高一数学下册期末考试试题
- 格式:doc
- 大小:741.50 KB
- 文档页数:6
xy O32π- 2 34π-4高一数学期末复习试卷第I 卷(选择题)一、选择题1.已知|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为( )A .30°B .60°C .120°D .150°2.已知︱OA ︱=1,︱OB ︱=3,OB OA ∙=0,点C 在∠AOB 内,且∠AOC =30°,设OC =m OA +n OB (m 、n ∈R ),则nm等于( ) A .31B .3C .33D .33.将函数sin()3y x =-π的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为( ). A.1sin()26y x =-π B.1sin()23y x =-πC.1sin 2y x = D.sin(2)6y x =-π4.已知函数sin()y A x B ωφ=++(0,0,||2A ωφπ>><)的周期为T ,在一个周期内的图象如图所示,则正确的结论是( ). A.3,2A T ==π B.2,1=-=ωBC.4,6T φπ=π=-D.3,6A φπ== 5.在等差数列{}n a 中,若4612a a +=,n S 是数列{}n a 的前n 项和,则9S =( ) A .48B .54C .60D .108 6.设函数的最小正周期为,且,则( )A 、在单调递减B 、在单调递减C 、在单调递增D 、在单调递增3,44ππ⎛⎫⎪⎝⎭()f x 0,2π⎛⎫⎪⎝⎭()f x 3,44ππ⎛⎫⎪⎝⎭()f x 0,2π⎛⎫⎪⎝⎭()f x ()()f x f x -=π()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><7.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12 B.12C .-1D .18.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列, ∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+39.设实数满足,则的取值范围是( )A .B .C .D .10.在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a = ( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++第II 卷(非选择题)二、填空题11. 若,,且与的夹角为,则 .12.已知向量a =(cos α,sin α),b =(cos β,sin β),且a ±≠b ,那么b a +与b a -的夹角的大小是 。
新高一数学下期末试卷(含答案)新高一数学下期末试卷(含答案)一、选择题1.已知三角形ABC的内角A、B、C的对边分别为a、b、c,且a=b,则A选2.2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=5选3.3.已知三角形ABC中,A为60度,c=2,cosA=1/2,则ABC为有一个内角为30°的等腰三角形选D。
4.已知对任意实数x、y,不等式(x+y)/(1+xy)≥9恒成立,则实数a的最小值为2选D。
5.已知ABC为等边三角形,AB=2,设P,Q满足AP=λAB,AQ=(1-λ)AC(λ∈R),若BQ·CP=-2,则λ=1/2选A。
6.已知f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),ω>π/2,f(x)是奇函数,直线y=2与函数f(x)的图像的两个相邻交点的横坐标之差的绝对值为π/2,则f(x)在[π/3.π/8]上单调递减选B。
7.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是[-1,2]选B。
8.若α,β均为锐角,sinα=2/5,sin(α+β)=3/5,则cosβ=4/5或-3/5选C。
9.要得到函数y=2/3cos2x+1/3的图像,只需将函数y=2sin2x的图像向左平移π/4个单位选C。
10.已知sin(π/3-α)=-1/2,cos(2α+π/3)=2/3,则cosα=7/8选D。
分析】详解】1) 当 $a=1$ 时,$f(x)=-x^2+x+4$,$g(x)=|x+1|+|x-1|$。
因为 $f(x)$ 是一个开口向下的二次函数,所以其图像在顶点处取得最大值。
顶点横坐标为 $x=\frac{-b}{2a}=-\frac{1}{2}$,纵坐标为 $f(-\frac{1}{2})=\frac{15}{4}$。
而 $g(x)$ 的图像是由两个 V 形图像组成的,分别在 $x=-1$ 和 $x=1$ 处取得最小值$0$。
2023—2024学年第二学期期末试卷高一数学注意事项:1.本试卷包括单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题)四部分。
本试卷满分为150分,考试时间为120分钟。
2.答卷前,考生务必将自己的姓名、学校、班级填在答题卡上指定的位置。
3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,再写上新答案;不准使用铅笔和涂改液。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =3+i(i 为虚数单位),则复数zz -2i的虚部是 A .45B . 45iC . 35D .35i2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是 A .若m ∥α,n α⊂,则m ∥n B .若m ⊥α,n ⊥α,则m ∥nC .若m ∥β,n ∥β,且m α⊂,n α⊂,则α∥βD .若α⊥β,α β=m ,m ⊥n ,则n ⊥β 3.已知数据x 1,x 2,x 3, …x n 的平均数为10,方差为5,数据3x 1-1,3x 2-1,3x 3-1, …3x n-1的平均数为—x ,方差为s 2,则 A .—x =10,s 2=14 B .—x =9,s 2=44 C .—x =29,s 2=45D .—x =29,s 2=444.向量→a 与→b 不共线,→AB =→a + k →b ,→AC = m →a -→b (k ,m ∈R ),若→AB 与→AC 共线,则k ,m 应满足A .k +m =0B .k -m =0C .km +1=0D .km -1=05.同时抛掷两枚质地均匀的骰子,观察向上的点数,设事件A =“第一枚向上点数为奇数”,事件B =“第二枚向上点数为偶数”,事件C =“两枚骰子向上点数之和为8”,事件D =“两枚骰子向上点数之积为奇数”,则 A . A 与C 互斥B . A 与C 相互独立C . B 与D 互斥 D . B 与D 相互独立6. 在△ABC 中,角A ,B ,C 对边分别为a ,b ,c .若2b cos C =2a -c ,A =π4,b =3,则实数a 的值为 A . 6B . 3C . 6D . 37. 如图,四棱锥P -ABCD 中,P A ⊥面ABCD ,四边形ABCD 为正方形,P A =4,PC 与平面ABCD 所成角的大小为θ,且 tan θ=223,则四棱锥P -ABCD 的外接球表面积为 A . 26π B . 28π C . 34πD . 14π8.已知sin2θ=45,θ∈(0,π4) ,若cos(π4-θ)=m cos(π4+θ),则实数m 的值A .-3B .3C .2D .-2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.设复数z =i +3i 2(i 为虚数单位),则下列结论正确的是 A . z 的共轭复数为-3-iB .z ·i=1-3iC . z 在复平面内对应的点位于第二象限D .|z +2|= 210.已知△ABC 内角A ,B ,C 对边分别为a ,b ,c ,则下列说法正确的是 A .若sin A >sin B ,则A >BB .若a cos B =b cos A ,则△ABC 为等腰三角形 C .若a 2+b 2>c 2,则△ABC 为锐角三角形D .若a =1.5,b =2,A =30°的三角形有两解11.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则A .M ,N ,B ,A 1四点共面B .若a =2,则异面直线PD 1与MNC .平面PMN 截正方体所得截面为等腰梯形D .若a =1,则三棱锥P -MD 1B 的体积为124三、填空题:本大题共3小题,每小题5分,共15分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.12.一只不透明的口袋中装有形状、大小都相同的6个小球,其中2个白球,1个红球和3个黄球,从中1次随机摸出2个球,则恰有一球是黄球的概率是▲ .13.已知A(-3,5),B(1,10),C(2,1),则tan∠ACB=▲ .14.在△ABC中,角A、B、C所对的边分别为a、b、c,∠ABC=120°,BD是△ABC的中线,且1BD=,则a+c的最大值为▲.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步棸.15.(13分)已知sin α=-55,α∈(π,3π2),sin(α+β)=513,β∈(π2,π).(1)求tan2α的值;(2)求sinβ的值.16.(15分)某市高一年级数学期末考试,满分为100分,为做好分析评价工作,现从中随机抽取100名学生成绩,经统计,这批学生的成绩全部介于40和100之间,将数据按照[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分成6组,制成如图所示的频率直方图。
