物理 圆周运动经典习题
- 格式:doc
- 大小:307.00 KB
- 文档页数:11
一、第六章 圆周运动易错题培优(难)1.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。
装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)A .两细线张力均增大B .细线AB 中张力先变小,后为零,再增大C .细线AC 中张力先不变,后增大D .当AB 中张力为零时,角速度可能为54g L【答案】BCD 【解析】 【分析】 【详解】AB .当静止时,受力分析如图所示由平衡条件得T AB =mg tan37°=0.75mg T AC =cos37mg=1.25mg若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图mg tan θ1=m (l sinθ1)ωmin 2得ωmin 54g l当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°mg tan θ2=mωmax 2l sin θ2得ωmax =53g l所以ω取值范围为54g l ≤ω≤53g l绳子AB 的拉力都是0。
由以上的分析可知,开始时AB 是拉力不为0,当转速在54g l ≤ω≤53gl时,AB 的拉力为0,角速度再增大时,AB 的拉力又会增大,故A 错误;B 正确;C .当绳子AC 与竖直方向之间的夹角不变时,AC 绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg ;当转速大于54gl后,绳子与竖直方向之间的夹角增大,拉力开始增大;当转速大于53gl后,绳子与竖直方向之间的夹角不变,AC 上竖直方向的拉力不变,水平方向的拉力增大,则AC 的拉力继续增大;故C 正确; D .由开始时的分析可知,当ω取值范围为54g l ≤ω≤53g l时,绳子AB 的拉力都是0,故D 正确。
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .3.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。
一、第六章 圆周运动易错题培优(难)1.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。
C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。
已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( )A .当23grμω=时,A 、B 即将开始滑动 B .当2grμω=32mgμ C .当grμω=C 受到圆盘的摩擦力为0D .当25grμω=C 将做离心运动 【答案】BC 【解析】 【详解】A. 当A 开始滑动时有:2033A f mg m r μω==⋅⋅解得:0grμω=当23ggrrμμω=<AB 未发生相对滑动,选项A 错误;B. 当2ggrrμμω=<时,以AB 为整体,根据2F mr ω向=可知 29332F m r mg ωμ⋅⋅=向= B 与转盘之间的最大静摩擦力为:23Bm f m m g mg μμ=+=()所以有:Bm F f >向此时细线有张力,设细线的拉力为T , 对AB 有:2333mg T m r μω+=⋅⋅对C 有:232C f T m r ω+=⋅⋅解得32mg T μ=,32C mgf μ= 选项B 正确;C. 当ω=时,AB 需要的向心力为:2339AB Bm F m r mg T f ωμ'⋅⋅=+==解得此时细线的拉力96Bm T mg f mg μμ'-== C 需要的向心力为:2326C F m r mg ωμ⋅⋅==C 受到细线的拉力恰好等于需要的向心力,所以圆盘对C 的摩擦力一定等于0,选项C 正确;D. 当ω=C 有: 212325C f T m r mg ωμ+=⋅⋅=剪断细线,则1235C Cm f mg f mg μμ=<= 所以C 与转盘之间的静摩擦力大于需要的向心力,则C 仍然做匀速圆周运动。
圆周运动习题及答案圆周运动习题及答案圆周运动是物理学中一个重要的概念,它涉及到物体在圆周轨道上运动的问题。
在解决这类习题时,我们需要掌握相关的知识和技巧。
本文将通过一些典型的圆周运动习题,来探讨解题的方法和答案。
1. 问题:一个半径为2米的圆周上,一个物体以每秒2π弧度的角速度绕圆周运动。
求物体的线速度。
解析:线速度是物体在圆周轨道上单位时间内所走过的弧长。
由于角速度是每秒2π弧度,所以物体在1秒内走过的弧长就是2π乘以半径,即2π×2=4π米。
因此,物体的线速度为4π米/秒。
2. 问题:一个质点以每秒3米的速度绕半径为4米的圆周运动,求质点的角速度。
解析:角速度是物体单位时间内所转过的角度。
由于质点的速度是每秒3米,而圆周的半径是4米,所以质点在1秒内走过的弧长就是3米。
