2018-2019学年四川省自贡市高一下学期期末考试数学(理)试题(解析版)
- 格式:doc
- 大小:1.07 MB
- 文档页数:16
四川省自贡市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共15分)1. (1分) (2018高一下·佛山期中) 不等式的解集是________.2. (1分) (2016高一下·周口期末) 如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,在扇形OAB内随机取一点,则此点取自阴影部分的概率是________.3. (1分) (2018高二上·如东月考) 已知一组数据3,6,9,8,4,则该组数据的方差是________.4. (1分)在如图所示的算法中,输出的i的值是________.5. (1分) (2017高一上·上海期中) 已知a2>a1>0,b2>b1>0,且a1+a2=b1+b2=1,记A=a1b1+a2b2 ,B=a1b2+a2b1 , C= ,则按A、B、C从小到大的顺序排列是________.6. (2分) (2016高一下·南充期末) 在△ABC中,角A,B,C的对边分别为a,b,c,若B=60°,且a,b,c成等比数列,则A=________度,C=________度.7. (1分)设的内角A,B,C的对边分别为a,b,c,且,,,则c=________8. (1分) (2016高一下·宜春期中) 在等差数列{an}中,a2+a6= ,则sin(2a4﹣)=________.9. (1分)将一颗质地均匀的骰子先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,向量 =(m﹣2,2﹣n), =(1,1),则和共线的概率为________.10. (1分) (2016高一下·老河口期中) 已知等差数列{an}的前n项和为Sn , a5=5,S5=15,则数列的前100项和为________.11. (1分)(2017·黑龙江模拟) 已知x,y满足:,若目标函数z=ax+y取最大值时的最优解有无数多个,则实数a的值是________.12. (1分) (2017高一下·扬州期末) 如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得∠NAM=60°,∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°;已知山高BC=300米,则山高MN=________米.13. (1分) (2018高二下·邯郸期末) 若动直线与函数和的图象分别交于,两点,则的最大值为________.14. (1分) (2018高一下·金华期末) 已知公差不为零的等差数列中,,且,,成等比数列,的前项和为, .则数列的前项和 ________.二、解答题 (共6题;共45分)15. (10分) (2016高二下·银川期中) 袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.16. (5分)已知函数.(Ⅰ)解不等式f(x)>5;(Ⅱ)求函数f(x)的单调区间.17. (10分) (2016高三上·新津期中) 已知函数f(x)=sin2xcos2x+sin22x﹣.(1)求函数f(x)的最小正周期及对称中心;(2)在△ABC中,角B为钝角,角A,B,C的对边分别为a、b、c,f()= ,且sinC= sinA,S△ABC=4,求c的值.18. (5分)东海水晶城大世界营业厅去年利润300万元,今年年初搬迁到新水晶城营业厅,扩大了经营范围.为了获取较大利润,需加大宣传力度.预计从今年起,利润以每年26%的增长率增长,同时在每年12月30日要支付x万元的广告费用.为了实现经过10年利润翻两翻的目标,试求每年用于广告费用x万元的最大值.(注:1.2610≈10.)19. (10分) (2016高三上·石嘴山期中) 已知函数f(x)=e2x﹣1(x2+ax﹣2a2+1).(a∈R)(1)若a=1,求函数f(x)在(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.20. (5分)(2016·山东模拟) 已知数列{an}的前n项和为Sn ,且Sn=n2+2n;数列{bn}是公比大于1的等比数列,且满足b1+b4=9,b2b3=8.(Ⅰ)分别求数列{an},{bn}的通项公式;(Ⅱ)若cn=(﹣1)nSn+anbn ,求数列{cn}的前n项和Tn .参考答案一、填空题 (共14题;共15分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题 (共6题;共45分)15-1、15-2、16-1、17-1、17-2、18-1、19-1、19-2、20-1、。
绝密★启用前四川省2018-2019学年高一下学期期末数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知数列{}n a 满足13n n a a +=-,127a =,*n ∈N ,则5a 的值为( ) A .12B .15C .39D .422.设集合(1,3)A =-,{}2|230B x x x =--+<,则A B =( )A .()1,3-B .()3,1-C .()1,3D .∅3.已知函数()sin 2cos 266f x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,则函数()f x 的最小正周期为( ) A .4πB .2πC .πD .2π4.已知l 为直线,α,β为两个不同的平面,则下列结论正确的是( ) A .若l α,l β∥,则αβ∥ B .若l α⊥,l β⊥,则αβ⊥ C .若l α⊥,l β∥,则αβ⊥D .若l α⊥,βα⊥,则l β∥5.已知等差数列{}n a 中,12a =,932a =,则357a a a ++的值为( ) A .51B .34C .64D .5126.已知正方体1111ABCD A B C D -中,E 、F 分别为11A D ,1A A 的中点,则异面直线EF 和1BD 所成角的余弦值为( )A B C D…订…………○………※※内※※答※※题※※…订…………○………7.下列表达式正确的是()①min2(sin)sinxx+=(0,)xπ∈②若0a b->,则220a b->③若22ac bc>,则a b>④若0a b>>,则ln0ba<A.①②B.②③C.①③D.③④8.已知网格纸的各个小格均是边长为一个单位的正方形,一个几何体的三视图如图中粗线所示,则该几何体的表面积为()A.8πB.7πC.8πD.6π9.在ABC△中,A,8Bπ+,C成等差数列,cosc a B=,则ABC△的形状为()A.直角三角形B.等腰直角三角形C.等腰三角形D.等边三角形10.设等比数列{}n a的前n项和为n S,若8453SS=,则2412SS=()A.53B.2C.3527D.273511.已知向量(),2a x=,()1,b y=且,x y为正实数,若满足2a b xy⋅=,则34x y+的最小值为()A.5+B.5C.D.12.已知函数2()2cos2f x x x=-,在ABC△中,内角,,A B C的对边分别是,,a b c,内角A满足()1f A=-,若a=ABC△的周长的取值范围为()A.B.C.D.○…………订__班级:___________考○…………订第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.已知ABC △中内角,,A B C 的对边分别是,,a b c ,6A π=,712B π=,2a =,则c 为_____.14.已知数列{}n a 满足11a =,()*12n n a a n +=∈N ,则10S =______.15.已知函数()2()lg 3f x mx mx m =--+的定义域为R ,则实数m 的取值范围为_____.16.已知圆锥SO 如图所示,底面半径为1cm ,母线长为2cm ,则此圆锥的外接球的表面积为___2cm .三、解答题17.已知等差数列{}n a 满足123a =,且11132a a +=. (1)求数列{}n a 的通项n a ;(2)求数列{}n a 的前n 项和n S 的最大值.18.设函数22()(sin cos )f x x x x =++-(1)求函数()f x 的单调递增区间; (2)当5,46x ππ⎛⎫∈⎪⎝⎭时,求函数()f x 的值域. 19.已知三棱柱111ABC A B C -(如图所示),底面ABC 为边长为2的正三角形,侧棱1CC ⊥底面ABC ,14CC =,E 为11B C 的中点.…………装…………………○……※请※※不※※要※※在※※装…………装…………………○……(1)求证:1AC ∥平面1BA E ;(2)若G 为11A B 的中点,求证:1C G ⊥平面11A B BA ; (3)求三棱锥1A EBA -的体积.20.已知数列{}n a 的前n 项和为n S ,点()()*,n n S n ∈N 在函数2()2f x xx =+的图像上.(1)求数列{}n a 的通项n a ; (2)设数列12n a n n b a -=,求数列{}n b 的前n 项和n T .21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()xm .(1)设总造价y (元)表示为长度()x m 的函数;(2)当()xm 取何值时,总造价最低,并求出最低总造价.22.已知函数2()(,)f x x bx c b c =++∈R ,且()0f x ≤的解集为[]1,2. (1)求函数()f x 的解析式;(2)解关于x 的不等式()(1)(2)f x m x >--,()m ∈R ; (3)设()()31xg x f x x =+-,若对于任意的12,x x ∈R 都有()()12g x g x M -≤,求参考答案1.B 【解析】 【分析】根据等差数列的定义可得数列{}n a 为等差数列,求出通项公式即可。