2023-2024 学年度第二学期期末质量检测高一数学参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分.题号12345678答案CDACBDDA1.【解析】由题得()()()()231151+12i i i z i i ----==-,所以z 对应的点的坐标是15,22⎛⎫-- ⎪⎝⎭,故选C .2.【解析】零向量的方向是任意的,故A 错误;相等向量要求方向相同且模长相等,共线向量不一定是相等向量,故B 错误;当0λ<,则向量a 与a λ方向相反,故C 错误;对于D :单位向量的模为1,都相等,故D 正确.3.【解析】因为1238,,,,x x x x 的平均数是10,方差是10,所以123832,32,32,,32x x x x ++++ 的平均数是310232⨯+=,方差是231090⨯=.故选A .4.【解析】【方法一】向量a 在b方向上的投影向量为()()22cos ,1,04a b b bb a a b b b⋅<>⋅===;【方法二】数形结合,由图易得选项C 正确,故选C.5.【解析】样本中高中生的人数比小学生的人数少20,所以5320543543n n -=++++,解得120n =,故选B .6.【解析】对于选项A ,易得,αβ相交或平行,故选项A 错误;对于选项B ,,m n 平行或异面,故选项B 错误;对于选项C ,当直线,m n 相交时,//αβ才成立,故选项C 错误;对于选项D ,由线面垂直的性质可知正确,故选D.7.【解析】对于选项A ,因为掷两颗骰子,两个点数可以都是偶数,也可以都是奇数,还可以一奇一偶,即一次试验,事件A 和事件B 可以都不发生,所以选项A 错误;对于选项B ,因为C D ⋂即两个点数都是偶数,即A 与C D ⋂可以同时发生,所以选项B 错误;对于选项C ,因为331()664P B ⨯==⨯,333()1664P D⨯=-=⨯,又()0P BD =,所以()()()P BD P B P D ≠,故选项C 错误;对于选项D ,因为()1P C D = ,所以C D =Ω ,因为必然事件与任意事件相互独立,所以B 与C D ⋃是相互独立事件,故选D .8.【解析】因为11AC CB =,AC BC =,取AB 中点D ,则1C DC ∠为二面角1C AB C --的平面角,所以14C DC π∠=.在1Rt C DC ∆中,可得112,CD CC C D ===,又1182V AB CD CC =⋅⋅=,解得4AB =,所以AC ==.由1111A ABC B AA C V V --=得1111133ABC AA C S h S BC ∆∆⋅=⋅,代入数据求解得到点1A 到平面1ABC的距离h =,故选A .二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.题号题9题10题11全部正确选项ABCBCAD9.【解析】依题意球的表面积为24πR ,圆柱的侧面积为22π24πR R R⨯⨯=,所以AC 选项正确;圆锥的侧面积为2πRR ⨯=,所以B 选项正确;圆锥的表面积为(2222π1π4πR R R R +=<,圆柱的表面积为2224π2π6πR R R +=,所以D 选项错误.故选ABC .10.【解析】由1i z i +=-得22z =,故选项A 错误;根据复数的运算性质,易知BC 正确;根据22z -≤的几何意义求解,点Z 在以圆心为()2,0,半径为2的圆内及圆周上,所以集合M 所构成区域的面积为4π,所以D 选项错误.故选BC .11.【解析】对于选项A ,若60A =︒,2a =,则2222cos a b c bc A =+-,即224b c bc bc =+-≥,当且仅当2b c ==时,取等号,所以1sin 2ABC S bc A ==≤△,所以ABC 故选项A正确,B 错误.对于选项C ,要使满足条件的三角形有且只有两个,则sin b A a b <<,因为4a b==,所以4sin A <πsin 0,2A A ⎛⎫∈ ⎪⎝⎭,所以03A π<<.故选项C 错误.对于选项D ,()cos cos a b c A B +=+等价于cos cos a b A B c +=+,即22222222a b b c a a c bc bc ac++-+-=+,对该等式通分得到()()()2222222ab a b a b c a b a c b +=+-++-,即2222322322a b ab ab ac a a b bc b +=+-++-,即3322220a b a b ab ac bc +++--=.这即为()()()()2220a b a ab b ab a b c a b +-+++-+=,由0a b +≠知该等式即为2220a b c +-=.从而条件等价于2220a b c +-=且1c =,从而该三角形内切圆半径)121122ABC ab S ab ab r a b c a b c a b ab ===++++++ 当且仅当2a b ==时等号成立,从而0r <≤2213πππ24S r ⎛⎫-=≤= ⎪ ⎪⎝⎭内切圆.验证知当2a b ==时,等号成立,所以该三角形的内切圆面积的最大值是3π4-,所以选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分;其中第14题的第一个空2分,第二个空3分.12.71513.a b <【注:也可以是b a >,0b a ->或a 小于b 】14.2;412.【解析】已知甲、乙两人独立的解同一道题,甲,乙解对题的概率分别是23,35,恰好有1人解对题的概率是22137353515⨯+⨯=.【注:写成有限小数不给分】13.【解析】由平均数在“拖尾”的位置,可知a b <.14.【解析】(1)13E ABC ABC V S EB -∆=⋅,在ABC ∆中,由余弦定理可知,1cos 8BAC ∠=,所以sin 8BAC ∠==,所以113772413282E ABC V -=⨯⨯⨯⨯⨯=.(2)作BH AC ⊥,垂足为H ,作1111B H AC ⊥,垂足为H 1,易证棱1BB 在平面11ACC A 上的射影为1HH ,则点E 在平面11ACC A 上的射影1E 在线段1HH 上,由(1)知,1cos 8BAC ∠=,故128AH AH AB ==,解得14AH =,故BH =,则1EE =,设AF 的中点为1Q ,外接球的球心为Q ,半径为1R ,则1QQ ⊥平面11ACC A ,即11//QQ EE ,在1Rt FQQ中,222211QF R QQ ==+①,又因为222211114QE R QQ Q E ⎛⎫==-+ ⎪ ⎪⎝⎭②,由①②可得211131216QQ Q E =+,所以当11Q E 取最小值时,1QQ 最小,即1R 最小,此时111Q E HH ⊥,因为1Q 是AF 的中点,则1E 是1HH 的中点,则E 是棱1BB 的中点.因为11//AA BB ,所以直线EF 与1BB 所成角即为直线EF 与1AA 所成角.由1111cos 8A CB =∠,再由余弦定理可得1B F 因为11EB =,所以EF =11cos 4E FEB B EF =∠=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分,其中第(1)小问6分,第(2)小问7分。
武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
高一下学期数学期末考试试卷高一下学期数学期末试卷带答案第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.不等式>0的解集是A.(,)B.(4,)C.(,-3)∪(4,+)D.(,-3)∪(,)2.设,向量且,则A.B.C.D.3.设,,∈R,且>,则A.B.C.D.4.在△ABC中内角A,B,C所对各边分别为,,,且,则角=A.60°B.120°C.30°D.150°5.已知各项不为0的等差数列,满足,数列是等比数列,且,则A.2B.4C.8D.166.如图,设A、B两点在河的两岸,一测量者在A的同侧所在的河岸边选定一点C,测出AC的距离为50m,后,就可以计算出A、B两点的距离为A.B.C.D.7.某个几何体的三视图如图所示(单位:m),则该几何体的表面积(结果保留π)为A.B.C.D.8.中,边上的高为,若,,,,,则A.B.C.D.9.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A.B.C.D.10.已知,,,若>恒成立,则实数m的取值范围是A.或B.或C.D.11.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…则此数列第20项为A.180B.200C.128D.16212.已知定义在R上的奇函数满足,,数列是等差数列,若,,则A.-2B.-3C.2D.3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卷中的相应位置.13.正项等比数列中,,则.14.某等腰直角三角形的一条直角边长为4,若将该三角形绕着直角边旋转一周所得的几何体的体积是,则.15.已知的面积为,三个内角成等差数列,则.16.如果关于的不等式和的解集分别为,和,,那么称这两个不等式为“对偶不等式”.如果不等式与不等式为“对偶不等式”,且,,那么=.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在等比数列中,.(1)求;(2)设,求数列的前项和.18.(本小题满分12分)已知△ABC的角A,B,C所对的边分别是设向量,,.(1)若∥,试判断△ABC的形状并证明;(2)若⊥,边长,∠C=,求△ABC的面积.19.(本小题满分12分)已知数列满足,且≥(1)求证数列是等差数列,并求数列的通项公式;(2)设,求数列的前项和.20.(本小题满分12分)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A、B、C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,∠BAC=60°,在A 地听到弹射声音的时间比在B地晚217秒.A地测得该仪器弹至最高点H时的仰角为30°.