根据圆周的弧长公式,弧长等于半径乘以角度,我们可以得到角度为3/4的弧度。
因此,质点的角速度为每秒3/4弧度。
3. 问题:一个质点以每秒4π弧度的角速度绕半径为5米的圆周运动,求质点的线速度。
解析:线速度是物体在圆周轨道上单位时间内所走过的弧长。
由于角速度是每秒4π弧度,所以物体在1秒内走过的弧长就是4π乘以半径,即4π×5=20π米。
因此,质点的线速度为20π米/秒。
4. 问题:一个质点以每秒2米的速度绕半径为3米的圆周运动,求质点的角速度。
解析:角速度是物体单位时间内所转过的角度。
由于质点的速度是每秒2米,而圆周的半径是3米,所以质点在1秒内走过的弧长就是2米。
根据圆周的弧长公式,弧长等于半径乘以角度,我们可以得到角度为2/3的弧度。
因此,质点的角速度为每秒2/3弧度。
通过以上的习题,我们可以看出,在解决圆周运动问题时,我们需要运用到圆周的基本公式和相关概念。
角速度和线速度是圆周运动中常见的物理量,它们之间存在着一定的关系。
通过理解和掌握这些概念,我们能够更好地解决圆周运动习题。
总结起来,圆周运动习题的解答需要运用到圆周的基本公式和相关概念,如角速度和线速度。
高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,AB 是光滑的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,将弹簧水平放置,一端固定在A 点.现使质量为m 的小滑块从D 点以速度v0=进入轨道DCB,然后沿着BA运动压缩弹簧,弹簧压缩最短时小滑块处于P点,重力加速度大小为g,求:(1)在D点时轨道对小滑块的作用力大小F N;(2)弹簧压缩到最短时的弹性势能E p;(3)若水平轨道AB粗糙,小滑块从P点静止释放,且PB=5l,要使得小滑块能沿着轨道BCD运动,且运动过程中不脱离轨道,求小滑块与AB间的动摩擦因数μ的范围.【答案】(1)(2)(3)μ≤0.2或0.5≤μ≤0.7【解析】(1)解得(2)根据机械能守恒解得(3)小滑块恰能能运动到B点解得μ=0.7小滑块恰能沿着轨道运动到C点解得μ=0.5所以0.5≤μ≤0.7小滑块恰能沿着轨道运动D点解得μ=0.2所以μ≤0.2综上μ≤0.2或0.5≤μ≤0.74.如图所示,半径为r的圆筒绕竖直中心轴转动,小橡皮块紧贴在圆筒内壁上,它与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?(设最大静摩擦力等于滑动摩擦力)【答案】g rμ 【解析】要使A 不下落,则小物块在竖直方向上受力平衡,有f =mg当摩擦力正好等于最大静摩擦力时,圆筒转动的角速度ω取最小值,筒壁对物体的支持力提供向心力,根据向心力公式,得2N m r ω= 而f =μN解得圆筒转动的角速度最小值为g rωμ=综上所述本题答案是:g rμ 点睛:解本题要明确物块刚好不下滑的条件是什么,然后结合受力求解角速度的大小.5.如图所示倾角45θ=o 的粗糙直导轨与半径0.4R m =的光滑圆(部分)导轨相切,切点为B ,O 为圆心,CE 为竖直直径,整个轨道处在竖直平面内.一质量1m kg =的小滑块从直导轨上的D 点无初速度下滑,小滑块滑上圆环导轨后恰好能从圆环导轨的最高点C 水平飞出.已知滑块与直导轨间的动摩擦因数0.5μ=,重力加速度210/g m s =,不计空气阻力.求:()1滑块在圆导轨最低点E 时受到的支持力大小;()2滑块从D 到B 的运动过程中损失的机械能.(计算结果可保留根式)【答案】(1) 60N F = (2)(622J E =+V 【解析】 【详解】()1滑块在C点时由重力提供向心力,有:2c mvmgR=滑块从E点到C点的运动过程中,由机械能守恒可知:2211222E Cmv mg R mv=⨯+在E点有:2EmvF mgR-=解得:60F N=()2滑块从B点到E点过程,由机械能守恒可知:()22111cos4522B Emv mgR mv+-=o滑块从D点到B点过程有:22Bv ax=根据牛顿第二定律知sin45cos45mg mg mao oμ-=由功能关系可知,损失的机械能cos45E mg xoVμ=⋅解得:()622E J=+V.【点睛】该题的突破口是小滑块滑上圆环导轨后恰好能从圆环导轨的最高点C水平飞出,由重力提供向心力.要分析清楚滑块的运动情况,抓住每个过程的物理规律.6.如图所示,用两根长度均为l的细线将质量为m的小球悬挂在水平的天花板下面,轻绳与天花板的夹角为θ.将细线BO剪断,小球由静止开始运动.不计空气阻力,重力加速度为g.求:(1)剪断细线前OB对小球拉力的大小;(2)剪断细线后小球从开始运动到第一次摆到最高点的位移大小;(3)改变B点位置,剪断BO后小球运动到最低点时细线OA的拉力F2与未剪断前细线的拉力F1之比21FF的最大值.