四川省自贡市市第九中学2018-2019学年高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中,角A、B、C所对的边分别为a、b、c,且若,则△ABC的形状是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形参考答案:C【分析】直接利用余弦定理的应用求出A的值,进一步利用正弦定理得到:b=c,最后判断出三角形的形状.【详解】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.则:,由于:0<A<π,故:A.由于:sin B sin C=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC为等边三角形.故选:C.【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.2. 定义在R上的函数对任意两个不相等实数,总有成立,则必有().A.函数是先增加后减少B.函数是先减少后增加C.在R上是增函数D.在R上是减函数参考答案:C略3. 如果是偶函数,它在上是增函数,若,则的取值范围是()参考答案:C4. 根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为(A,C为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是()A.75,25 B.75,16 C.60,25 D.60,16参考答案:D【考点】函数解析式的求解及常用方法.【分析】首先,x=A的函数值可由表达式直接得出,再根据x=4与x=A的函数值不相等,说明求f(4)要用x<A对应的表达式,将方程组联解,可以求出C、A的值.【解答】解:由题意可得:f(A)==15,所以c=15而f(4)==30,可得出=30故=4,可得A=16从而c=15=60故答案为D【点评】分段函数是函数的一种常见类型,解决的关键是寻找不同自变量所对应的范围,在相应区间内运用表达式加以解决.5. 设数列{a n}中,已知,,则( )A. B. C. D. 2参考答案:C【分析】根据递推公式,逐步计算,即可求出结果.【详解】因为,,所以,.故选C【点睛】本题主要考查由数列的递推公式,求指定项的问题,逐步计算即可,属于基础题型.6. 已知角的终边经过点(,)(),则的值是A.1或 B.或 C.1或D.或参考答案:B略7. (3分)sin(﹣)的值是()A.B.﹣C.D.﹣参考答案:D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:由条件利用诱导公式进行化简求值,可得结论.解答:sin(﹣)=﹣sin=﹣,故选:D.点评:本题主要考查利用诱导公式进行化简求值,属于基础题.8. 一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( )A. B. C. D.参考答案:C【分析】先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.9. 若,,,则()A. B. C. D.参考答案:A10. 关于直线与平面,有以下四个命题:①若,则②若③若④若其中真命题有( )A.1个 B.2个 C.3个 D.4个参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 下列命题正确的序号是.①函数的一个对称中心为;②若数列为等比数列,则数列为等差数列;③在三角形中,;④三角形ABC中,分别是三角形的三边,若,则三角形为等边三角形.参考答案:(1)(3)(4)略12. 设,函数在区间上的最大值与最小值之差为,则参考答案:略13. 若,则= .参考答案:614. 如图,正方体中,,点为的中点,点在上,若平面,则________.参考答案:15. 已知△ABC中,,且的最小值为,则=___参考答案:1表示方向上的单位向量,设,即,由于,所以所得向量对应的点在直线上,即三点共线,如图所示,的最小值即的最小值为点到直线的距离,所以为等腰直角三角形.所以,在三角形中,,用余弦定理得,由勾股定理得,解得,且,所以【点睛】本题主要考查平面向量的基本定理,考查用向量表示三点共线的方法,考查勾股定理及余弦定理的具体应用,有一定的运算能力.解题的难点在于的几何意义,其中表示方向上的单位向量,转化为可得其对应的点和是三点共线的,由此可求得最小值为点到直线的距离.16. 甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为_________ 和_________ .参考答案:24,2317. 已知两个等差数列和的前项和分别为A和,且,则使得为整数的正整数的个数是A.2 B.3 C.4 D.5参考答案:D三、解答题:本大题共5小题,共72分。
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………2018-2019学年第二学期高一下学期期末考试数学试卷评卷人 得分一、选择题1、已知为角的终边上的一点,且,则的值为( )A .B .C .D .2、在等差数列中,,则( )A .B .C .D .3、若,则一定有( )A .B .C .D .4、已知等差数列的前项和为,若且,则当最大时的值是( )A .B .C .D .5、若,则的值为( )A .B .C .D .6、在中,已知,则的面积等于( )A .B .C .D .7、各项均为正数的等比数列的前项和为,若,则( ) A .B .C .D .……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………8、若变量满足约束条件,且的最大值为,最小值为,则的值是( ) A . B .C .D .9、在中,角所对的边分别为,且,若,则的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 10、当甲船位于处时获悉,在其正东方向相距海里的处,有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西相距海里处的乙船,乙船立即朝北偏东角的方向沿直线前往处营救,则的值为( )A .B .C .D .11、已知是内的一点,且,若和的面积分别为,则的最小值是( )A .B .C .D . 12、已知数列满足,则( ) A .B .C .D .评卷人 得分二、填空题13、已知,且,则__________。
2018-2019学年自贡市2018级高一下学期期末考试数学(理)试卷★祝考试顺利★本试卷分第I 卷(选择题)和第1I 卷(非选择题)两部分,共150分,考试时间为120分钟.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试条形码.答卷时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效考试结束后,本试题卷由学生自己保留,只将答题卡交回.第I 卷(选择题,共60分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上,如需必动,用橡皮擦干净后,再选涂其他答案标号.2.本部分共12个题,每小题5分,共60分.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.过点()()2,,,4M a N a -的直线的斜率为12-,则a 等于() A. 8-B. 10C. 2D. 4 【答案】B【解析】【分析】直接应用斜率公式,解方程即可求出a 的值.【详解】因为过点()()2,,,4M a N a -的直线的斜率为12-,所以有4110(2)2a a a -=-⇒=--,故本题选B. 2.已知向量(),2m a =r ,()1,1n a =+r ,若//m n r r ,则实数a 的值为( ) A. 23- B. 2或1- C. 2-或1 D. 2-【答案】C【解析】【分析】根据题意,由向量平行的坐标表示公式可得()a a 12+=,解可得a 的值,即可得答案.【详解】根据题意,向量()m a,2=r ,()n 1,1a r =+,若m //n r r ,则有()a a 12+=,解可得a 2=-或1;故选:C .3.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,则2a =()A. 4-B. 6-C. 8-D. 10- 【答案】B【解析】【分析】 通过134,,a a a 成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于2a 的方程,解这个方程即可.【详解】因为134,,a a a 成等比数列,所以有3124a a a =⋅,又因为{}n a 是公差为2的等差数列,所以有2222222()()(22)6a a a a =⋅+-+⨯⇒=-,故本题选B. 4.若()()()3,6,5,2,6,A B C y --三点共线,则y =()A. 13B. 13-C. 9D. 9-【答案】D【解析】【分析】根据()()()3,6,5,2,6,A B C y --三点共线,有AB AC k k =成立,解方程即可.【详解】因为()()()3,6,5,2,6,A B C y --三点共线,所以有AB AC k k =成立, 因此2(6)(6)95363y y ----=⇒=----,故本题选D. 5.设平面向量(1,2)a =r ,(2,)b y v =-,若a b ⊥r r ,则a b +r r 等于( )。