(1)求A、C两地的距离;(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)21.(本小题满分12分)、设函数.(1)若对于一切实数恒成立,求的取值范围;(2)对于,恒成立,求的取值范围.22.(本小题满分12分)已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.数学参考答案及评分意见一、选择题(本题共12小题,每小题5分,共60分)题号123456789101112答案DBDABCCDACBB二、填空题(本题共4小题,每小题5分,共20分)13.114.15.16.三、解答题(本题共6小题,共70分)17.(1)设的公比为q,依题意得解得因此.……………………………5分(2)因为,所以数列的前n项和.…………………………10分18.解:(1)ABC为等腰三角形;证明:∵=(a,b),(sinB,sinA),∥,∴,…………………………2分即=,其中R是△ABC外接圆半径,∴∴△ABC为等腰三角形…………………………4分(2)∵,由题意⊥,∴………………………6分由余弦定理可知,4=a2+b2﹣ab=(a+b)2﹣3ab………………………8分即(ab)2﹣3ab﹣4=0,∴ab=4或ab=﹣1(舍去)………………………10分∴S=absinC=×4×sin=.………………………12分19.解:(1)∵∴∴,即………………………2分∴数列是等差数列,首项,公差为1.………………………4分∴∴………………………6分(2)由(1),==…8分∴数列的前项和==+++++…………10分=……………12分20.解:(1)由题意,设AC=x,则BC=x-217×340=x-40.……………2分在△ABC中,由余弦定理,得BC2=BA2+AC2-2×BA×AC×cos∠BAC,……………4分即(x-40)2=10000+x2-100x,解得x=420.……………6分∴A、C两地间的距离为420m.……………7分(2)在Rt△ACH中,AC=420,∠CAH=30°,所以CH=AC×tan∠CAH=1403.……………10分答:该仪器的垂直弹射高度CH为1403米.……………12分21.解:(1)解(1)要使mx2-mx-1<0恒成立,若m=0,显然-1<0,满足题意;……………2分若m≠0,则m<0,Δ=m2+4m<0⇒-4∴实数m的范围-4(2)方法1当x∈[1,3]时,f(x)<-m+5恒成立,即当x∈[1,3]时,m(x2-x+1)-6<0恒成立.……………8分∵x2-x+1=+34>0,又m(x2-x+1)-6<0,∴m<6x2-x+1.……………10分∵函数y=6x2-x+1=在[1,3]上的最小值为67,∴只需m<67即可.综上所述,m的取值范围是.……………12分方法2要使f(x)<-m+5在x∈[1,3]上恒成立.就要使m+34m-6<0在x∈[1,3]上恒成立.……………7分令g(x)=m+34m-6,x∈[1,3].……………8分当m>0时,g(x)在[1,3]上是增函数,∴g(x)max=g(3)=7m-6<0,∴0当m=0时,-6<0恒成立;……………10分当m<0时,g(x)在[1,3]上是减函数,∴g(x)max=g(1)=m-6<0,得m<6,∴m<0.……………11分综上所述,m的取值范围是.……………12分22.(1)…………………………1分时满足上式,故…………………3分∵=1∴…………………………4分∵①∴②∴①+②,得……………………………6分(2)∵,∴∴①,②①-②得即…………………………8分要使得不等式恒成立,恒成立对于一切的恒成立,即……………………………10分令,则当且仅当时等号成立,故所以为所求.…………12分高一数学下学期期末联考试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。
高一(下)期末数学试卷一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.(5分)下列数列中不是等差数列的为()A.6,6,6,6,6 B.﹣2,﹣1,0,1,2 C.5,8,11,14 D.0,1,3,6,10.2.(5分)已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.93.(5分)在△ABC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()A.60°B.120°C.30°D.150°4.(5分)已知等差数列{a n}中,a2=2,d=2,则S10=()A.200 B.100 C.90 D.805.(5分)已知{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,则S3=()A.12 B.16 C.18 D.246.(5分)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.1627.(5分)定义为n个正数p1,p2,…,p n的“均倒数”.若已知正数数列{a n}的前n项的“均倒数”为,又b n=,则+++…+=()A.B.C.D.8.(5分)在△ABC中,b2=ac,且a+c=3,cos B=,则•=()A.B.﹣C.3 D.﹣39.(5分)如图所示,为测一树的高度,在地面上选取A、B两点,从A、B两点分别测得树尖的仰角为30°,45°,且A、B两点间的距离为60m,则树的高度为()A.B.C.D.10.(5分)数列{a n}满足,则a n=()A.B.C.D.11.(5分)△ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sin B,则角C=()A.30°B.45°C.60°D.90°12.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+c2+bc﹣a2=0,则=()A.﹣ B.C.﹣D.二、填空题(共4个小题,每题5分,共20分.)13.(5分)边长为5、7、8的三角形的最大角与最小角之和为.14.(5分)若数列{a n}满足,则a2017=.15.(5分)已知正项等比数列{a n}中,a1=1,其前n项和为S n(n∈N*),且,则S4=.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,a2+c2=b2+2ac.(1)求∠B的大小;(2)求cos A+cos C的最大值.18.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.19.(12分)已知数列{a n}的前n项和为S n,且n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列{a n}是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.20.(12分)在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.(12分)已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.22.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值范围.【参考答案】一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.D【解析】A. 6,6,6,6,6常数列,公差为0;B. ﹣2,﹣1,0,1,2公差为1;C. 5,8,11,14公差为3;D. 数列0,1,3,6,10的第二项减去第一项等于1,第三项减去第二项等于2,故此数列不是等差数列.故选D.2.B【解析】∵m和2n的等差中项是4,2m和n的等差中项是5,∴,解得m=4,n=2,∴m和n的等差中项===3.故选B.3.A【解析】在△ABC中,∵a2=b2+c2﹣bc,∴可得:b2+c2﹣a2=bc,∴cos A===,∵A∈(0°,180°),∴A=60°.故选A.4.C【解析】等差数列{a n}中,a2=2,d=2,a1+d=2,解得a1=0,则S10=10a1+×10×9d=0+45×2=90.故选C.5.A【解析】∵{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,∴a3a4=a2a5=﹣8,∴a3,a4是方程x2﹣2x﹣8=0的两个根,|a3|>|a4|,解方程,得a3=4,a4=﹣2,∴,解得,∴S3===12.故选A.6.B【解析】由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.则此数列第20项=2×102=200.故选B.7.C【解析】由已知定义,得到=,∴a1+a2+…+a n=n(2n+1)=S n,即S n=2n2+n.当n=1时,a1=S1=3.当n≥2时,a n=S n﹣S n﹣1=(2n2+n)﹣[2(n﹣1)2+(n﹣1)]=4n﹣1.当n=1时也成立,∴a n=4n﹣1;∵b n==n,∴==﹣,∴+++…+=1﹣+﹣+…+﹣=1﹣=,∴+++…+=,故选C.8.B【解析】∵在△ABC中,b2=ac,且a+c=3,cos B=,∴由余弦定理得:cos B=====,即ac=2,则•=﹣ca cos B=﹣.故选B.9.A【解析】在△P AB,∠P AB=30°,∠APB=15°,AB=60,sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=由正弦定理得:,∴PB==30(+),∴树的高度为PB sin45°=30(+)×=(30+30)m,答:树的高度为(30+30)m.故选A.10.B【解析】∵,∴n≥2时,a1+3a2+…+3n﹣2a n﹣1=,∴3n﹣1a n=,可得a n=.n=1时,a1=,上式也成立.则a n=.故选B.11.A【解析】△ABC中,由2R(sin2A﹣sin2C)=(a﹣b)sin B,根据正弦定理得a2﹣c2=(a﹣b)b=ab﹣b2,∴cos C==,∴角C的大小为30°,故选A.12.B【解析】∵b2+c2+bc﹣a2=0,∴cos A==﹣,∴A=120°.