【答案】(1)2sinmgFθ=(2)2cosx lθ=(3)21max94FF=【解析】(1)1sin2F mgθ=得2sin mgF θ=(2)小球运动到左侧最高点时绳与天花板夹角为α mglsin α=mglsin θ 得α=θ X=2lcos θ(3)小球运动到最低点时速度为v21(1sin )2mgl mv θ-=22v F mg m l-=F 1=F得: 2216sin 4sin F F θθ=- 当3sin 4θ=时可得21max 9 =4F F7.如图所示,光滑圆弧的圈心为O ,半径3m R =,圆心角53θ=︒,C 为圆弧的最低点,C 处切线方向水平,与一足够长的水平面相连.从A 点水平抛出一个质量为0.3kg 的小球,恰好从光滑圆弧的B 点的切线方向进人圆弧,进人圆弧时无机械能损失.小球到达圆弧的最低点C 时对轨道的压力为7.9N ,小球离开C 点进人水平面,小球与水平面间的动摩擦因数为0.2.(不计空气阻力,g 取210m/s ,sin530.8︒=,cos530.6︒=),求:(1)小球到达圆弧B 点速度的大小; (2)小球做平抛运动的初速度0v ; (3)小球在水平面上还能滑行多远.【答案】(1)5m/s B v =;(2)03m/s v =;(3)12.25x m = 【解析】 【详解】(1)对C 点小球受力分析,由牛顿第二定律可得:2Cv F mg m R-=解得7m /s c v =从B 到C 由动能定理可得:2211(1)22c B mgR cos mv mv θ-=- 解得:5m /s B v =(2)分解B 点速度0cos 3m /s B v v θ==(3)由C 至最后静止,由动能定理可得:2102c mgx mv μ-=-解得12.25m x =8.如图所示,一段粗糙的倾斜轨道,在B 点与半径R =0.5m 的光滑圆弧轨道BCD 相切并平滑连接.CD 是圆轨道的竖直直径,OB 与OC 夹角θ=53°.将质量为m =1kg 的小滑块从倾斜轨道上的A 点由静止释放,AB =S ,小滑块与倾斜轨道间的动摩擦因数μ=0.5.sin53°=0.8,cos53°=0.6,g =10m/s 2.求: (1)若S =2m ,小物块第一次经过C 点时的速度大小; (2)若S =2m ,小物块第一次经过C 点时对轨道的压力大小; (3)若物块能沿轨道到达D 点,求AB 的最小值S ’.【答案】(1)26m/s (2)58N (3)S=2.1m 【解析】 【分析】 【详解】(1)对小滑块从A 到C 的过程应用动能定理2c 1sin (1cos )cos 02mgS mgR mgS mv θθμθ+--=-代入数据得c 26m/s v =(2)C 点时对滑块应用向心力公式2CN v F mg m R-=代入数据得58N N F =根据牛顿第三定律得58N N F F ==压(3)小滑块恰能通过最高点D 时,只有重力提供向心力2Dv mg m R=代入数据得5m/s D v =对小滑块从静止释放到D 点全过程应用动能定理''2D 1sin (1cos )cos 02mgS mgR mgS mv θθμθ-+-=- 代入数据得2.1m S '= 【点睛】本题分析清楚物体运动过程是解题的前提与关键,应用动能定理与牛顿第二定律可以解题,解题时注意物体做圆周运动临界条件的应用.9.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上与圆弧的圆心O 等高的P 点由静止释放,结果它能在两轨道间做往返运动.已知物体与轨道AB 间的动摩擦因数为μ,重力加速度为g .试求:(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s ;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力的大小;(3)为使物体能顺利到达圆弧轨道的最高点D (E 、O 、D 为同一条竖直直径上的3个点),释放点距B 点的距离L 应满足什么条件. 【答案】(1)2(sin cos )tan B gR v θμθθ-=;RL μ= (2)(32cos )N F mg θ=-;(3)(32cos )2(sin cos )RL θθμθ+-…【解析】 【分析】 【详解】(1)设物体释放后,第一次到达B 处的速度为1v ,根据动能定理可知:21cos 1cos cos sin 2R mgR mg mv θθμθθ-= 解得:B v =物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有cos cos 0mgR mgL θμθ-=得物体在AB 轨道上通过的总路程为RL μ=(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为2v v ,由动能定理知:221(1cos )2v mgR m θ-=在E 点,由牛顿第二定律有22N mv F mg R-= 解得物体受到的支持力(32cos )N F mg θ=-根据牛顿第三定律,物体对轨道的压力大小为(32cos )N N F F mg θ'==-,方向竖直向下.