chapt3-信号处理
- 格式:pdf
- 大小:4.30 MB
- 文档页数:72
第三章 自适应数字滤波器3.1 引言滤波器的设计都是符合准则的最佳滤波器。
维纳滤波器参数固定,适用于平稳随机信号的最佳滤波;自适应滤波器参数可以自动地按照某种准则调整到最佳。
本章主要涉及自适应横向滤波器.....、自适应格型滤波器........、最小二乘自适应滤波器..........。
3.2 自适应横向滤波器自适应...线性组合....器.和自适应....FIR ...滤波器...是自适应信号......处理的基础.....。
3.2.1 自适应线性组合器和自适应FIR 滤波器自适应滤波器的矩阵表示式 滤波器输出:()()()1N m y n w m x n m -==-∑n 用j 表示,自适应滤波器的矩阵形式为T T j jj y ==X W W X 式中1212,,,,,,,TTN N w w w x x x ⎡⎤⎡⎤==⎣⎦⎣⎦W X误差信号表示为T T j j j j jj j e d y d d =-=-=-X W W X 与维纳滤波相同,先考虑最小均方误差准则:()2222T T j j j j dx xx E e E d y E e ⎡⎤⎡⎤⎡⎤=-=-+⎣⎦⎣⎦⎢⎥⎣⎦R W W R W2j E e ⎡⎤⎣⎦称为性能函数....,将其对每个权系数求微分,形成一个与权系数相同的列向量: 2221222,,,Tj j jj xx dx N E e E e E e w w w ⎡⎤⎡⎤⎡⎤⎡⎤∂∂∂⎣⎦⎣⎦⎣⎦⎢⎥∇==-∂∂∂⎢⎥⎣⎦R W R令梯度为零,可得最佳权系数此时最小均方误差为:22*min T j j dx E e E d ⎡⎤⎡⎤=-⎣⎦⎣⎦W R 要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W ,先求自相关矩阵xx R 和互相关矩阵dx R 。
3.2.2 性能函数表示式及几何意义3.2.3 最陡下降法3.2.1给出了要求2minj Ee ⎡⎤⎣⎦和最佳权系数*W 的理论求解方法,但实际很难应用。
信号阵列处理的书-回复
以下是一些关于信号阵列处理的书籍推荐:
1. "Signals and Systems" by Alan V. Oppenheim and Ronald W. Schafer - 这本书是信号处理领域的经典教材,涵盖了信号与系统的基本概念,包括信号阵列处理的相关内容。
2. "Array Signal Processing" by Sanjit K. Mitra - 这本书专门针对信号阵列处理,详细介绍了阵列信号处理的理论和应用,包括阵列信号模型、波束形成、方向估计、空时处理等内容。
3. "Statistical Digital Signal Processing and Modeling" by Monson
H. Hayes - 这本书在介绍数字信号处理的基础上,重点讨论了统计信号处理和阵列信号处理的理论和方法,包括谱估计、自适应滤波、空间谱估计等内容。
4. "Digital Signal Processing with Applications" by Loeve J. M. Woods - 这本书介绍了数字信号处理的基础知识和应用,其中也包括了信号阵列处理的相关内容,如阵列信号模型、波束形成算法等。
5. "Signal Processing for Intelligent Sensor Systems" by Harry G. Lee - 这本书主要关注智能传感器系统的信号处理技术,其中包括信号阵
列处理的应用,如目标检测、跟踪和识别等。
以上书籍都是信号阵列处理领域的重要参考书籍,可以根据自己的需求和背景选择适合的书籍进行学习。
6.2 教材第六章习题解答1. 设计一个巴特沃斯低通滤波器,要求通带截止频率6p f kHz =,通带最大衰减3p a dB =,阻带截止频率12s f kHz =,阻带最小衰减3s a dB =。
求出滤波器归一化传输函数()a H p 以及实际的()a H s 。
解:(1)求阶数N 。
lg lg sp spk N λ=-0.10.30.1 2.51011010.0562101101p s asp a k --==≈--332121022610s sp p πλπΩ⨯⨯===Ω⨯⨯将sp k 和sp λ值代入N 的计算公式得lg 0.05624.15lg 2N =-=所以取N=5(实际应用中,根据具体要求,也可能取N=4,指标稍微差一点,但阶数低一阶,使系统实现电路得到简化。
) (2)求归一化系统函数()a H p ,由阶数N=5直接查表得到5阶巴特沃斯归一化低通滤波器系统函数()a H p 为54321() 3.2361 5.2361 5.2361 3.23611a H p p p p p p =+++++或 221()(0.6181)( 1.6181)(1)a H p p p p p p =+++++ 当然,也可以按(6.12)式计算出极点:121()22,0,1,2,3,4k j Nk p ek π++==按(6.11)式写出()a H p 表达式41()()a k k H p p p ==-代入k p 值并进行分母展开得到与查表相同的结果。
(3)去归一化(即LP-LP 频率变换),由归一化系统函数()a H p 得到实际滤波器系统函数()a H s 。
由于本题中3p a dB =,即32610/c p rad s πΩ=Ω=⨯⨯,因此()()a a cH s H p s p ==Ω5542332453.2361 5.2361 5.2361 3.2361c c c cc cs s ss s Ω=+Ω+Ω+Ω+Ω+Ω对分母因式形式,则有()()a a cH s H p s p ==Ω52222(0.6180)( 1.6180)()c c c c cc s s s s s Ω=+Ω-Ω+Ω-Ω+Ω如上结果中,c Ω的值未代入相乘,这样使读者能清楚地看到去归一化后,3dB 截止频率对归一化系统函数的改变作用。
数字信号处理-时域离散随机信号处理时域离散随机信号处理是数字信号处理中的重要部分,涉及到离散时间信号的表示、离散时间系统的分析和设计、以及离散时间信号的处理方法等内容。
下面是一些与时域离散随机信号处理相关的参考内容:1. 数字信号处理(第四版):作者为Alan V. Oppenheim和Ronald W. Schafer,是数字信号处理领域的经典教材。
该书详细介绍了离散时间信号处理的相关基础知识和方法,并提供了大量的习题和案例分析,适合作为本科或研究生课程的教材使用。
2. 离散时间信号处理(第三版):作者为Alan V. Oppenheim、Ronald W. Schafer和John R. Buck,是与上述教材配套的解答和案例分析书籍。
书中提供了原教材中习题的详细解答过程和案例分析的具体步骤,帮助读者更好地理解离散时间信号处理的原理和方法。
3. 视频教程:Coursera平台上有一门名为"Digital Signal Processing"的在线课程,由Richard Baraniuk教授讲授。
该课程着重介绍了离散时间信号处理的基本概念、算法和应用。
通过观看该课程的视频讲解和完成相关习题,可以加深对离散时间信号处理的理解。
4. 学术论文:在学术期刊上发表的相关论文可以提供最新的研究成果和进展。
在IEEE Transactions on Signal Processing、IEEE Signal Processing Letters等期刊上,可以搜索到一些关于时域离散随机信号处理的文章。
这些论文通常详细描述了该领域的理论基础、算法设计和实验验证等方面的内容。
此外,还可以参考一些专业书籍中的相关章节和教学课件,以及参加相关领域的学术会议和专题讨论会,获取更多有关时域离散随机信号处理的知识和经验。
总之,通过系统学习这些参考内容,可以全面了解离散时间信号处理的基本原理和方法,为实际应用提供理论指导和技术支持。