由正弦定理可得=== =.故选B.二、填空题(共4个小题,每题5分,共20分.)13.120°【解析】根据三角形中大角对大边,小角对小边的原则,所以由余弦定理可知cosθ==,所以7所对的角为60°.所以三角形的最大角与最小角之和为:120°.故答案为120°.14.2【解析】数列{a n}满足a1=2,a n=1﹣,可得a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2a5=1﹣=,…,∴a n+3=a n,数列的周期为3.∴a2017=a672×3+1=a1=2.故答案为2.15.15【解析】正项等比数列{a n}中,a1=1,且,∴1﹣=,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∴S4==15,故答案为15.16.【解析】由cos A=,cos C=,可得sin A===,sin C===,sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,由正弦定理可得b===.故答案为.三、解答题(共6小题,满分70分)17.解:(1)∵在△ABC中,a2+c2=b2+2ac.∴,∴由余弦定理得:,∵0<B<π,∴.(2)∵A+B+C=π,,∴,∴===,∵,∴,∴,∴最大值为1,∴cos A+cos C的最大值为1.18.解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.19.解:(1)由a n+1=1+S n得:当n≥2时,a n=1+S n﹣1,两式相减得:a n+1=2a n,∵数列{a n}是等比数列,∴a2=2a1,又∵a2=1+S1=1+a1,解得:a1=1.得:;(2),可知数列是一个递减数列,∴,由此可知当n=9时,数列的前项和T n取最大值.20.解:(1)∵△ABC中,cos B=,∴sin B=,∵,∴AB==5;(2)cos A=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)c n=a n+b n=2n﹣1+3n﹣1,则数列{c n}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.22.解:(Ⅰ)由已知得,化简得,整理得,即,由于0<B+C<π,则,所以.(Ⅱ)根据余弦定理,得=b2+c2+bc=b2+(2﹣b)2+b(2﹣b)=b2﹣2b+4=(b﹣1)2+3.又由b+c=2,知0<b<2,可得3≤a2<4,所以a的取值范围是.。
高一数学第二学期期末考试试题(带参考答案)选择题1. 以下属于集合 {1, 2, 3, 4} 的真子集的个数是:A. 3B. 7C. 15D. 16正确答案:A2. 已知集合 A = {x | -2 ≤ x ≤ 3},则集合 A 中的元素个数是:A. 4B. 5C. 6D. 7正确答案:C3. 设集合 A = {a, b, c},集合 B = {1, 2, 3},则集合 A × B 的元素个数是:A. 3B. 6C. 9D. 12正确答案:D4. 已知集合 A = {x | -5 ≤ x ≤ 5},则集合 A 的幂集的元素个数是:A. 10B. 20C. 32D. 64正确答案:C解答题1. 已知函数 f(x) = 2x + 3,求 f(-4) 的值。
解答:将 x = -4 代入函数 f(x) = 2x + 3 中,得到 f(-4) = 2(-4) + 3 = -5。
2. 计算下列算式的值:(-3)^4 - 2 × 5^2解答:首先计算指数,得到(-3)^4 = 81,5^2 = 25。
然后代入算式,得到值为 81 - 2 × 25 = 31。
3. 已知一组数据为 {2, 4, 6, 8, 10},求这组数据的中位数。
解答:将数据从小到大排序为 {2, 4, 6, 8, 10},可以看出中间的数为 6,所以这组数据的中位数为 6。
4. 某商品标价为 800 元,商场打折后的售价为 720 元,求打折幅度。
解答:打折幅度为原价与打折后价之间的差值除以原价,所以打折幅度为 (800 - 720) ÷ 800 = 0.1,即打折幅度为 10%。
以上为高一数学第二学期期末考试试题及参考答案。
高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。
4—、选择题(本题共姓名12小题,(1)sin 75的值等于(B)(3)(5)飞in 440化简为⑴ C os 220 °化简sin(x 朋in x(A) COS (2X yk(B)COS (才F 列函数中是周期为(A) y 1 2sin 2(B)为了得到函数的图象上所有点向左平行移动(7) (9已知 a =向左平行移动ntan高一下数学期末试题每小题5分, 0cos80 y)cos 于cos y班级 _______ 学号 _______共60分,将答案直接填在下表中)兀的奇函数的为(7T2个单位长度P = a个单位长度n3,2x(D)(C )sin 220(D )osin80(C ) sin(2 x y)(D)sin y71tan(D ) y22sin(2xR 的图象,只需把函数(B )向右平行移动a P(D )向右平行移动都是锐角,则 + 等于y 3sinL1 X 2个单位长度 个单位长度71 71(B )4已知(A ) 已知(A ) (C ) .3(c)或44(乙 3),3(D )或544b 二(x , -6),若(B )4 b,则x 等于(C )- 4a 、b 是两个单位向•量,下列四个命题屯正确的是a 与b 相等 (B )如果a 与b 平行,那么a 与b 相等 (D )a2二 b 2a ・b 二 1(A)0 (B)3 4(c) 一(D) 15 5(10)已知W= 3, |b| 二 4 (且 a 与b不共线),若(ak+b)丄(ak-b),则k的值为/ \ 3 3 3 4 (A)- _ (B)(C) ±—(D) ±-4 4 4 3 (11) 已知同二3, b二(4, 2), 且 a II b, 则a的坐标为(A)3 5 厂6 5、3 5(> 3 5)J J( 5 5 (B)(- 5 _ 5坐标是答案5)或(-5(12)已知向量b 二2)30,一9(c)(,0)U―oO — +oO L ,)3二、填空题(本题共4小题,每小题5分,共20分)(13)在三角形ABC中,已知a、b、c是角A、B、C的对边且a二6, b二3 2 , A二p则角B的大小为(14)已知cos=念,则sin 2x的值为(15)若将向呈a (2,。
2023-2024学年福建省福州第三中学高一下学期数学期末考试数学试卷1.已知复数z满足,则()A.i B.C.D.12.已知,是不共线的向量,且,,,若B,C,D三点共线,则()A.B.C.D.3.已知,,是三条不同的直线,,是两个不同的平面,且,,.设甲:,乙:,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与都是红球C.恰有一个黑球与恰有两个黑球D.至少有一个黑球与至少有一个红球5.已知圆锥的表面积为,它的侧面展开图是一个半圆,则此圆锥的体积为()A.B.C.D.6.某单位共有A、B两部门,1月份进行服务满意度问卷调查,得到两部门服务满意度得分的频率分布条形图如下.设A、B两部门的服务满意度得分的第75百分位数分别为,,方差分别为,,则()A.,B.,C.,D.,7.已知函数在区间上单调递减,,则()A.B.C.D.8.已知正四棱台的下底面边长为,侧棱与下底面所成角的大小为45°,则该正四棱台体积的取值范围是()A.B.C.D.9.下图为2018~2023年前三季度全国城镇居民人均可支配收入及人均消费支出统计图,据此进行分析,则()A.2018~2023年前三季度全国城镇居民人均可支配收入逐年递增B.2018~2023年前三季度全国城镇居民人均消费支出逐年递增C.2018~2023年前三季度全国城镇居民人均可支配收入的极差比人均消费支出的极差大D.2018~2023年前三季度全国城镇居民人均消费支出的中位数为元10.在一个有限样本空间中,事件发生的概率满足,,A与互斥,则下列说法正确的是()A.B.A与相互独立C.D.11.如图,一张矩形白纸,,,E,F分别为AD,BC的中点,BE交AC于点M,DF交AC于点.现分别将,沿BE,DF折起,且点A,C在平面的同侧,则下列命题正确的是()A.当平面平面时,平面B.当A,C重合于点时,平面C.当A,C重合于点时,三棱锥的外接球的表面积为D.当A,C重合于点时,四棱锥的体积为12.已知向量满足,且,则___________.13.某学校高一年级男生共有490人,女生共有510人,为调查该年级学生的身高情况,通过按比例分配的分层抽样,得到男生和女生样本数据的平均数和方差分别为和.若,则该校高一年级全体学生身高的方差为___________.14.在锐角中,角,,所对的边分别为,,,若,则的取值范围是___________.15.已知是复数,和均为实数,,其中是虚数单位.(1)求复数的共轭复数;(2)若复数在复平面内对应的点在第一象限,求实数的取值范围.16.在中,角的对边分别为.(1)求的大小;(2)若,且边上的中线长为,求的面积.17.小明从一幅扑克牌中挑出和共8张牌(和各四个花色:红桃(红色)、方块(红色)、黑桃(黑色)、梅花(黑色)).现从这张牌中依次取出张,抽到一张红色和一张红色即为游戏获胜.现有三种游戏方式,如下表:游戏方式方式①方式②方式③抽取规则有放回依次抽取不放回依次抽取按颜色等比例分层抽样获胜概率(1)分别求出在三种不同游戏方式下获胜的概率;(2)若三种游戏方式小明各进行一次,第一次采取方式①,后两次采用方式②和方式③,那么方式②和方式③按照怎样的顺序进行游戏能使得三次游戏中仅连续两次获胜的概率最大?18.已知某工厂一区生产车间与二区生产车间均生产某种型号的零件,这两个生产车间生产的该种型号的零件尺寸的频率分布直方图如图所示(每组区间均为左开右闭).尺寸大于M的零件用于大型机器制造,尺寸小于或等于M的零件用于小型机器制造.(1)若,试分别估计该工厂一区生产车间生产的500个该种型号的零件和二区生产车间生产的500个该种型号的零件中用于大型机器制造的零件个数;(2)若,现有足够多的来自一区生产车间与二区生产车间的零件,分别用于大型机器、小型机器各1000台的制造,每台机器仅使用一个该种型号的零件.现将一区生产车间生产的零件都用于大型机器制造,其中尺寸小于或等于M的零件若用于大型机器制造,每台会使得工厂损失200元;将二区生产车间生产的零件都用于小型机器制造,其中尺寸大于M的零件若用于小型机器制造,每台会使得工厂损失100元.求工厂损失费用的估计值H(M)(单位:元)的取值范围.19.如图,四边形ABCD是边长为1的正方形,四边形ABEF是等腰梯形,,平面平面,三棱锥的体积为.(1)求点E到平面ABCD的距离;(2)设G是棱CD上一点,若二面角的正切值是3,求CG.20.点A是直线PQ外一点,点M在直线PQ上(点M与P,Q两点均不重合),我们称如下操作为“由A点对PQ施以视角运算”:若点M在线段PQ上,记;若点M在线段PQ外,记.(1)若M在正方体的棱AB的延长线上,且,由对AB施以视角运算,求的值;(2)若M在正方体的棱AB上,且,由对AB施以视角运算,得到,求的值;(3)若是边BC的等分点,由A对BC施以视角运算,求的值.。