(3)设物体刚好到达D 点时的速度为D v 此时有2Dmv mg R= 解得:D v =设物体恰好通过D 点时释放点距B 点的距离为0L ,有动能定理可知:2001[sin (1cos )]cos 2D mg L R mg L mv θθμθ-+-=联立解得:0(32cos )2(sin cos )RL θθμθ+=-则:(32cos )2(sin cos )R L θθμθ+-… 答案:(1)2(sin cos )tan B gR v θμθθ-=;RL μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )RL θθμθ+-…10.(2011年南通一模)如图所示,BCDG 是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R ,下端与水平绝缘轨道在B 点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m 、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg ,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.(1)若滑块从水平轨道上距离B 点s =3R 的A 点由静止释放,滑块到达与圆心O 等高的C 点时速度为多大?(2)在(1)的情况下,求滑块到达C 点时受到轨道的作用力大小;(3)改变s 的大小,使滑块恰好始终沿轨道滑行,且从G 点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小. 【答案】(1) (2)(3)【解析】 ①由动能定理有:② 当时,最小。
高中物理 必修2 【圆周运动】典型题1.如图所示,乘坐游乐园的翻滚过山车时,质量为m 的人随过山车在竖直平面内旋转,下列说法正确的是( )A .过山车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B .人在最高点时对座位不可能产生大小为mg 的压力C .人在最低点时对座位的压力等于mgD .人在最低点时对座位的压力大于mg解析:选D .人过最高点时,F N +mg =m v 2R ,当v ≥gR 时,即使人不用保险带也不会掉下来,当v =2gR 时,人在最高点时对座位产生的压力为mg ,A 、B 错误;人在最低点时具有竖直向上的加速度,处于超重状态,故人此时对座位的压力大于mg ,C 错误,D 正确.2. (多选)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )A .运动周期为2πRωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为m ω2R解析:选BD .座舱的周期T =2πR v =2πω,A 错.根据线速度与角速度的关系,v =ωR ,B 对.座舱做匀速圆周运动,摩天轮对座舱的作用力与重力大小不相等,其合力提供向心力,合力大小为F 合=m ω2R ,C 错,D 对.3.如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g ,估算知该女运动员( )A .受到的拉力为GB .受到的拉力为2GC .向心加速度为3gD .向心加速度为2g解析:选B .对女运动员受力分析如图所示,F 1=F cos 30°,F 2=F sin 30°,F 2=G ,由牛顿第二定律得F 1=ma ,所以a =3g ,F =2G ,B 正确.4.风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被挡住.已知风轮叶片转动半径为 r ,每转动n 圈带动凸轮圆盘转动一圈.若某段时间Δt 内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A .转速逐渐减小,平均速率为4πnrΔtB .转速逐渐减小,平均速率为8πnrΔtC .转速逐渐增大,平均速率为4πnrΔtD .转速逐渐增大 ,平均速率为8πnrΔt解析:选B .根据题意,从题图(b)可以看出,在Δt 时间内,探测器接收到光的时间在增长,凸轮圆盘的挡光时间也在增长,可以确定圆盘凸轮的转动速度在减小;在Δt 时间内可以看出有4次挡光,即凸轮圆盘转动4周,则风轮叶片转动了4n 周,风轮叶片转过的弧长为l =4n ×2πr ,转动速率为:v =8πnrΔt,故选项B 正确.5.如图所示,有一竖直转轴以角速度ω匀速旋转,转轴上的A 点有一长为l 的绳子系有质量为m 的小球.要使小球在随转轴匀速转动的同时又不离开光滑的水平面,则A 点到水平面的高度h 最小为( )A .g ω2B .ω2gC .ω2gD .g 2ω2解析:选A .以小球为研究对象,小球受三个力的作用,重力mg 、水平面支持力F N 、绳子拉力F ,在竖直方向合力为零,在水平方向所需向心力为m ω2R ,设绳子与竖直方向的夹角为θ,则有:R =h tan θ,在竖直方向有:F cos θ+F N =mg ,在水平方向有:F sin θ=m ω2h tan θ;当小球即将离开水平面时,F N =0,此时F cos θ=mg ,F sin θ=mg tan θ=m ω2h tan θ,即h =gω2.