姓名,年级:时间:2018级高一年级下学期第三次质量检测理科数学试卷试题说明:本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟.考试注意事项:1.答题前务必在答题卡规定的地方填写自己的姓名、班级、准考证号,并认真核对答题卡上姓名、班级、准考证号与本人班级、姓名、准考证号是否一致。
[来源:学科网ZXXK]2.答选择题时,每小题选出正确选项后,用2B铅笔把答题卡上所对应题目答案标号涂黑。
如有改动,用橡皮擦干净后,再选涂其他答案标号。
3.答非选择题必须用0.5毫米黑色墨水签字笔在答题卡上书写,要求字迹工整、笔记清晰.必须在题号所指示的区域作答,超出答题区域书写的答案无效。
在试卷、草稿纸上答题无效。
第I卷(选择题满分60分)一、选择题(共12题,每题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的)1。
一支田径队有男运动员 560 人,女运动员 420 人,为了解运动员的健康情况,从男运动员中任意抽取 16 人,从女生中任意抽取 12 人进行调查.这种抽样方法是().A简单随机抽样法.B抽签法.C随机数表法.D分层抽样法2。
已知角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点(21)P-,,则cos2α=( ).A22.B 13.C13-.D223.用辗转相除法,计算56和264的最大公约数是( ).A7 .B8 .C9 .D64。
从装有2个白球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是.A至少有一个黑球与都是黑球.B至少有一个黑球与至少有一个白球.C 恰好有一个黑球与恰好有两个黑球 .D 至少有一个黑球与都是白球5.已知变量x ,y 之间的线性回归方程为0.47.6ˆyx =-+,且变量x ,y 之间的一组相关数据如下表所示,则下列说法中错误的是( ).A 变量x ,y 之间呈现负相关关系 ..B m 的值等于5..C 变量x ,y 之间的相关系数0.4.r =- .D 由表格数据知,该回归直线必过点(9,4).[来源:学科网ZXXK ]6.2019年是新中国成立70周年,涡阳县某中学为庆祝新中国成立70周年,举办了“我和我的祖国”演讲比赛,某选手的6个得分去掉一个最高分,去掉一个最低分,4个剩余分数的平均分为91。
2018-2019学年高一数学下学期期末考试试题(含解析)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:人教A版必修1、必修2、必修3、必修4。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合,则A. B. C. D.【答案】B【解析】【分析】直接利用交集运算得到答案.【详解】因为,所以.故答案选B【点睛】本题考查了交集运算,属于简单题.2.已知,,则()A. 2B.C. 4D.【答案】C【解析】【分析】先求出坐标,再利用向量的模的公式求解.【详解】由题得=(0,4)所以.故选:C【点睛】本题主要考查向量的坐标的求法和向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为A. 5B. 10C. 4D. 20【答案】B【解析】【分析】直接利用分层抽样按照比例抽取得到答案.【详解】设应抽取的女生人数为,则,解得.故答案选B【点睛】本题考查了分层抽样,属于简单题.4.已知圆经过点,且圆心为,则圆的方程为A. B.C. D.【答案】D【解析】【分析】先计算圆半径,然后得到圆方程.【详解】因为圆经过,且圆心为所以圆的半径为,则圆的方程为.故答案选D【点睛】本题考查了圆方程,先计算半径是解题的关键.5.已知向量(2,0),||=1,1,则与的夹角为()A. B. C. D.【答案】A【解析】【分析】直接利用向量夹角公式得到答案.【详解】解:向量(2,0),||=1,•1,可得cos,则与b的夹角为:.故选:A.【点睛】本题考查向量的数量积的应用,向量的夹角的求法,是基本知识的考查.6.某市在“一带一路”国际合作高峰论坛前夕,在全市高中学生中进行“我和‘一带一路’”的学习征文,收到的稿件经分类统计,得到如图所示的扇形统计图.又已知全市高一年级共交稿2000份,则高三年级的交稿数为()A. 2800B. 3000C. 3200D. 3400【答案】D【解析】【分析】先求出总的稿件的数量,再求出高三年级交稿数占总交稿数的比例,再求高三年级的交稿数.【详解】高一年级交稿2000份,在总交稿数中占比,所以总交稿数为,高二年级交稿数占总交稿数的,所以高三年级交稿数占总交稿数的,所以高三年级交稿数为.故选:D【点睛】本题主要考查扇形统计图的有关计算,意在考查学生对该知识的理解掌握水平,属于基础题.7.直线:与圆的位置关系为()A. 相离B. 相切C. 相交D. 无法确定【答案】C【解析】【分析】求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.8.已知之间的一组数据如下:15则线性回归方程所表示的直线必经过点A. (8,10)B. (8,11)C. (7,10)D. (7,11)【答案】D【解析】【分析】先计算的平均值,得到数据中心点,得到答案【详解】,线性回归方程所表示直线经必经过点,即(7,11).故答案选D【点睛】本题考查了回归方程,回归方程一定过数据中心点.9.已知圆柱的轴截面为正方形,且该圆柱的侧面积为,则该圆柱的体积为A. B. C. D.【答案】C【解析】【分析】设圆柱的底面半径,该圆柱的高为,利用侧面积得到半径,再计算体积.【详解】设圆柱的底面半径.因为圆柱的轴截面为正方形,所以该圆柱的高为因为该圆柱的侧面积为,所以,解得,故该圆柱的体积为.故答案选C【点睛】本题考查了圆柱的体积,意在考查学生的计算能力和空间想象能力.10.已知函数,则下列说法正确的是()A. 图像的对称中心是B. 在定义域内是增函数C. 是奇函数D. 图像的对称轴是【答案】A【解析】【分析】根据正切函数的图象与性质逐一判断即可.【详解】.,由得,,的对称中心为,,故正确;.在定义域内不是增函数,故错误;.为非奇非偶函数,故错误;.的图象不是轴对称图形,故错误.故选:.【点睛】本题考查了正切函数的图象与性质,考查了整体思想,意在考查学生对这些知识的理解掌握水平,属基础题.11.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,10;乙:8,9,9,9,10.若甲、乙两名运动员的平均成绩分别用表示,方差分别用表示,则A. B.C. D.【答案】D【解析】【分析】分别计算平均值和方差,比较得到答案.详解】由题意可得,,.故.故答案选D【点睛】本题考查了数据的平均值和方差的计算,意在考查学生的计算能力.12.已知函数,若在区间内没有零点,则取值范围是()A. B. C. D.【答案】B【解析】【分析】由题得,再由题分析得到,解不等式分析即得解.【详解】因为,,所以.因为在区间内没有零点,所以,,解得,.因为,所以.因为,所以或.当时,;当时,.故选:B【点睛】本题主要考查三角函数的零点问题和三角函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于中档题.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.直线与的交点坐标为________.【答案】【解析】【分析】直接联立方程得到答案.【详解】联立方程解得即两直线的交点坐标为.故答案为【点睛】本题考查了两直线的交点,属于简单题.14.已知向量,若,则________.【答案】【解析】【分析】直接利用向量平行性质得到答案.【详解】,若故答案为【点睛】本题考查了向量平行的性质,属于简单题.15.已知函数是定义在上的奇函数,当时,,则________.【答案】【解析】【分析】根据奇偶性,先计算,再计算【详解】因为是定义在上的奇函数,所以.因为当时,所以.故答案为【点睛】本题考查了奇函数的性质,属于常考题型.16.在矩形中,,现将矩形沿对角线折起,则所得三棱锥外接球的体积是________.【答案】【解析】【分析】取的中点,连接,三棱锥外接球的半径再计算体积.【详解】如图,取的中点,连接.由题意可得,则所得三棱锥外接球的半径,其体积为.故答案为【点睛】本题考查了三棱锥的外切球体积,计算是解题的关键.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知.(1)化简;(2)若,且,求的值.【答案】(1);(2).【解析】【分析】(1)利用诱导公式化简即得;(2)利用同角的平方关系求出的值,即得解.【详解】解:(1).(2)因为,且,所以,所以.【点睛】本题主要考查诱导公式和同角的三角函数求值,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.18.