌△; (2)、222A DD BD E +=.(2012广东梅州)如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)、求证:CDF BGF △∽△;(2)、当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.(2012广东中山)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直. (1)、证明:Rt △ABM ∽Rt △MCN ;(2)、设BM=x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)、当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时x 的值.ADCBO第1题图图13D C FE ABG图8DBAMC N(2012福建莆田)如图菱形ABCD 的边长为2,对角线BD=2,E 、F 分别是AD 、CD 上的两个动点,且满足AE+CF=2. (1)、求证:△BDF ≌△BCF ;(2)、判断△BEF 的形状,并说明理由。
同时指出△BCF 是由△BDE 经过如何变换得到?(2012山东泰安)如图所示,在直角梯形ABCD 中,∠ABC=90°,AD ∥BC ,AB=BC ,E 是AB 的中点,CE ⊥BD 。
第五章 四边形
【命题分析】
四边形知识是整个初中阶段很重要的知识,主要包括平行四边形、矩形、菱形、正方形的性质及判定方法等知识.
四边形的内角和、外角和定理,不规则四边形面积的求法是考查的重点,多以计算题的形式出现。
实际应用中与勾股定理、三角形面积、特殊四边形面积相联系.
利用平行四边形的性质和判定证明线段相等或角相等是中考的重点内容,常和三角形全等、相似以及圆的知识相结合来考查,有时也会把平行四边形问题与函数、方程结合来考查.是中考的必考内容.
特殊的平行四边形是中考中经常出现的,利用它们的性质求面积、周长是考查的重点,经常与方程、函数知识相结合来考查学生的应用能力.另外特殊平行四边形的问题常和平移、旋转等问题相结合,一些探索性、开放性的题目也是常见的.
【押题成果】
1. 如图1,□ABCD 中,AC .BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( ).
A .3
B .6
C .12
D .24
答案:C 【解析】本题主要考查平行四边形是中心对称图形的性质,不管怎样分割,旋转180°后,总能找到与之重合的图形,故阴影部分的面积等于平行四边形面积的一半.
【方法技巧】把△BCD 中的阴影放到△ABD 中,从而阴影的面积就转换成三角形的面积,从而问题得到解决
.
图1
2. 如图,在平行四边形ABCD 中,已知AD =8㎝,AB =6㎝,DE 平分∠AD 交BC 边于点E ,则BE 等于( )
A .2cm
B .4cm
C .6cm
D .8cm 答案:A.
【解析】对于平行四边形以及特殊的平行四边形来说,我们除了得到它们的对边、对角、以及对角线的一些结论外,平行线的性质也不容忽视.本题利用了“平行线+角平分线”构造等腰三角形.
【方法技巧】熟练掌握平行四边形的性质及经过分割后形成一些特殊三角形是解决此类问题的关键.
3. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =2,则矩形的对角线AC 的长是( )
A .2
B .4 C
.D
.答案:B.
【解析】矩形的地对角线相等且互相平分给我们构造了等腰三角形,所以解题过程中要注意等腰三角形的性质的应用.同时因为矩形的的四个内角是直角,直角三角形的知识也用充分考虑.在矩形中看到“30°、60°、120°”以及“直角边等与对角线的一半”考虑等边三角形的存在. 【方法技巧】熟练掌握特殊四边形的性质,以及可能形成的特殊三角形是解决此类问题的基
础.
4. 如图,菱形ABCD 的对角线相交于点O ,请你添加一个条
件: ,使得该菱形为正方形.
解:AB BC ⊥或AC BD =或AO BO =等.
【解析】正方形与菱形比较菱形不具备的性质:邻边互相垂直;对
角线相等.因此,答题时从这两方面入手就可以.
【方法技巧】熟记各种特殊四边形的判定方法是解决问题的基础,仔细分析看看题目的条件是从什么图形开始去判定另一个图形的这很关键.如果所给条件都不能
直接得到问题的答
A B C D
E
案时,需要将条件向纵深转化.
5. 如图,在□ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.
(1)求证:BE DG =;
(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形
ABFG 是菱形?证明你的结论.
答案:证明:(1)∵四边形ABCD 是平行四边形,∴AB CD =.
∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成.∴CG AD ⊥. ∴90AEB CGD ∠=∠=°.
∵AE CG =,∴Rt Rt ABE CDG △≌△.∴BE DG =.
(2)当32
BC AB =时,四边形ABFC 是菱形. ∵AB GF ∥,AG BF ∥,∴四边形ABFG 是平行四边形. ∵Rt ABE △中,60B ∠=°,∴30BAE ∠=°,∴12BE AB =
. ∵32BE CF BC AB ==,,∴12
EF AB =.∴AB BF =.∴四边形ABFG 是菱形. 【解析】由平行四边形的性质得到边和角的相等,由平移可得边和角的相等.所以要证明两条线段相等,可以考虑两三角角形全等.若四边形AB FG 是菱形,则AB=BF.因为菱形中有一个60°角,所以菱形最短对角线和两邻边组成等边三角形.根据等腰三角形“三线合一”得到BE=EF ,又因为BE=FC ,所以 32
BC AB =. 【方法技巧】题目中边、角相等的条件较多时,考虑三角形全等.分析要填加的条件时,将所给条件和所给结论都当作条件看待,当分析出条件时,将所给条件和分析得出的条件作为条件,证明问题中的结论.
6. 如图,小亮用六块形状、大小完全相同的等腰梯形拼成一个四边形,则图中α∠的度数是( )
A .60°
B .55°
C .50°
D .45°
解:
A.
【解析】本题考查等腰梯形的性质及镶嵌知识,观察图形,在等腰梯形的一个上底角顶点处有三个上底角,因而等腰梯形上底角等于120°,所以
∠=60°.
【方法技巧】部分学生对于本题不易找到解题思路,不能完整解答,通常是进行猜测.突破方法:牢牢抓住图中是六块全等的等腰梯形,因而各对应底角相等.本题解题关键:以三个等腰梯形形成镶嵌的某个顶点处分析,三个相等的底角和为360度,所以每个上底角等于120度,下底角为60度.。