故A 正确.6.图甲中表演的水流星是一项中国传统民间杂技艺术,在一根绳子上系着两个装满水的桶,表演者把它甩动转起来,犹如流星般,而水不会流出来.图乙为水流星的简化示意图,在某次表演中,当桶A 在最高点时,桶B 恰好在最低点,若演员仅控制住绳的中点O 不动,而水桶A 、B (均可视为质点)都恰好能通过最高点,已知绳长l =1.6 m ,两水桶(含水)的质量均为m =0.5 kg ,不计空气阻力及绳重,g 取10 m/s 2.求:(1)水桶在最高点和最低点的速度大小; (2)图示位置时,手对绳子的力的大小.解析:(1)设最高点的速度为v 1,最低点的速度为v 2,水桶做圆周运动的半径 R =l2=0.8 m水桶恰通过最高点时绳上的拉力为零,有mg =m v 21R解得v 1=2 2 m/s水桶从最高点运动到最低点有 mgl +12m v 21=12m v 22 解得v 2=210 m/s.(2)绳OA 对水桶A 的拉力为零,对最低点的桶B 受力分析可得 F OB -mg =m v 22R解得F OB =30 N所以,手对绳子的力的大小为30 N. 答案:(1)2 2 m/s 210 m/s (2)30 N7.如图所示,B 为竖直圆轨道的左端点,它和圆心O 的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A 点以速度v 0平抛,恰好沿B 点的切线方向进入圆轨道.已知重力加速度为g ,则A 、B 之间的水平距离为( )A .v 20tan αgB .2v 20tan αgC .v 20g tan αD .2v 20g tan α解析:选A .设小球到B 点时速度为v ,如图所示,在B 点分解其速度可知v x =v 0,v y =v 0tan α,又知小球在竖直方向做自由落体运动,则有v y =gt ,联立得t =v 0tan αg ,A 、B之间的水平距离为x AB =v 0t =v 20tan αg,所以A 项正确.8.(多选)如图所示,一位同学玩飞镖游戏.圆盘最上端有一P 点,飞镖抛出时与P 点等高,且距离P 点为L .当飞镖以初速度v 0垂直盘面瞄准P 点抛出的同时,圆盘绕经过盘心O 点的水平轴在竖直平面内匀速转动.忽略空气阻力,重力加速度为g ,若飞镖恰好击中P 点,则( )A .飞镖击中P 点所需的时间为Lv 0B .圆盘的半径为gL 22v 20C .圆盘转动角速度的最小值为2πv 0LD .P 点随圆盘转动的线速度可能为5πgL4v 0解析:选AD .飞镖水平抛出做平抛运动,在水平方向做匀速直线运动,因此t =Lv 0,故A 正确;飞镖击中P 点时,P 点恰好在圆盘最下方,则2r =12gt 2,解得圆盘的半径r =gL 24v 20,故B 错误;飞镖击中P 点,P 点转过的角度满足θ=ωt =π+2k π(k =0,1,2,…),故ω=θt =(2k +1)πv 0L ,则圆盘转动角速度的最小值为πv 0L ,故C 错误;P 点随圆盘转动的线速度为v =ωr =(2k +1)πv 0L ·gL 24v 20=(2k +1)πgL 4v 0,当k =2时,v =5πgL 4v 0,故D 正确.9.质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的B 点和A 点,如图所示,绳a 与水平方向成θ角,绳b 在水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是( )A .a 绳的张力可能为零B .a 绳的张力随角速度的增大而增大C .当角速度ω>g cot θl时,b 绳将出现弹力 D .若b 绳突然被剪断,则a 绳的弹力一定发生变化解析:选C .由于小球m 的重力不为零,a 绳的张力不可能为零,b 绳的张力可能为零,选项A 错误;由于a 绳的张力在竖直方向的分力等于重力,所以a 绳的张力随角速度的增大不变,b 绳的张力随角速度的增大而增大,选项B 错误;若b 绳中的张力为零,设a 绳中的张力为F ,对小球m ,F sin θ=mg ,F cos θ=m ω2l ,联立解得:ω=g cot θl,即当角速度ω>g cot θl,b 绳将出现弹力,选项C 正确;当ω=g cot θl时,b 绳突然被剪断,a 绳的弹力不发生变化,选项D 错误.10.如图所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g ,当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析:选C .设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R ,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力F T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为F T ′=F T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误.11.