某销售公司拟招聘一名产品推销员,有如下两种工资方案:方案一:每月底薪2000元,每销售一件产品提成15元;方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:月销售产品件数30 0把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.【答案】(1);(2)方案一概率为,方案二概率为.【解析】【分析】(1)利用一次函数和分段函数分别表示方案一、方案二的月工资与的关系式;(2)分别计算方案一、方案二的推销员的月工资超过11090元的概率值.【详解】解:(1)方案一:,;方案二:月工资为,所以.(2)方案一中推销员的月工资超过11090元,则,解得,所以方案一中推销员的月工资超过11090元的概率为;方案二中推销员的月工资超过11090元,则,解得,所以方案二中推销员的月工资超过11090元的概率为.【点睛】本题考查了分段函数与应用问题,也考查了利用频率估计概率的应用问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.19.已知函数,且.(1)求的值;(2)求的最小正周期及单调递增区间.【答案】(1);(2)最小正周期为,单调递增区间为,.【解析】【分析】(1)因为,所以,化简解方程即得.(2)由(1)可得求出函数的最小正周期,再利用复合函数和三角函数的图像和性质求函数的单调递增区间得解.【详解】解:(1)因为,所以,所以,即,解得.(2)由(1)可得,则的最小正周期为.令,,解得,,故的单调递增区间为,.【点睛】本题主要考查三角恒等变换和三角求值,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.20.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是,,,,.(1)求图中的值;(2)根据频率分布直方图,估计这200名学生的平均分;(3)若这200名学生数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如下表所示,求英语成绩在的人数.1:2【答案】(1)(2)分(3)140人【解析】【分析】(1)在频率分布直方图中所有小矩形的面积之和为1,由此可得;(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即为估计平均数;(3)求出这200名学生的数学成绩在,,的人数,然后计算出各分数段的英语人数即可.【详解】(1)由,解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为.(3)由频率分布直方图可求出这200名学生的数学成绩在,,的分别有60人,40人,10人,按照表中给的比例,则英语成绩在,,的分别有50人,80人,10人,所以英语成绩在的有140人.【点睛】本题考查频率分布直方图,解题时注意频率分布直方图中所有小矩形的面积之和为1,估值时常用小矩形底边中点横坐标作为此矩形的估值进行计算.21.如图,已知四棱锥的侧棱底面,且底面是直角梯形,,,,,,点在棱上,且.(1)证明:平面;(2)求三棱锥的体积.【答案】(1)见证明;(2)4【解析】【分析】(1)取的三等分点,使,证四边形为平行四边形,运用线面平行判定定理证明.(2)三棱锥的体积可以用求出结果.【详解】(1)证明:取的三等分点,使,连接,.因为,,所以,.因为,,所以,,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)解:因为,,所以的面积为,因为底面,所以三棱锥的高为,所以三棱锥的体积为.因为,所以三棱锥的高为,所以三棱锥的体积为,故三棱锥的体积为.【点睛】本题考查了线面平行的判定定理、三棱锥体积的计算,在证明线面平行时需要构造平行四边形来证明,三棱锥的体积计算可以选用割、补等方法.22.已知向量,,函数.(1)若,求的取值集合;(2)当时,不等式恒成立,求的取值范围.【答案】(1)或;(2).【解析】【分析】(1)由题化简得.再解方程即得解;(2)由题得在上恒成立,再求不等式右边函数的最小值即得解.【详解】解:(1)因为,,所以.因为,所以.解得或.故的取值集合为.(2)由(1)可知,所以在上恒成立.因为,所以,所以在上恒成立.设,则.所以.因为,所以,所以.故的取值范围为.【点睛】本题主要考查三角恒等变换和解三角方程,考查三角函数最值的求法和恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.2018-2019学年高一数学下学期期末考试试题(含解析)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
2018~2019学年度高一下学期数学期末试卷(含答案)一、选择题(本大题共12小题,共60分)1.若角α的终边经过点(1,−√3),则sinα=()A. −12B. −√32C. 12D. √322.已知a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,则|a⃗+b⃗ |=()A. 10B. 8C. √10D. 643.已知sin(α+π6)=2√55,则cos(π3−α)=()A. √55B. −√55C. 2√55D. −2√554.函数f(x)=sin(2x+φ)的图象向右平移π6个单位后所得的图象关于原点对称,则φ可以是()A. π6B. π3C. π4D. 2π35.已知直线3x−y+1=0的倾斜角为α,则12sin2α+cos2α=()A. 25B. −15C. 14D. −1206.某班统计一次数学测验的平均分与方差,计算完毕以后才发现有位同学的卷子还未登分,只好重算一次.已知原平均分和原方差分别为x−、s2,新平均分和新方差分别为x1−、s12,若此同学的得分恰好为x−,则()A. x−=x1−,s2=s12B. x−=x1−,s2<s12C. x−=x1−,s2>s12D. ,s2=s127.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成,现从这些运动员中抽取1个容量为n的样本,若分别采用系统抽样和分层抽样,则都不用剔除个体;当样本容量为n+1个时,若采用系统抽样,则需要剔除1个个体,那么样本容量n为()A. 5B. 6C. 12D. 188.执行如图的程序框图.若输入A=3,则输出i的值为()A. 3B. 4C. 5D. 69. 已知△ABC 满足AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ ,则△ABC 是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形10. “勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为4的大正方形,若直角三角形中较小的锐角α=15°,现在向该大正方形区域内随机地投掷一枚飞镖,飞镖落在图中区域1或区域2内的概率是( )A. 12B. 58C. 34D. 7811. 函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<ϕ<π2)的部分图象如图所示,则f(0)的值是( )A. √32B. √34C. √62D. √6412. 已知a ⃗ =(sin ω2x,sinωx),b ⃗ =(sin ω2x,12),其中ω>0,若函数f(x)=a ⃗ ⋅b ⃗ −12在区间(π,2π)内没有零点,则ω的取值范围是( ) A. (0,18]B. (0,58]C. (0,18]∪[58,1]D. (0,18]∪[14,58]二、填空题(本大题共4小题,共20分)13. 甲、乙两人在相同的条件下各射击10次,它们的环数方差分别为s 甲2=2.1,s 乙2=2.6,则射击稳定程度较高的是______(填甲或乙).14. 执行如图的程序框图,若输入的x =2,则输出的y =______.15. 《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.16. 已知点P(4m,−3m)(m <0)在角α的终边上,则2sinα+cosα=______.三、解答题(本大题共6小题,共70分)17.2018年3月19日,世界上最后一头雄性北方白犀牛“苏丹”在肯尼亚去世,从此北方白犀牛种群仅剩2头雌性,北方白犀牛种群正式进入灭绝倒计时.某校一动物保护协会的成员在这一事件后,在全校学生中组织了一次关于濒危物种犀牛保护知识的问卷调查活动.已知该校有高一学生1200人,高二1300人,高三学生1000人.采用分层抽样从学生中抽70人进行问卷调查,结果如下:完全不知道知道但未采取措施知道且采取措施高一8x y高二z133高三712m在进行问卷调查的70名学生中随机抽取一名“知道但未采取措施”的高一学生的概率是0.2.(Ⅰ)求x,y,z,m;(Ⅱ)从“知道且采取措施”的学生中随机选2名学生进行座谈,求恰好有1名高一学生,1名高二学生的概率.18.为增强学生体质,提升学生锻炼意识,我市某学校高一年级外出“研学”期间举行跳绳比赛,共有160名同学报名参赛.参赛同学一分钟内跳绳次数都在区间[90,150]内,其频率直方图如右下图所示,已知区间[130,140),[140,150]上的频率分别为0.15和0.05,区间[90,100),[100,110),[110,120),[120,130)上的频率依次成等差数列.