高一期末测试卷一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={x|x <1},B ={x|3x <1},则( )A. B. A ∪B =R C. D. A ∩B =⌀2. 在下列区间中,函数f(x)=e x +4x −3的零点所在的区间为( )A. (−2,−1)B. (−1,0)C. (0,12) D. (12,1) 3. 已知向量a ⃗ 与b ⃗ 的夹角为30°,且|a ⃗ |=√3,|b ⃗ |=2,则|a ⃗ −b ⃗ |等于( )A. 1B. √13C. 13D. √7−2√34. 设x ∈R ,向量a ⃗ =(3,x),b ⃗ =(−1,1),若a ⃗ ⊥b ⃗ ,则|a⃗ |=( ) A. 6 B. 4 C. 3√2 D. 3 5. 若sinα=−513,α为第四象限角,则tanα的值等于( )A. 125B. −125C. 512D. −5126. 在△ABC 中,a =2√3,c =2√2,A =60°,则C =( ) A. 30° B. 45° C. 45°或135° D. 60°7. 已知数列{a n }中,a 1=1,且a n+1=2a n +1,则a 4=( )A. 7B. 9C. 15D. 17 8. 等差数列{a n }的前n 项和为S n ,且a 3+a 9=16,则S 11=( )A. 88B. 48C. 96D. 176 9. 如图,从气球A 上测得正前方的河流的两岸B ,C的俯角分别为60o ,30°,此时气球的高是60m ,则河流的宽度BC 等于( )A. 30√3B. 30(√3−1)C. 40√3D. 40(√3−1)10. 若函数y =x 2+(2a −1)x +1在区间(−∞,2]上是减函数,则实数a 的取值范围是( )A. [−32,+∞)B. (−∞,−32]C. [32,+∞)D. (−∞,32]11. 已知f(x)是定义在上的偶函数,且在区间(−∞,0)上单调递增,若实数a 满足f(2|a−1|)>f(−√2),则a 的取值范围是( )A. (−∞,12) B. (−∞,12)∪(32,+∞) C. (12,32)D. (32,+∞)二、填空题(本大题共4小题,共20.0分)12. 已知向量a ⃗ 与b ⃗ 的夹角为2π3,|a ⃗ |=√2,则a ⃗ 在b ⃗ 方向上的投影为______.13. 如图,在△OAB 中,C 是AB 上一点,且AC =2CB ,设 OA ⃗⃗⃗⃗⃗ =a ⃗ ,OB ⃗⃗⃗⃗⃗⃗ =b ⃗ ,则OC ⃗⃗⃗⃗⃗ = ______ .(用a ⃗ ,b ⃗ 表示)14. 已知锐角α,β满足sinα=√55,sin(α−β)=−√1010,则β等于______.15. 数列{a n }前n 项和为S n =n 2+3n ,则{a n }的通项等于______ . 三、解答题(本大题共6小题,共72.0分)16. 某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?17. 已知向量a ⃗ ,b ⃗ 满足:|a ⃗ |=2,|b ⃗ |=4,且(a ⃗ −b ⃗ )⋅b ⃗ =−20.(1)求证:(a ⃗ +b ⃗ )⊥a ⃗ ; (2)求向量a ⃗ 与b ⃗ 的夹角.18. 在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,且acosC +ccosA =2bcosA.(1)求角A 的值;(2)若b +c =√10,a =2,求△ABC 的面积S .19.已知,,f(x)=a⃗⋅b⃗ .(1)求f(x)的最小正周期及单调递减区间;]上的最大值和最小值.(2)求函数f(x)在区间[0,π220.已知数列{a n}为等差数列,数列{b n}为等比数列,满足b1=a2=2,a5+a9=14,b4=a15+1.(1)求数列{a n},{b n}通项公式;(2)令c n=a n⋅b n,求数列{c n}的前n项和T n.21.已知数列{a n}的前n项和为S n,且S n=2a n−2(n∈N∗).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{S n}的前n项和T n.答案和解析1.【答案】A【解析】【分析】本题考查交集和并集的求法,考查指数不等式的解法,属于基础题.先求出集合B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},所以A正确,D错误,A∪B={x|x<1},所以B和C都错误,故选A.2.【答案】C【解析】【分析】本题考查函数零点存在性定理,属于基础题.)<0,进而根据函数零点存在性定理可知函数f(x)=e x+由函数解析式可知f(0)·f(124x−3的零点所在的区间.【解答】解:∵函数f(x)=e x+4x−3在上连续,且易知f(x)在上是增函数,∴f(x)至多只有一个零点,∵f(0)=e0−3=−2<0,)=√e+2−3=√e−1=e12−e0>0,f(12∴f(0)·f(1)<0,2).∴由函数零点存在性定理可知函数f(x)=e x+4x−3的零点所在的区间为(0,12故选C.3.【答案】A【解析】【分析】本题主要考查了向量数量积的定义和性质,向量的平方即为模的平方,考查运算能力,属于基础题.由向量数量积的定义可得a⃗·b⃗ 的值,再由向量的模的平方即为向量的平方,计算即可得到所求值.【解答】解:向量a⃗与b⃗ 的夹角为30°,且|a⃗|=√3,|b⃗ |=2,=3,可得a⃗·b⃗ =|a⃗|⋅|b⃗ |⋅cos30°=√3×2×√32则|a⃗−b⃗ |=√(a⃗−b⃗ )2=√a⃗2+b⃗ 2−2a⃗⋅b⃗=√3+4−2×3=1.故选:A.【解析】解:∵x∈R,向量a⃗=(3,x),b⃗ =(−1,1),a⃗⊥b⃗ ,∴a⃗⋅b⃗ =−3+x=0,解得x=3,∴a⃗=(3,3),∴|a⃗|=√9+9=3√2.故选:C.由a⃗⊥b⃗ ,求出x=3,从而a⃗=(3,3),由此能求出|a⃗|.本题考查向量的模的求法,是基础题,解题时要认真审题,注意平面向量垂直的性质的合理运用.5.【答案】D【解析】【分析】本题考查同角三角函数的基本关系式的应用,考查计算能力.属于基础题.利用同角三角函数的基本关系式求出cosα,然后求解即可.【解答】解:∵sinα=−513,α为第四象限角,∴cosα=√1−sin2α=1213,即tanα=sinαcosα=−512.故选D.6.【答案】B【解析】【分析】本题主要考查了正弦定理,大边对大角,特殊角的三角函数值的应用,属于基础题.由已知即正弦定理可得sinC=csinAa =√22,利用大边对大角可得0<C<60°,即可解得C的值.【解答】解:∵a=2√3,c=2√2,A=60°,∴由正弦定理可得:sinC=csinAa =2√2×√322√3=√22,∵c<a,可得:0<C<60°,∴C=45°.故选B.7.【答案】C【解析】解:∵a1=1,且a n+1=2a n+1,变形为a n+1+1=2(a n+1),∴数列{a n+1}是等比数列,首项与公比都为2.∴a n+1=2n,即a n=2n−1,则a4=24−1=15.故选:C.a1=1,且a n+1=2a n+1,变形为a n+1+1=2(a n+1),利用等比数列的通项公式即可得出.本题考查了等比数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.【解析】解:∵等差数列{a n}中,a3+a9=16,∴S11=a1+···+a11=11a6=11(a3+a9)=88,2故选:A.由题意、等差数列的性质、等差数列的前n项和公式,化简并求出S11的值.本题考查等差数列的性质,等差数列的前n项和公式的灵活应用,考查整体思想,属于基础题.9.【答案】C【解析】解:由题意可知∠C=30°,∠BAC=30°,∠DAB=30°,AD=60m,=40√3.∴BC=AB=60cos30∘故选:C.由题意画出图形,利用特殊角的三角函数,可得答案.本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义,属于中档题.10.【答案】B【解析】【分析】本题主要考查函数单调性的性质,其中熟练掌握二次函数的图象和性质是解答本题的关键,属于基础题.由已知中函数的解析式,结合二次函数的图象和性质,可以判断出函数y=x2+(2a−1)x+1图象的形状,分析区间端点与函数图象对称轴的关键,即可得到答案.【解答】解:∵函数y=x2+(2a−1)x+1的图象是开口向上,以直线x=−2a−1为对称轴,2又∵函数在区间(−∞,2]上是减函数,∴2≤−2a−1,2.解得a≤−32故选B.11.【答案】C【解析】【分析】本题考查了指数函数的单调性,奇偶性的性质,属于中档题.根据偶函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a−1|<√2即可.