如图所示,AB 是长为L =1.2 m 、倾角为53°的斜面,其上端与一段光滑的圆弧BC 相切于B 点.C 是圆弧的最高点,圆弧的半径为R ,A 、C 两点与圆弧的圆心O 在同一竖直线上.物体受到与斜面平行的恒力作用,从A 点开始沿斜面向上运动,到达B 点时撤去该力,物体将沿圆弧运动,通过C 点后落回到水平地面上.已知物体与斜面间的动摩擦因数μ=0.5,恒力F =28 N ,物体可看成质点且m =1 kg.重力加速度g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6,求:(1)物体通过C 点时对轨道的压力大小;(结果保留一位小数)(2)物体在水平地面上的落点到A 点的距离. 解析:(1)根据题图,由几何知识得,OA 的高度 H =L sin 53°=1.5 m圆轨道半径R =Ltan 53°=0.9 m物体从A 到C 的过程,由动能定理得 (F -μmg cos 53°)L -mg (H +R )=12m v 2解得v =2 3 m/s物体在C 点,由牛顿第二定律得F N +mg =m v 2R由牛顿第三定律得物体通过C 点时对轨道的压力大小F N ′=F N =3.3 N. (2)物体离开C 点后做平抛运动 在竖直方向:H +R =12gt 2在水平方向:x =v t 解得x =2.4 m.答案:(1)3.3 N (2)2.4 m。
高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N ; (2)线断裂时小球运动的线速度为5m/s ;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2ω=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t=220.810hsg⨯==0.4s,则落地点离桌面的水平距离为:x=vt=5×0.4=2m.3.水平面上有一竖直放置长H=1.3m的杆PO,一长L=0.9m的轻细绳两端系在杆上P、Q 两点,PQ间距离为d=0.3m,一质量为m=1.0kg的小环套在绳上。
三、匀速圆周运动的练习题 一、选择题 1.关于角速度和线速度,下列说法正确的是 [ ] A.半径一定,角速度与线速度成反比 B.半径一定,角速度与线速度成正比 C.线速度一定,角速度与半径成正比 D.角速度一定,线速度与半径成反比
2.下列关于甲乙两个做圆周运动的物体的有关说法正确的是 [ ] A.它们线速度相等,角速度一定相等 B.它们角速度相等,线速度一定也相等 C.它们周期相等,角速度一定也相等 D.它们周期相等,线速度一定也相等
3.时针、分针和秒针转动时,下列正确说法是 [ ] A.秒针的角速度是分针的60倍 B.分针的角速度是时针的60倍 C.秒针的角速度是时针的360倍 D.秒针的角速度是时针的86400倍
4.关于物体做匀速圆周运动的正确说法是 [ ] A.速度大小和方向都改变 B.速度的大小和方向都不变 C.速度的大小改变,方向不变 D.速度的大小不变,方向改变
7.如图1所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于小球受力,正确的是 [ ]
A.受重力、拉力、向心力 B.受重力、拉力 C.受重力 D.以上说法都不正确 9.火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是 [ ]
A.火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损 B.火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损 C.火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损 D.以上三种说法都是错误的
二、填空题 12、做匀速圆周运动的物体,当质量增大到2倍,周期减小到一半时,其向心力大小是原来的______倍,当质量不变,线速度大小不变,角速度大小增大到2倍时,其向心力大小是原来的______倍。
13、一物体在水平面内沿半径 R=20 cm的圆形轨道做匀速圆周运动,线速度V=0.2m/s,那么,它的向心加速度为______m/S2,它的角速度为_______ rad/s,它的周期为______s。
15.如图5所示,A、B两轮半径之比为1:3,两轮边缘挤压在一起,在两轮转动中,接触点不存在打滑的现象,则两轮边缘的线速度大小之比等于______。两轮的转数之比等于______,A轮半径中点与B轮边缘的角速度大小之比等于______。
三、计算题 16、如图6所示,一质量为0.5kg的小球,用0.4m长的细线拴住在竖直面内作圆周运动,求: (1)当小球在圆上最高点速度为4m/s时,细线的拉力是多少?