(Ⅰ)分别求出区间[90,100),[100,110),[110,120)上的频率;(Ⅱ)将所有人的数据按从小到大排列,并依次编号1,2,3,4…160,现采用等距抽样的方法抽取32人样本,若抽取的第四个的编号为18.(ⅰ)求第一个编号大小;(ⅰ)从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)上的概率是多少?19.已知a⃗=(1,2),b⃗ =(−3,4).(1)若|k a⃗+b⃗ |=5,求k的值;(2)求a⃗+b⃗ 与a⃗−b⃗ 的夹角.,且α为第二象限角.20.已知sinα=35(1)求sin2α的值;)的值.(2)求tan(α+π4)(x∈R).21.设函数f(x)=4cosx⋅sin(x+π6(1)求函数y=f(x)的最小正周期和单调递增区间;]时,求函数f(x)的最大值.(2)当x∈[0,π2),f(0)=0,且函数f(x) 22.已知f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<|φ|<π2.图象上的任意两条对称轴之间距离的最小值是π2)的值;(1)求f(π8(2)将函数y=f(x)的图象向右平移π个单位后,得到函数y=g(x)的图象,求函数6g(x)的解析式,并求g(x)在x∈[π6,π2]上的最值.答案和解析1.【答案】B【解析】解:角α的终边经过点(1,−√3),则sinα=yr =−√32.故选:B.直接利用任意角的三角函数的定义,求解即可.本题考查任意角的三角函数的定义,考查计算能力.2.【答案】A【解析】解:a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,可得:2x+3−3x=0,解得x=3,所以a⃗+b⃗ =(10,0),所以|a⃗+b⃗ |=10.故选:A.利用向量的垂直,求出x,然后求解向量的模.本题考查向量的数量积以及向量的模的求法,向量的垂直条件的应用,是基本知识的考查.3.【答案】C【解析】解:∵已知sin(α+π6)=2√55,∴cos(π3−α)=cos[π2−(α+π6)]=sin(α+π6)=2√55,故选:C.由条件利用诱导公式进行化简所给的式子,可得结果.本题主要考查利用诱导公式进行化简三角函数式,属于基础题.4.【答案】B【解析】解:函数f(x)=sin(2x+φ)的图象向右平移π6个单位后,可得y=sin(2x−π3+φ),∵图象关于原点对称,∴φ−π3=kπ,k∈Z,可得:φ=kπ+π3.当k=0时,可得φ=π3.故选:B.根据图象变换规律,可得解析式,图象关于原点对称,建立关系,即可求解φ值.本题主要考查函数y=Asin(ωx+φ)的图象变换规律和对称问题,属于基础题.5.【答案】A【解析】解:∵直线3x −y +1=0的倾斜角为α,∴tanα=3, ∴12sin2α+cos 2α=12⋅2sinαcosα+cos 2α=sinαcosα+cos 2αsin 2α+cos 2α=tanα+1tan 2α+1=3+19+1=25,故选:A .由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题. 6.【答案】C【解析】解:设这个班有n 个同学,数据分别是a 1,a 2,…,a i,…,a n , 第i 个同学没登分,第一次计算时总分是(n −1)x −,方差是s 2=1n−1[(a 1−x −)2+⋯+(a i−1−x −)2+(a i+1−x −)2+⋯+(a n −x −)2]第二次计算时,x 1−=(n−1)x −+x−n=x −,方差s 12=1n [(a 1−x −)2+⋯(a i−1−x −)2+(x −x)2+(a i+1−x −)2+⋯+(a n −x −)2]=n−1ns 2, 故s 2>s 12, 故选:C .根据平均数和方差的公式计算比较即可.本题考查了求平均数和方差的公式,是一道基础题. 7.【答案】B【解析】解:由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体; 如果样本容量增加一个,则在采用系统抽样时, 需要在总体中先剔除1个个体, ∵总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n , 分层抽样的比例是n36,抽取的乒乓球运动员人数为n36⋅6=n6, 篮球运动员人数为n36⋅12=n3,足球运动员人数为n36⋅18=n2, ∵n 应是6的倍数,36的约数, 即n =6,12,18.当样本容量为(n +1)时,总体容量是35人, 系统抽样的间隔为35n+1, ∵35n+1必须是整数,∴n 只能取6.即样本容量n =6. 故选:B .由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,算出总体个数,根据分层抽样的比例和抽取的乒乓球运动员人数得到n 应是6的倍数,36的约数,由系统抽样得到35n+1必须是整数,验证出n 的值.本题考查分层抽样和系统抽样,是一个用来认识这两种抽样的一个题目,把两种抽样放在一个题目中考查,加以区分,是一个好题. 8.【答案】C【解析】解:运行步骤为:i =1,A =7 i =2,A =15; i =3,A =31; i =4,A =63; i =5,A =127; 故输出i 值为5, 故选:C .根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题. 9.【答案】C【解析】【分析】本题考查了向量的加减法则,数量积的运算性质,三角形形状的判断,属于中档题.根据向量的加减运算法则,将已知化简得AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.结合向量数量积的运算性质,可得CA ⊥CB ,得△ABC 是直角三角形.【解答】解:∵△ABC 中,AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ , 即AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0, ∴CA ⃗⃗⃗⃗⃗ ⊥CB⃗⃗⃗⃗⃗ ,即CA ⊥CB , ∴△ABC 是直角三角形, 故选C . 10.【答案】B【解析】解:小正方形的边长为4sin750−4cos750=(√6+√2)−(√6−√2)=2√2, 故小正方形与大正方形的面积之比为(2√24)2=12,因此剩下的每个直角三角形的面积与大正方形的面积之比为12÷4=18, ∴飞镖落在区域1或区域2的概率为12+18=58. 故选:B .由已知求出小正方形的边长,得到小正方形及直角三角形与大正方形的面积比,则答案可求.本题考查几何概型概率的求法,求出小正方形及直角三角形与大正方形的面积比是关键,是中档题.11.【答案】C【解析】解:由图知,A=√2,又ω>0,T 4=7π12−π3=π4,∴T=2πω=π,∴ω=2,∴π3×2+φ=2kπ+π(k∈Z),∴φ=2kπ+π3(k∈Z),∵0<ϕ<π2,∴φ=π3,∴f(x)=√2sin(2x+π3),∴f(0)=√2sinπ3=√62.故选:C.由图知,A=√2,由T4=π4,可求得ω,π3ω+φ=2kπ+π(k∈Z),0<ϕ<π2可求得φ,从而可得f(x)的解析式,于是可求f(0)的值.本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得φ是难点,考查识图能力,属于中档题.12.【答案】D【解析】解:a⃗=(sinω2x,sinωx),b⃗ =(sinω2x,12),其中ω>0,则函数f(x)=a⃗⋅b⃗ −12=sin2(ω2x)+12sinωx−12=12−12cosωx+12sinωx−12=√2sin(ωx−π4),可得T=2πω≥π,0<ω≤2,f(x)在区间(π,2π)内没有零点,结合三角函数可得,{πω−π4≥02πω−π4≤π或{πω−π4≥−π2πω−π4≤0,解得14≤ω≤58或0<ω≤18,故选:D.利用两角和与差的三角函数化简函数的解析式,利用函数的零点以及函数的周期,列出不等式求解即可.本题考查函数的零点个数的判断,三角函数的化简求值,考查计算能力.13.【答案】甲【解析】解:方差越小越稳定,s 甲2=2.1<s 乙2=2.6,故答案为:甲.根据方差的大小判断即可.本题考查了方差的意义,掌握方差越小越稳定是解决本题的关键,是一道基础题. 14.【答案】7【解析】解:由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,∵输入结果为2,∴y =3×2+1=7. 故答案为:7.由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,由已知代入计算即可得解.本题主要考查选择结构的程序框图的应用,关键是判断出输入的值是否满足判断框中的条件,属于基础题. 15.【答案】120【解析】解:由题意可得:弧长l =20,半径r =12, 扇形面积S =12lr =12×20×12=120(平方米),故答案为:120.利用扇形面积计算公式即可得出.本题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.16.【答案】25【解析】解:点P(4m,−3m)(m <0)在角α的终边上,∴x =4m ,y =−3m ,r =|OP|=√16m 2+9m 2=−5m , ∴sinα=y r=35,cosα=x r =−45,∴2sinα+cosα=65−45=25,故答案为:25.