【解答】解:∵f(x)是定义在上的偶函数,且在区间(−∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减,∵2|a−1|>0,f(−√2)=f(√2),∴2|a−1|<√2=212,∴|a−1|<1,2解得12<a <32. 故选C .12.【答案】−√22【解析】解:根据条件,a ⃗ 在b ⃗ 方向上的投影为:|a ⃗ |cos <a ⃗ ,b ⃗ >=√2cos 2π3=−√22.故答案为:−√22.由条件,可得出a⃗ 在b ⃗ 方向上的投影为|a ⃗ |cos 2π3,从而求出投影的值.考查向量夹角的概念,向量投影的概念及计算公式. 13.【答案】13a ⃗ +23b ⃗【解析】解:OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +23(OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=13OA ⃗⃗⃗⃗⃗ +23OB⃗⃗⃗⃗⃗⃗ 则OC ⃗⃗⃗⃗⃗ =13a ⃗ +23b ⃗ . 故答案为:13a⃗ +23b ⃗ 利用向量的线性运算即可.本题考查了向量的线性运算,属于基础题.14.【答案】π4【解析】【分析】本题主要考查同角三角函数的基本关系、两角和差的正切公式,属于基础题.由条件利用同角三角函数的基本关系求得cosα、cos(α−β)的值,可得tanα,tan(α−β)的值,再利用两角和差的正切公式求得tanβ=tan[(α−(α−β)]的值. 【解答】解:∵锐角α,β满足sinα=√55,sin(α−β)=−√1010,∴cosα=√1−sin 2α=2√55,cos(α−β)=√1−sin 2(α−β)=3√1010, ∴tanα=sinαcosα=12,tan(α−β)=sin(α−β)cos(α−β)=−13,∴tanβ=tan[(α−(α−β)]=tanα−tan(α−β)1+tanα⋅tan(α−β)=12+131−12⋅13=1,故β=π4, 故答案为:π4.15.【答案】a n =2n +2【解析】【分析】本题考查数列的递推公式,数列的通项公式,考查学生的计算能力,属于基础题. 根据公式a n ={S 1,n =1S n −S n−1,n ≥2进行计算,解题时要注意公式中对n =1的检验.【解答】解:当n =1时,a 1=S 1=1+3=4,当n ≥2时,a n =S n −S n−1=(n 2+3n)−[(n −1)2+3(n −1)]=2n +2, 当n =1时,2×1+2=4=a 1,适合上式, ∴a n =2n +2.故答案为a n =2n +2.16.【答案】解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为3600−300050=12,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x 元, 则租赁公司的月收益为f(x)=(100−x−300050)(x −150)−x−300050×50,整理得f(x)=−x 250+162x −21000=−150(x −4050)2+307050.所以,当x =4050时,f(x)最大,最大值为f(4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.【解析】(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可;(Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论.本题以实际背景为出发点,既考查了信息的直接应用,又考查了目标函数法求最值.特别是二次函数的知识得到了充分的考查.在应用问题解答中属于非常常规且非常有代表性的一类问题,非常值得研究.17.【答案】证明:(1)∵|b ⃗ |=4,(a ⃗ −b ⃗ )⋅b ⃗ =−20,∴a ⃗ ⋅b ⃗ −b ⃗ 2=a ⃗ ⋅b ⃗ −16=−20, ∴a ⃗ ⋅b ⃗ =−4,∵|a ⃗ |=2,∴(a ⃗ +b ⃗ )⋅a ⃗ =a ⃗ 2+a ⃗ ⋅b ⃗ =0, ∴(a ⃗ +b ⃗ )⊥a ⃗ . (2)设向量a ⃗ 与b ⃗ 的夹角为θ,则cosθ=a ⃗ ,b⃗ |a ⃗ |⋅|b⃗ |=−12,θ=1200.即向量a ⃗ 与b ⃗ 的夹角为120°.【解析】(1)先计算a ⃗ ⋅b ⃗ ,再计算(a ⃗ +b ⃗ )⋅a ⃗ =0即可得出结论;(2)代入夹角公式计算即可.本题考查了平面向量的数量积运算,属于中档题.18.【答案】解:(1)在△ABC 中,∵acosC +ccosA =2bcosA , ∴sinAcosC +sinCcosA =2sinBcosA , ∴sin(A +C)=sinB =2sinBcosA , ∵sinB ≠0,∴cosA=12,由A∈(0,π),可得:A=π3;(2)∵cosA=12=b2+c2−a22bc,b+c=√10 , a=2,∴b2+c2=bc+4,可得:(b+c)2=3bc+4=10,可得:bc=2,∴S=12bcsinA=√32.【解析】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,平方和公式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.(1)由已知利用正弦定理,三角函数恒等变换的应用化简可得sinB=2sinBcosA,结合sinB≠0,可求cos A,进而可求A的值.(2)由已知及余弦定理,平方和公式可求bc的值,进而利用三角形面积公式即可计算得解.19.【答案】解:,,由,∴f(x)的最小正周期T=2π2=π,由,得:π6+kπ≤x≤2π3+kπ,k∈Z,∴f(x)的单调递减区间为[π6+kπ,2π3+kπ],k∈Z;(2)由x∈[0,π2]可得:2x+π6∈[π6,7π6],当2x+π6=7π6时,函数f(x)取得最小值为2sin7π6+1=0,当2x+π6=π2时,函数f(x)取得最大值为2sinπ2+1=3,故得函数f(x)在区间[0,π2]上的最大值为3,最小值为0.【解析】本题考查三角函数化简及三角函数的图象与性质,考查了学生的计算能力,培养了学生分析问题与解决问题的能力,属于中档题.(1)由f(x)=a⃗⋅b⃗ ,根据向量的数量积的运用可得f(x)的解析式,化简,利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间;(2)在[0,π2]上时,求出内层函数的取值范围,结合三角函数的图象和性质,可得出f(x)的最大值和最小值.20.【答案】解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , ∵a 2=2,a 5+a 9=14,∴a 1+d =2,2a 1+12d =14,解得a 1=d =1. ∴a n =1+(n −1)=n .∴b 1=a 2=2,b 4=a 15+1=16=2×q 3, ∴q =2. ∴b n =2n .(2)c n =a n ⋅b n =n ⋅2n .∴数列{c n }的前n 项和T n =2+2×22+3×23+⋯+n ⋅2n ①, 2T n =22+2×23+⋯+(n −1)⋅2n +n ⋅2n+1②,∴①−②⇒−T n =2+22+⋯+2n −n ⋅2n+1=2(1−2n )1−22(2n −1)2−1−n ⋅2n+1=(1−n)⋅2n+1−2.∴T n =(n −1)⋅2n+1+2.【解析】本题考查了“错位相减法”、等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.(1)利用等差数列与等比数列的通项公式即可得出.(2)利用“错位相减法”与等比数列的求和公式即可得出.21.【答案】解:(Ⅰ)数列{a n }的前n 项和为S n ,且S n =2a n −2①. 则S n+1=2a n+1−2②, ②−①得a n+1=2a n , 即a n+1a n=2,当n =1时,a 1=S 1=2a 1−2, 解得a 1=2,所以数列的通项公式为a n =2⋅2n−1=2n , (Ⅱ)由于a n =2n ,则S n =21+22+⋯+2n , =2(2n −1)2−1,=2n+1−2.T n =2(21+22+⋯+2n )−2−2−⋯−2, =2n+2−4−2n .【解析】(Ⅰ)直接利用递推关系式求出数列的通项公式.(Ⅱ)利用数列的通项公式,直接利用等比数列的前n 项和公式求出结果.本题考查的知识要点:数列的通项公式的求法,等比数列前n 项和的公式的应用以及分组求和.。
2023-2024学年黑龙江省哈尔滨师范大学附属中学高一下学期期末考试数学试题1.样本数据36,27,25,22,20,16,13,12,11的第60百分位数为()A.16B.21C.22D.23.52.已知复数,其中为虚数单位,则()A.0B.1C.2D.3.已知向量,,则在上的投影向量为()A.B.C.D.4.连续地掷一枚质地均匀的骰子两次,记录每次的点数,记事件为“第一次出现2点”,事件为“第二次的点数小于等于4点”,事件为“两次点数之和为奇数”,事件为“两次点数之和为9”,则下列说法不正确的是()A.与不是互斥事件B.与相互独立C.与相互独立D.与相互独立5.海洋蓝洞是地球罕见的自然地理现象.若要测量如图所示的蓝洞的口径,即两点间的距离,现在珊瑚群岛上取两点,测得,,,,则两点间的距离为()A.80B.C.160D.6.如图,某系统由A,B,C,D四个零件组成,若每个零件是否正常工作互不影响,且零件A,B,C,D正常工作的概率都为,则该系统正常工作的概率为()A.B.C.D.7.某一时段内,从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:).24小时降雨量的等级划分如下:24小时降雨量(精确到)降雨等级小雨中雨大雨暴雨在一次降雨过程中,用一个侧棱的三棱柱容器收集的24小时的雨水如图所示,当侧面水平放置时,水面恰好过的中点.则这24小时的降雨量的等级是()A.小雨B.中雨C.大雨D.暴雨8.在边长为的菱形中,,将沿着折叠,得到三棱锥,若,则该三棱锥的外接球的体积是()A.B.C.D.9.已知a,b,c为三条直线,,,为三个平面.