拉力是多少?(g=10m/s2) 17、如图7所示,飞机在半径为R的竖直平面内翻斤斗,已知飞行员质量为m,飞机飞至最高点时,对座位压力为N,此时飞机的速度多大?
18、如图8所示,MN为水平放置的光滑圆盘,半径为1.0m,其中心O处有一个小孔,穿过小孔的细绳两端各系一小球A和B,A、B两球的质量相等。圆盘上的小球A作匀速圆周运动。 问(1)当A球的轨道半径为0.20m时,它的角速度是多大才能维持B球静止?
(2)若将前一问求得的角速度减半,怎样做才能使A作圆周运动时B球仍能保持静止? 匀速圆周运动练习题的答案
一、选择题 1.B 2.A 3.A 4.D 5.D 6.C 7.B 8.B 9.A 10.C 11.D 二、填空题 12. 8、2 13.。0.2、1、2π 14. 2∶3 15.1∶1、3∶1、3∶1 三、计算题 16.15N、45N 17. 18.(1)7rad/s、 (2)将A球圆运动的轨道半径增大到0.8m 一、圆周运动的运动学问题 探究1、如图所示,转轴O1上固定有两个半径为R和r的轮,用皮带传动O2轮,O2轮的半径是r´,若O1每秒转了5转,R=1m,r=r´=0.5m,则 (l)大轮转动的角速度多大? (2)图中A、C两点的线速度大小分别是多少? 31.4rad/s vA=15.7m/s vC=31.4m/s 应用1、如图所示,一种向自行车车灯供电的小发电机的上端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘接触.当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力.自行车车轮的半径R1=35cm,小齿轮的半径R2=4.0cm,大齿轮的半径R3=10.0cm.求大齿轮的转速nl和摩擦小轮的转速n2之比.(假定摩擦小轮与自行车车轮之间无相对滑动) 答案:2:175 二、圆周运动的动力学问题 探究2、如图所示,水平转盘上放有质量为m的物块,当物块离转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳上张力为零),物体和转盘间最大静摩擦力是其正压力的μ倍,求
(1)当转盘的角速度为rg21时,细绳的拉力T1 (2)当转盘的角速度
rg232
时,细绳的拉力T2 答案:T1=0 T2=μmg/2
应用2、用水平木板托住质量为m的物体,使物体在竖直面内绕O点沿半径为R的圆周顺时针方向以速度V做匀速圆周运动,试求物体在图中的a点木板对物体支持力和摩擦力大小、方向。
答案:FN=mgRmv22 Ff= Rmv232 探究3、一长度L=0.5m的轻杆,其一端固定于转轴O上,另一端连接一质量为m=2kg的小球A,小球随着轻杆一起绕O点在竖直面内做圆周运动,求在最高点时下列两种情况下球对轻杆的作用力.(g=10m/s2) (l)A的速率为1.0m/s(2)A的速率为4.0m/s, 答案:(1)16N (2)44N
应用3、如图所示,LMPQ是光滑轨道,LM水平,长为 5.0m,MPQ是一半径为R=1.6m的半圆,Q、M在同一竖直线上,在恒力F作用下质量m=1kg的物体A由静止开始运动,当达到M时立即停止用力。欲使A刚好能通过Q点,则力F大小为多少?答案:8N
应用4、质量为mA的mB的两个小球A和B用轻质弹簧连在一起,用长为L1的细绳将A球系于O轴上,使A、B两球均以角速度ω在光滑的水平面上绕OO轴做匀速圆周运动,如图所示,当两球间的距离为L2
时,将线烧断,线被烧断的瞬间,两球加速度aA和aB名是多少?