由题意利用任意角的三角函数的定义,求得sinα和cosα的值,可得2sinα+cosα的值. 本题主要考查任意角的三角函数的定义,属于基础题.17.【答案】解:(Ⅰ)采用分层抽样从3500名学生中抽70人,则高一学生抽24人,高二学生抽26人, 高三学生抽20人.“知道但未采取措施”的高一学生的概率=x70=0.2, ∴x =14,∴y =24−14−8=2,z=26−13−3=10,m=20−12−7=1,∴x=14,y=2,z=10,m=1;(Ⅱ)“知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E表示,高三学生1名用F表示.则从这6名学生中随机抽取2名的情况有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,其中恰好1名高一学生1名高二学生的有6种.∴P=615=25,即恰好有1名高一学生,1名高二学生的概率为25.【解析】(Ⅰ)根据分层抽样先求出x,即可求出y,z,m.(Ⅱ)知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E 表示,高三学生1名用F表示.根据古典概率公式计算即可.本题考查等可能事件的概率,古典概型概率计算公式等知识,属于中档题.18.【答案】解:(Ⅰ)[90,100),[100,110),[110,120)上的频率之和为:1−10×0.035−0.15−0.05=0.45,且前三个频率成等差数列(设公差为d),故[100,110)上的频率为:0.453=0.15,从而2d=0.35−0.15=0.2,解得d=0.1,∴[90,100),[100,110),[110,120)上的频率分别为0.05,0.15,0.25.……(5分) (Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,故第一个编号为18−3×5=3.……(7分) (ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,……(9分)由(1)可知区间[90,100),[100,110)上的总人数为160×(0.05+0.15)=32人,[110,120),[120,130)上的总人数为160×(0.25+0.35)=96人,[90,130)共有128人,令33≤a n≤128,解得7≤n≤26,∴在[110,120),[120,130)上抽取的样本有20人,……(11分)故从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率是p=2032=58.……(12分)【解析】(Ⅰ)先求出[90,100),[100,110),[110,120)上的频率之和,再由前三个频率成等差数列,得[100,110)上的频率为0.15,由此能求出[90,100),[100,110),[110,120)上的频率.(Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,由此能求出第一个编号.(ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,由此能求出从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率.本题考查频率的求法,考查第一个编号、概率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.19.【答案】解:(1)根据题意,k a⃗+b⃗ =k(1,2)+(−3,4)=(k−3,2k+4),由|k a ⃗ +b ⃗ |=5,得√(k −3)2+(2k +4)2=5,解得:k =0或k =−2;(2)根据题意,设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,a ⃗ =(1,2),b ⃗ =(−3,4),则a ⃗ +b ⃗ =(−2,6),a ⃗ −b ⃗ =(4,−2);∴cosθ=40×20=−√22, ∵θ∈[0,π];∴a ⃗ +b ⃗ 与a ⃗ −b ⃗ 夹角为3π4.【解析】(1)根据题意,求出k a ⃗ +b⃗ 的坐标,进而由向量模的计算公式可得√(k −3)2+(2k +4)2=5,解可得k 的值,即可得答案;(2)设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,求出a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的坐标,由向量数量积的计算公式可得cosθ的值,结合θ的范围计算可得答案.本题考查向量数量积的坐标计算,关键是掌握向量数量积、模的计算公式. 20.【答案】解:(1)∵sinα=35,且α为第二象限角,∴cosα=−√1−sin 2α=−45, ∴sin2α=2sinαcosα=2×35×(−45)=−2425;(2)由(1)知tanα=sinαcosα=−34, ∴tan(α+π4)=tanα+tan π41−tanαtan π4=−34+11−(−34)=17.【解析】(1)由已知利用平方关系求得cosα,再由二倍角公式求得sin2α的值;(2)由(1)求出tanα,展开两角和的正切求得tan(α+π4)的值.本题考查同角三角函数基本关系式的应用,考查两角和的正切,是基础的计算题. 21.【答案】解:(1)f(x)=4cosx ⋅sin(x +π6)=2√3sinxcosx +2cos 2x=√3sin2x +cos2x +1=2sin(2x +π6)+1,∴函数f(x)的周期T =π,∴当2kπ−π2≤2x +π6≤2kπ+π2时,即kπ−π3≤x ≤kπ+π6,k ∈Z ,函数单调增, ∴函数的单调递增区间为[kπ−π3,kπ+π6](k ∈Z); (2)当x ∈[0,π2]时,2x +π6∈[π6,7π6], ∴sin(2x +π6)∈[−12,1],∴当sin(2x +π6)=1,f(x)max =3.【解析】(1)对f(x)化简,然后利用周期公式求出周期,再利用整体法求出单调增区间; (2)当x ∈[0,π2]时,sin(2x +π6)∈[−12,1],然后可得f(x)的最大值.本题考查了三角函数的化简求值和三角函数的图象与性质,考查了整体思想和数形结合思想,属基础题.22.【答案】解:(1)f(x)=sin(ωx+φ)+cos(ωx+φ)=√2sin(ωx+φ+π4),故2πω=2×π2,求得ω=2.再根据f(0)=sin(φ+π4)=0,0<|φ|<π2,可得φ=−π4,故f(x)=√2sin2x,f(π8)=√2sinπ4=1.(2)将函数y=f(x)的图象向右平移π6个单位后,得到函数y=g(x)=√2sin2(x−π6)=√2sin(2x−π3)的图象.∵x∈[π6,π2],∴2x−π3∈[0,2π3],当2x−π3=π2时,g(x)=√2sin(2x−π3)取得最大值为√2;当2x−π3=0时,g(x)=√2sin(2x−π3)取得最小值为0.【解析】(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(0)= 0求出φ的值,可得f(x)的解析式,从而求得f(π8)的值.(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[π6,π2]上的最值.本题主要考查两角和差的正弦公式,由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由f(0)=0求出φ的值,可得f(x)的解析式;函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.。
绝密★启用前四川省2018-2019学年高一下学期期末数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知数列{}n a 满足13n n a a +=-,127a =,*n ∈N ,则5a 的值为( ) A .12B .15C .39D .422.设集合(1,3)A =-,{}2|230B x x x =--+<,则A B =( )A .()1,3-B .()3,1-C .()1,3D .∅3.已知函数()sin 2cos 266f x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,则函数()f x 的最小正周期为( ) A .4πB .2πC .πD .2π4.已知l 为直线,α,β为两个不同的平面,则下列结论正确的是( ) A .若l α,l β∥,则αβ∥ B .若l α⊥,l β⊥,则αβ⊥ C .若l α⊥,l β∥,则αβ⊥D .若l α⊥,βα⊥,则l β∥5.已知等差数列{}n a 中,12a =,932a =,则357a a a ++的值为( ) A .51B .34C .64D .5126.已知正方体1111ABCD A B C D -中,E 、F 分别为11A D ,1A A 的中点,则异面直线EF 和1BD 所成角的余弦值为( )A B C D…订…………○………※※内※※答※※题※※…订…………○………7.下列表达式正确的是()①min2(sin)sinxx+=(0,)xπ∈②若0a b->,则220a b->③若22ac bc>,则a b>④若0a b>>,则ln0ba<A.①②B.②③C.①③D.③④8.