下列命题为真命题的是()A.若,,则B.若,,,则C.若,,则D.若,,,则10.设,为两个随机事件,且,,则下列命题正确的是()A.若,则,相互独立B.若和相互独立,则和一定不互斥C.若和互斥,则和一定相互独立D.11.在正方体中,是棱的中点,则下列结论正确的是()A.若是线段的中点,则异面直线与所成角的余弦值是B.若为线段上的动点,则的最小值为C.若为线段上的动点,则平面与平面夹角的余弦值的取值范围为D.若为线段上的动点,且与平面交于点,则三棱锥的体积为12.已知向量,若三点共线,则______.13.在空间直角坐标系中,若一条直线经过点,且以向量为方向向量,则这条直线可以用方程来表示,已知直线的方程为,则点到直线的距离为______.14.在中,内角所对的边分别为,若,,则的最大值为___________.15.如图,在正三棱柱中,点D是BC的中点,.(1)求证:平面;(2)求证:平面平面;(3)求直线到平面的距离.16.第33届奥林匹克运动会将于2024年7月26日至2024年8月11日在法国巴黎举行,某调研机构为了了解人们对“奥运会”相关知识的认知程度,针对本市不同年龄和不同职业的人举办了一次“奥运会”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有m人,按年龄分成5组,其中第一组,第二组,第三组,第四组,第五组,得到如图所示的频率分布直方图,已知第一组有10人.(1)根据频率分布直方图,估计这m人的平均年龄;(2)现从以上各组中用分层随机抽样的方法选取20人,担任本市的“奥运会”宣传使者.①若有甲(年龄38),乙(年龄40)两人已确定入选,现计划从第四组和第五组被抽到的使者中,再随机抽取2名作为组长,求甲、乙两人至少有一人被选上的概率;②若第四组宣传使者的年龄的平均数与方差分别为36和,第五组宣传使者的年龄的平均数与方差分别为42和1,据此估计这m人中35~45岁所有人的年龄的方差.17.如图,是圆的直径,点是圆上异于,的点,平面,,,,分别为,的中点,平面与平面的交线为,在圆上.(1)在图中作出交线(说明画法,不必证明),并求三棱锥的体积;(2)若点满足,且与平面所成角的正弦值为,求的值.18.在中,角A,B,C所对应的边分别为a,b,c,,,(1)求A的大小:(2)点D在BC上,(Ⅰ)当,且时,求AC的长;(Ⅱ)当,且时,求的面积.19.如图,在四面体ABCD中,,,,,,E,F,G分别为棱BC,AD,CD的中点,点在线段AB上.(1)若平面AEG,试确定点的位置,并说明理由;(2)求平面AEG与平面CDH的夹角的取值范围.。
秘密★启用前【考试时间:2024年6月18日14:00-16:00】2023~2024学年度下期高中2023级期末联考数学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“贴条形码区”.2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米的黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效.3.考试结束后由监考老师将答题卡收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1cos 2α=,则cos2α=( )12 D.12−2.MN PQ MP −−=( )A.QNB.NQC.PMD.MP3.在ABC 中,3,4,5AB BC AC ===,则CB CA ⋅=( )A.-16B.16C.32D.-324.一个水平放置的平面图形OABC 按斜二测画法得到的直观图O A B C ′′′′如图所示.知24,O A C B O C A B ′===′′′′′′′,则平面图形OABC 的面积为( )A.3B.6C. 5.把函数()sin f x x =的图象向左平移π6个单位长度,再把横坐标变为原来的6π倍(纵坐标不变),得到函数()g x 的图象,下列关于函数()g x 的说法正确的是( ) A.函数()y g x =的最小正周期6T = B.函数()y g x =在区间()2,8上单调递减C.函数()2y g x =+是奇函数 D.函数()2y g x =+在区间[]3,4上的最大值为126.某一时段内,从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm ).24小时降雨量的等级划分如下: 24小时降雨量(精确到0.1)0.1~9.910.024.9∼25.049.9∼50.0~99.9降雨等级小雨中雨大雨暴雨在一次降雨过程中,用一个侧棱180mm AA =的三棱柱容器收集的24小时的雨水如图所示,当侧面11AA B B 水平放置时,水面恰好过1111,,,AC BC AC B C 的中点.则这24小时的降雨量的等级是( )A.小雨B.中雨C.大雨D.暴雨7.如图,圆锥PO 的底面直径和高均为12,过PO 上一点O ′作平行于底面的截面,以该截面为底面挖去一个圆柱,我们称该圆柱为圆锥的内接圆柱.则该圆锥的内接圆柱侧面积的最大值为( )A.12πB.24πC.36πD.72π8.在ABC 中,4AB AC BC ===,点P 满足BP tBC =,且1AP BC BC⋅=,则t =( ) A.34 B.14 C.34− D.14−二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,m n 是两条不同的直线,α是平面,若m ∥,n αα⊂,则,m n 的关系可能为( )A.平行B.垂直C.相交D.异面10.ABC 的内角,,A B C 的对边分别为,,a b c ,下列结论正确的是( ) A.若222sin sin sin sin sin A B C B C =+−,则角π3A =B.存在,,A B C ,使tan tan tan tan tan tan A B C A B C ++>成立C.若sin2sin2A B =,则ABC 为等腰或直角三角形D.若30ab A ,则ABC 有两解 11.如图,在正方体1111ABCD A B C D −中,E 为棱AB 上的动点,DF ⊥平面1,D EC F 为垂足,下列结论正确的是( )A.1FD FC =B.三棱锥1C DED −的体积为定值C.11ED A D ⊥D.1BC 与AC 所成的角为45三、填空题:本题共3小题,每小题5分,共15分.12.已知,a b为共线向量,且()()()3,1,,2ab x x =∈R ,则x =__________.13.在ABC 中,,D E 分别为,AC BC 的中点,AE 交BD 于点M .若2,4AB AC ==,π3BAC ∠=,则cos EMD ∠=__________.14.降维类比和升维类比主要应用于立体几何的学习,将空间三维问题降为平面二维或者直线一维问题就是降维类比.平面几何中多边形的外接圆,即找到一点,使得它到多边形各个顶点的距离相等.这个点就是外接圆的圆心,距离就是外接圆的半径.若这样的点存在,则这个多边形有外接圆,若这样的点不存在,则这个多边形没有外接圆.事实上我们知道,三角形一定有外接圆,如果只求外接圆的半径,我们可通过正弦定理来求,我们也可以关注九年义教初中《几何》第三册第94页例2.的结论:三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商.借助求三角形外接圆的方法解决问题:若等腰梯形ABCD 的上下底边长分别为6和8,高为1,这个等腰梯形的外接圆半径为__________;轴截面是旋转体的重要载体,圆台的轴截面中包含了旋转体中的所有元素:高、母线长、底面圆的半径,通过研究其轴截面,可将空间问题转化为平面问题.观察图象,通过类比,我们可以找到一般圆台的外接球问题的研究方法,正棱台可以看作由圆台切割得到.研究问题:如图,正三棱台的高为1,上、下底面边长分别为和一球面上,则该球的体积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知1111ABCD A B C D −是棱长为2的正方体.(1)求三棱锥11D A BC −的体积;(2)若N 是1D C 的中点,M 是1BC 的中点,证明:NM ∥平面ABCD .16.(15分)已知向量,a b 满足,4,a b == ,且a 在b 上的投影向量为b − . (1)求,a b 及a b ⋅ 的值;(2)若()()2a b a b λ−⊥+,求λ的值.17.(15分)记ABC 的内角,,A B C 的对边分别为,,a b c ,若cos πsin 2cos 6BC A=−,且sin 2sin b C B =. (1)求A 及c ;(2)若点D 在边BC 上,且3,BC BD AD ==ABC 的面积. 18.(17分)在平行四边形ABCD 中,2,45,,AB ADA E F == 分别为,AB AD 的中点,将三角形ADE 沿DE 翻折,使得二面角A ED C −−为直二面角后,得到四棱锥A EBCD −.(1)求证:EF ∥平面ABC ;(2)求证:平面AED ⊥平面ACD ; (3)求EC 与平面ACD 所成角的正弦值. 19.(17分)“费马点”是由十七世纪法国数学家费马提出并征解的一个问题,该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.如图1,三个内角都小于120 的ABC 内部有一点P ,连接,,PA PB PC ,求PA PB PC ++的最小值.我们称三角形内到三角形三个顶点距离之和最小的点为费马点.要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可求出这三条线段和的最小值.某数学研究小组先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题,具体的做法如图2,将APC 绕点C 顺时针旋转60 ,得到EDC ,连接,PD BE ,则BE 的长即为所求,此时与三个顶点连线恰好三等分费马点P 的周角.同时小组成员研究教材发现:已知对任意平面向量(),AB x y = ,把AB绕其起点沿逆时针方向旋转θ角得到向量()cos sin ,sin cos AQ x y x y θθθθ=−+.(1)已知平面内点()(1,2,12A B +−,把点B 绕点A 沿顺时针方向旋转π4后得到点P ,求点P 的坐标;(2)在ABC 中,30,12,5ACB BC AC ∠===,借助研究成果,直接写出PA PB PC ++的最小值;(3)已知点()()()1,0,1,0,0,2A B C −,求ABC 的费马点P 的坐标.。