答案:mBω2(L1+L2)/mA ω2(L1+L2) 基础训练A 1.如图所示,轻杆的一端有个小球,另一端有光滑的固定轴O现给球一初速度,使球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对小球的作用力,则F(D) A.一定是拉力 B.一定是推力 C一定等于0 D.可能是拉力,可能是推力,也可能等于0 2.如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r,小轮半径2r,b点在小轮上,到小轮中心距离为r,c点和d点分别位于小轮和大轮的边缘上。 若在传动过程中皮带不打滑,则(CD) A.a点与b点速度大小相等 B.a点与c点角速度大小相等 C.a点与d点向心加速度大小相等 D.a、b、c、d四点,加速度最小的是b点 3.地球上,赤道附近的物体A和北京附近的物体B,随地球的自转而做匀速圆周运动.可以判断(D) A物体A与物体B的向心力都指向地心 B物体A的线速度的大小小于物体B的线速度的大小 C.物体A的角速度的大小小于物体B的角速度的大小 D.物体A的向心加速度的大小大于物体B的向心加速度的大小 4.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是(D) A.a处 B.b处 C.c处 D.d处 5.如图为A、B两物体做匀速圆周运动时向心加速度随半径r变化的图线,由图可知(A) A.A物体的线速度大小不变 B.A物体的角速度不变 C.B物体的线速度大小不变 D.B物体的角速度与半径成正比 6.由上海飞往美国洛杉矶的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海面的高度均不变,则以下说法正确的是(C) A.飞机做的是匀速直线运动 B.飞机上的乘客对座椅压力略大于地球对乘客的引力 C飞机上的乘客对座椅的压力略小于地球对乘客的引力 D飞机上的乘客对座椅的压力为零 7.有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进人容器后靠筒壁站立,当圆筒开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为(C) A.游客受到的筒壁的作用力垂直于筒壁 B.游客处于失重状态 C.游客受到的摩擦力等于重力 D.游客随着转速的增大有沿壁向上滑动的趋势 8.如图所示是一种娱乐设施“魔盘”,而且画面反映的是魔盘旋转转速较大时,盘中人的情景.甲、乙、丙三位同学看了图后发生争论,甲说:“图画错了,做圆周运动的物体受到向心力的作用,魔盘上的人应该向中心靠拢”.乙说:“画画得对,因为旋转的魔盘给人离心力,所以人向盘边缘靠拢”.丙说:“图画得对,当盘对人的摩擦力不能满足人做圆周运动的向心力时,人会逐渐远离圆心”.该三位同学的说法应是(C) A.甲正确 B.乙正确 C.丙正确 D.无法判断 9.在光滑杆上穿着两上小球m1、m2,且ml=2m2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如图所示,此时两小球到转轴的距离rl与r2之比为(D)
A.1:1 B.1:2 C.2:1 D.1:2 10.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是(D) A.两物体均沿切线方向滑动 B.两物全均沿半径方向滑动,离圆盘圆心越来越远 C两物体仍随圆盘一起做匀速圆周运动,不会发生滑动 D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑 动,离圆盘圆心越来越远 11.司机为了能够控制驾驶的汽车,汽车对地面的压力一定要大于0,在高速公路上所建的高架桥的顶部可看作是一个圆弧,若高速公路上汽车设计时速为4 0m/s,则高架桥顶部的圆弧半径至少应为______(g取10m/s2) 解析设当汽车行驶到弧顶时,对地面压力刚好为零的圆 答案:160 12.AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径为R,小球的质量为m,不计各处摩擦.求: (1)小球运动到B点时的动能; (2)小球下滑到距水平轨道的高度为R/2时速度的大小和方向; (3)小球经过圆弧轨道的B点和水平轨道的c点时,所受轨道支持力NB、Nc各是多大?
答案(l)Ek=mgR(2)v=gR方向与竖直方向成300 (3)3mg,mg
13、用钳子夹住一块质量m=50kg的混凝土砌块起吊(如图所示).已知钳子与砌块间的