已知网格纸的各个小格均是边长为一个单位的正方形,一个几何体的三视图如图中粗线所示,则该几何体的表面积为()A.8πB.7πC.8πD.6π9.在ABC△中,A,8Bπ+,C成等差数列,cosc a B=,则ABC△的形状为()A.直角三角形B.等腰直角三角形C.等腰三角形D.等边三角形10.设等比数列{}n a的前n项和为n S,若8453SS=,则2412SS=()A.53B.2C.3527D.273511.已知向量(),2a x=,()1,b y=且,x y为正实数,若满足2a b xy⋅=,则34x y+的最小值为()A.5+B.5C.D.12.已知函数2()2cos2f x x x=-,在ABC△中,内角,,A B C的对边分别是,,a b c,内角A满足()1f A=-,若a=ABC△的周长的取值范围为()A.B.C.D.○…………订__班级:___________考○…………订第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.已知ABC △中内角,,A B C 的对边分别是,,a b c ,6A π=,712B π=,2a =,则c 为_____.14.已知数列{}n a 满足11a =,()*12n n a a n +=∈N ,则10S =______.15.已知函数()2()lg 3f x mx mx m =--+的定义域为R ,则实数m 的取值范围为_____.16.已知圆锥SO 如图所示,底面半径为1cm ,母线长为2cm ,则此圆锥的外接球的表面积为___2cm .三、解答题17.已知等差数列{}n a 满足123a =,且11132a a +=. (1)求数列{}n a 的通项n a ;(2)求数列{}n a 的前n 项和n S 的最大值.18.设函数22()(sin cos )f x x x x =++-(1)求函数()f x 的单调递增区间; (2)当5,46x ππ⎛⎫∈⎪⎝⎭时,求函数()f x 的值域. 19.已知三棱柱111ABC A B C -(如图所示),底面ABC 为边长为2的正三角形,侧棱1CC ⊥底面ABC ,14CC =,E 为11B C 的中点.…………装…………………○……※请※※不※※要※※在※※装…………装…………………○……(1)求证:1AC ∥平面1BA E ;(2)若G 为11A B 的中点,求证:1C G ⊥平面11A B BA ; (3)求三棱锥1A EBA -的体积.20.已知数列{}n a 的前n 项和为n S ,点()()*,n n S n ∈N 在函数2()2f x xx =+的图像上.(1)求数列{}n a 的通项n a ; (2)设数列12n a n n b a -=,求数列{}n b 的前n 项和n T .21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()xm .(1)设总造价y (元)表示为长度()x m 的函数;(2)当()xm 取何值时,总造价最低,并求出最低总造价.22.已知函数2()(,)f x x bx c b c =++∈R ,且()0f x ≤的解集为[]1,2. (1)求函数()f x 的解析式;(2)解关于x 的不等式()(1)(2)f x m x >--,()m ∈R ; (3)设()()31xg x f x x =+-,若对于任意的12,x x ∈R 都有()()12g x g x M -≤,求参考答案1.B 【解析】 【分析】根据等差数列的定义可得数列{}n a 为等差数列,求出通项公式即可。
四川省自贡市高级中学高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 过点(1,2)且与原点的距离最大的直线方程是().A.2x+y-4=0B. x+2y-5=0C.x+3y-7=0D.3x+y-5=0参考答案:B2. 函数y=2x的图像可以看成是由函数y=2x+1+3的图像平移后得到的,平移过程是()A.向左平移1个单位,向上平移3个单位B.向左平移1个单位,向下平移3个单位C.向右平移1个单位,向上平移3个单位.D.向右平移1个单位,向下平移3个单位参考答案:D3. 函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数,则a的取值范围为()A.0<a≤B.0≤a≤C.0<a<D.a>参考答案:B【考点】函数单调性的性质.【专题】计算题.【分析】根据a取值讨论是否为二次函数,然后根据二次函数的性质建立不等关系,最后将符合条件的求并集.【解答】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴?0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.4. 已知集合,则下列式子表示正确的有()①②③④A.1个 B.2个 C.3个 D.4个参考答案:C略5. 且<0,则的取值范围是()A. B. C. D.参考答案:A6. 已知角的终边经过点(,),则的值是()A. B.或 C.1或 D.参考答案:D略7. 满足的集合共有()A.2个B. 4个C. 8个 D. 16个参考答案:B8. 函数的零点个数是()A. 1B. 2C. 3D. 4参考答案:B【分析】先得到函数的定义域为:或,解方程【详解】要使函数有意义,则,即或,由或函数的零点个数为2个.故选:B.【点睛】这个题目考查了函数的零点的求解,函数的零点即方程的根,两者可以直接转化.9. 若集合、、,满足,则与之间的关系为()A. B.C. D .参考答案:C10. 已知函数值域为R,那么的取值范围是()A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 当< α < 2 π时,arccos ( sin α )的值等于。
2018-2019学年四川省自贡市高一下学期期末考试数学(理)试题一、单选题1.过点()()2,,,4M a N a -的直线的斜率为12-,则a 等于() A .8- B .10C .2D .4【答案】B【解析】直接应用斜率公式,解方程即可求出a 的值. 【详解】因为过点()()2,,,4M a N a -的直线的斜率为12-,所以有4110(2)2a a a -=-⇒=--,故本题选B. 【点睛】本题考查了直线斜率公式,考查了数学运算能力.2.已知向量(),2m a =,()1,1n a =+,若//m n ,则实数a 的值为( ) A .23-B .2或1-C .2-或1D .2-【答案】C【解析】根据题意,由向量平行的坐标表示公式可得()a a 12+=,解可得a 的值,即可得答案. 【详解】根据题意,向量()m a,2=,()n 1,1a =+, 若m //n ,则有()a a 12+=, 解可得a 2=-或1; 故选:C . 【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a 的方程是关键,是基础题3.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,则2a =() A .4-B .6-C .8-D .10-【解析】通过134,,a a a 成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于2a 的方程,解这个方程即可. 【详解】因为134,,a a a 成等比数列,所以有3124a a a =⋅,又因为{}n a 是公差为2的等差数列,所以有2222222()()(22)6a a a a =⋅+-+⨯⇒=-,故本题选B.【点睛】本题考查了等比中项的性质,考查了等差数列的性质,考查了数学运算能力. 4.若()()()3,6,5,2,6,A B C y --三点共线,则y =() A .13 B .13-C .9D .9-【答案】D【解析】根据()()()3,6,5,2,6,A B C y --三点共线,有AB AC k k =成立,解方程即可. 【详解】因为()()()3,6,5,2,6,A B C y --三点共线,所以有AB AC k k =成立, 因此2(6)(6)95363y y ----=⇒=----,故本题选D.【点睛】本题考查了斜率公式的应用,考查了三点共线的性质,考查了数学运算能力. 5.设平面向量(1,2)a =,(2,)b y =-,若a b ⊥,则a b +等于( )A .BC D【答案】D【解析】分析:由向量垂直的条件,求解1y =,再由向量的模的公式和向量的数量积的运算,即可求解结果.详解:由题意,平面向量(1,2),(2,)a b y ==-,且a b ⊥, 所以1(2)20a b y ⋅=⨯-+=,所以1y =,即(2,1)b =-, 又由2222520510a ba ab b +=+⋅+=+⨯+=,所以10a b +=,故选D.点睛:本题主要考查了向量的数量积的运算和向量模的求解,其中解答中熟记平面向量的数量积的运算公式和向量模的计算公式是解答的关键,着重考查了推理与运算能力,6.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =() A .31 B .32C .632D .652【答案】A【解析】根据4a 与72a 的等差中项为54,可得到一个等式,和2312a a a ⋅=,组成一个方程组,结合等比数列的性质,这个方程组转化为关于1a 和公比q 的方程组,解这个方程组,求出1a 和公比q 的值,再利用等比数列前n 项和公式,求出5S 的值. 【详解】因为4a 与72a 的等差中项为54,所以475224a a =⨯+, 因此有25231111153647111216216[1()]231515122214222a a a a a q a q a S a a q a q a q ⋅==⎧⋅⋅⋅=⎧⎧⨯-⎪⎪⎪⇒⇒⇒==⎨⎨⎨+=⨯=⋅+⋅=⎪⎪⎪-⎩⎩⎩,故本题选A. 【点睛】本题考查了等差中项的性质,等比数列的通项公式以及前n 项和公式, 7.过点()2,1且与点()1,3距离最大的直线方程是() A .230x y --= B .250x y +-= C .20x y -= D .240x y +-=【答案】C【解析】过A 点()2,1且与B 点()1,3距离最大的直线l 满足: l AB ⊥,根据两直线互相垂直,斜率的关系可以求出直线l 的斜率,写出点斜式方程,最后化成一般方程,选出正确的选项. 【详解】因为过A 点()2,1且与B 点()1,3距离最大的直线l 满足: l AB ⊥,所以有1l AB k k ⋅=-,而3112122AB lk k-==-⇒=-,所以直线l方程为11(2)202y x x y-=-⇒-=,故本题选C.【点睛】本题考查了直线与直线垂直时斜率的性质,考查了数学运算能力.8.在△ABC中,若2cosB•sinA=sinC,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形【答案】C【解析】∵2sin A cos B=sin(A+B)+sin(A-B),且2sin A cos B=sin C,∴sin(A-B)=0.∴A=B.9.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2B.若,则a>bC.若a3>b3且ab<0,则D.若a2>b2且ab>0,则【答案】C【解析】根据不等式的性质,对A、B、C、D四个选项通过举反例进行一一验证.【详解】A.若a>b,则ac2>bc2(错),若c=0,则A不成立;B.若,则a>b(错),若c<0,则B不成立;C.若a3>b3且ab<0,则(对),若a3>b3且ab<0,则D.若a2>b2且ab>0,则(错),若,则D不成立.故选:C.【点睛】此题主要考查不等关系与不等式的性质及其应用,例如举反例法求解比较简单.两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.10.已知点A(2,-3),B(-3,-2)直线l过点P(1,1),且与线段AB相交,则直线l的斜率的取值k范围是()A.34k≥或4k≤-B.34k≥或14k≤-C .34k 4-≤≤ D .3k 44≤≤ 【答案】A【解析】试题分析:画出图象如下图所示,由图可知,斜率的取值范围是[),PB k +∞或(],PC k -∞,根据已知两点的斜率公式,有34,4PB PC k k =-=,所以取值范围是34k ≥或4k ≤-.【考点】两条直线位置关系.11.如图,位于A 处的海面观测站获悉,在其正东方向相距40海里的B 处有一艘渔船遇险,并在原地等待营救.在A 处南偏西30且相距20海里的C 处有一救援船,其速度为507海里小时,则该船到求助处B 的时间为()分钟.A .24B .36C .48D .60【答案】A【解析】利用余弦定理求出BC 的长度,然后根据速度、时间、路程之间的关系求出时间即可. 【详解】由题意可知:120BAC ︒∠=,运用余弦定理可知:2222cos BC AC AB AC AB BAC =+-⋅∠40016008002800,207BC =++=∴=该船到求助处B 的时间6024507BCt min min =⨯=,故本题选A. 【点睛】本题考查了余弦定理的应用,考查了数学运算能力.12.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元,甲、乙电视台的广告费标准分别是500元/分钟和200元分钟,假设甲、乙两个电视台为该公司做的广告能给公司带来的收益分别为0.4万元/分钟和0.2万元分钟,那么该公司合理分配在甲、乙两个电视台的广告时间,能使公司获得最大的收益是()万元 A .72 B .80C .84D .90【答案】B【解析】设公司在甲、乙两个电视台的广告时间分别为,x y 分钟,总收益为z 元,根据题意得到约束条件,目标函数,平行目标函数图象找到在纵轴上截距最大时所经过的点,把点的坐标代入目标函数中即可. 【详解】设公司在甲、乙两个电视台的广告时间分别为,x y 分钟,总收益为z 元,则由题意可得可行解域:300500200900000,0x y x y x y +⎧⎪+⎨⎪⎩,目标函数为40002000z x y =+可行解域化简得,300529000,0x y x y x y +⎧⎪+⎨⎪⎩,在平面直角坐标系内,画出可行解域,如下图所示:作直线:400020000l x y +=,即20x y +=,平行移动直线l ,当直线l 过M 点时,目标函数取得最大值,联立30052900x y x y +=⎧⎨+=⎩,解得100,200x y ==,所以M 点坐标为(100,200),因此目标函数最大值为max 40001002000200800000z =⨯+⨯=,故本题选B. 【点睛】本题考查了应用线性规划知识解决实际问题的能力,正确列出约束条件,画出可行解域是解题的关键.二、填空题13.已知直线l 过点P(-2,5),且斜率为-34,则直线l 的方程为________. 【答案】3x +4y -14=0 【解析】由y -5=-34(x +2),得3x +4y -14=0. 14.在ABC ∆中,sin :sin :sin 2:3:3A B C =,则cos B =_____________ 【答案】13【解析】先由正弦定理得到::2:3:3a b c =,再由余弦定理求得cos B 的值。
【详解】由sin :sin :sin 2:3:3A B C =,结合正弦定理可得::2:3:3a b c =, 故设2a k =, 3b c k ==,(0k >),由余弦定理可得22222224991cos 2123a cb k k k B ac k +-+-===, 故1cos 3B =. 【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题。
15.已知函数()()311f x x =-+.利用课本中推导等差数列的前n 项和的公式的方法,可求得()()()()()54067f f f f f -+-+++++的值为_____.【答案】13.【解析】由题意可知:可以计算出()(2)f x f x +-的值, 最后求出()()()()()54067f f f f f -+-+++++的值.【详解】设()()()()()54067S f f f f f =-+-+++++,, 所以有()()()()()76045S f f f f f =+++++-+-,因为()(2)2f x f x +-=,因此221313S S =⨯⇒=【点睛】本题考查了数学阅读能力、知识迁移能力,考查了倒序相加法. 16.在ABC ∆中,给出如下命题:①O 是ABC ∆所在平面内一定点,且满足OA OB OB OC OC OA ⋅=⋅=⋅,则O 是ABC ∆的垂心;②O 是ABC ∆所在平面内一定点,动点P 满足()OP OA AB AC λ=++,,[)0λ∈+∞,则动点P 一定过ABC ∆的重心;③O 是ABC ∆内一定点,且0OA OB OC ++=,则23AOC ABC S S ∆∆=; ④若()0AB AC BC ABAC+⋅=且12AB AC ABAC⋅=,则ABC ∆为等边三角形, 其中正确的命题为_____(将所有正确命题的序号都填上) 【答案】①②④.【解析】①:运用已知的式子进行合理的变形,可以得到0OB CA ⋅=,进而得到OB CA ⊥,再次运用等式同样可以得到OC AB ⊥,OA CB ⊥,这样可以证明出O 是ABC ∆的垂心;②:运用平面向量的减法的运算法则、加法的几何意义,结合平面向量共线定理,可以证明本命题是真命题;③:运用平面向量的加法的几何意义以及平面向量共线定理,结合面积公式,可证明出本结论是错误的;④:运用平面向量的加法几何意义和平面向量的数量积的定义,可以证明出本结论是正确的. 【详解】①: ()00OA OB OB OC OB OA OC OB CA OB CA ⋅=⋅⇒⋅-=⇒⋅=⇒⊥,同理可得:OC AB ⊥,OA CB ⊥,所以本命题是真命题;②: ()()()OP OA AB AC OP OA AB AC AP AB AC λλλ=+⇒=⇒+-+=+,设BC 的中点为D ,所以有2AP AD λ⋅=,因此动点P 一定过ABC ∆的重心,故本命题是真命题;③: 由0OA OB OC ++=,可得设BC 的中点为D ,2OA OD =,211323S AOC S AOC S ADC S ABC S ADC S ABC ∆∆∆=⨯=⨯=∆∆∆,故本命题是假命题;④: 由()0AB AC BC ABAC+⋅=可知角BAC ∠的平分线垂直于底边,故ABC ∆是等腰三角形, 由12AB AC ABAC⋅=可知:60BAC ︒∠=,所以ABC ∆是等边三角形,故本命题是真命题,因此正确的命题为①②④. 【点睛】本题考查了平面向量的加法的几何意义和平面向量数量积的运算,考查了数形结合思想.三、解答题17.求经过直线L 1:3x + 4y – 5 = 0与直线L 2:2x – 3y + 8 = 0的交点M ,且满足下列条件的直线方程(1)与直线2x + y + 5 = 0平行 ; (2)与直线2x + y + 5 = 0垂直; 【答案】(1);(2)。