福州2023—2024学年第二学期期末考试高一年级数学(答案在最后)(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.122.已知复数12z i =-,则zz=()A.12B.1C.2D.43.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C .若αβ⊥,//l α,//m β,则l m⊥D.若αβ⊥,//l α,//m β,则//l m4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+= B.1λμ+=- C.0λμ= D.1λμ=-5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.77,3D.77,77.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为610.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQC.若1A BQ △的外心为M ,则11AB A M ⋅为定值2D.若1AQ =,则点Q 的轨迹长度为23π三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,ACB AC AB ACB ∠∠===的角平分线交AB 于D ,则CD =__________.13.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BN BB 的值;如果不存在,请说明理由.19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.福州2023—2024学年第二学期期末考试高一年级数学(全卷共4页,四大题,19小题;满分:150分;时间:120分钟)班级__________座号__________姓名__________注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填涂自己的准考证号、姓名.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,非选择题用0.5毫米黑色签字笔在答题卡上规定的范围内书写作答,请不要错位、越界答题!在试题卷上作答的答案无效.3.考试结束,考生必须将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知样本数据10,11,9,13,10,9,12,则这组样本数据的上四分位数为()A.9B.10C.11D.12【答案】D【解析】【分析】利用百分位的定义求解即可.【详解】将样本数据按从小到大的顺序排列为:9,9,10,10,11,12,13.上四分位数即75%分位数,775% 5.25⨯=,所以该组数据的上四分位数为从小到大排列的第6个数,即12,故选:D.2.已知复数12z i=-,则zz=()A.12B.1C.2D.4【答案】B【解析】【分析】根据条件,利用共轭复数的定义及复数的运算法则,得到34i55zz=--,再利用复数模的定义,即可求出结果.【详解】因为12z i =-,所以12i 14i 434i 12i 555z z ---===--+,得到1z z=,故选:B.3.设l ,m 是两条直线,α,β是两个平面,则()A.若//αβ,//l α,//m β,则//l mB.若//αβ,//l m ,m β⊥,则l α⊥C.若αβ⊥,//l α,//m β,则l m ⊥D.若αβ⊥,//l α,//m β,则//l m 【答案】B 【解析】【分析】根据线面平行或垂直的判定及性质定理逐个判断即可.【详解】对于A ,若//αβ,//l α,//m β,则l 与m 可能平行,也可能相交,还可能异面,故A 错误;对于B ,若//l m ,m β⊥,则l β⊥,又//αβ,所以l α⊥,故B 正确;对于C ,D ,αβ⊥,//l α,//m β,则l 与m 可能平行,也可能异面或相交,故C ,D 错误;故选:B .4.已知向量,a b 满足||||a b == =0a b ⋅,若()()a b a b λμ+⊥+ ,则下列各式一定成立的是()A.0λμ+=B.1λμ+=- C.0λμ= D.1λμ=-【答案】A 【解析】【分析】由向量垂直得到数量积为0,再由向量的数量积运算化简可得λ和μ的关系.【详解】因为向量,a b 满足||||a b == ,=0a b ⋅,若()()a b a b λμ+⊥+ ,所以22()()(1)()3()0a b a b a a b b λμμλμλλμ+⋅+=++⋅+=+=,所以0λμ+=.故选:A .5.如图,某人为测量塔高AB ,在河对岸相距s 的C ,D 处分别测得BCD α∠=,BCA ∠=β,BDC γ∠=(其中C ,D 与塔底B 在同一水平面内),则塔高AB =()A.()sin tan sin s γβαγ⋅+B.()sin sin tan s γαγβ⋅+C.()sin sin tan s αγγβ⋅+D.()sin sin sin s αγγβ⋅+【答案】A 【解析】【分析】根据给定条件,在BCD △中,利用正弦定理求出BC ,再利用直角三角形边角关系求解即得.【详解】在BCD △中,由正弦定理得sin sin BC CDBDC CBD =∠∠,sin sin(π)BC s γαγ=--,则sin sin()s BC γαγ=+,在Rt ABC △中,sin sin tan tan tan sin()sin()s s AB BC ACB γγββαγαγ=∠=⋅=++.故选:A6.如图,圆锥底面半径为23,母线2PA =,点B 为PA 的中点,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,其最短路线长度和其中下坡路段长分别为()A.277,3B.77,3C.277,3D.277,7【答案】D 【解析】【分析】将圆锥侧面沿母线PA 剪开并展开成扇形,最短路线即为扇形中的直线段AB ,利用余弦定理即可求解,过P 作AB 的垂线,垂足为M ,由题意得到AM 为上坡路段,MB 为下坡路段,计算即可.【详解】如图,将圆锥侧面沿母线PA 剪开并展开成扇形,由题可得该扇形半径2PA =,弧长为24π2π33⨯=,故圆心角4π2π323APB ∠==,最短路线即为扇形中的直线段AB ,由余弦定理可得:222cos 7AB PA PB PA PB APB =+-⋅∠=;2227cos 27PB AB PA PBA PB BA +-∠==⋅,过P 作AB 的垂线,垂足为M ,当蚂蚁从A 点爬行到点M 过程中,它与点P 的距离越来越小,故AM 为上坡路段,当蚂蚁从点M 爬行到点B 的过程中,它与点P 的距离越来越大,故MB 为下坡路段,下坡路段长27cos 7MB PB PBA =⋅∠=,故选:D7.依次抛掷一枚质地均匀的骰子两次,1A 表示事件“第一次抛掷骰子的点数为2”,2A 表示事件“第一次抛掷骰子的点数为奇数”,3A 表示事件“两次抛掷骰子的点数之和为6”,4A 表示事件“两次抛掷骰子的点数之和为7”,则()A.3A 与4A 为对立事件B.1A 与3A 为相互独立事件C.2A 与4A 为相互独立事件D.2A 与4A 为互斥事件【答案】C 【解析】【分析】利用列举法与古典概型的概率公式求得各事件的概率,由3434,A A A A =∅≠Ω 即可判断A ;由1313()()()P A P A P A A ≠即可判断B ;由2424()()()P A P A P A A =即可判断C ,由24A A ≠∅ 即可判断D.【详解】依次抛掷两枚质地均匀的骰子,两次的结果用有序数对表示,其中第一次在前,第二次在后,样本空间Ω如下:()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),()()()()()()6,1,6,2,6,3,6,4,6,5,6,6},共36个样本点.则事件1A 包括(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),共6个,11()6P A =,事件2A 包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),,共18个,21()2P A =,事件3A 包括(1,5),(2,4),(3,3),(4,2),(5,1),共5个,35()36P A =,事件4A 包括(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共6个,461()366P A ==.对于A ,3434,A A A A =∅≠Ω ,所以3A 与4A 不为对立事件,故A 错误;对于B ,事件13A A 包括(2,4),则131()36P A A =,又11()6P A =,35()36P A =,所以131315()()()636P A P A P A A =⨯≠,即1A 与3A 不相互独立,故B 错误;对于C ,事件24A A 包括(1,6),(3,4),(5,2),则241()12P A A =,又21()2P A =,41()6P A =,所以2424111()()()2612P A P A P A A =⨯==,即2A 与4A 相互独立,故C 正确;对于D ,事件24A A 包括(1,6),(3,4),(5,2),则24A A ≠∅ ,即2A 与4A 不为互斥事件,故D 错误.故选:C.【点睛】关键点点睛:利用列举法和古典概型的概率公式求得各事件的概率是解决本题的关键.8.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ===BPA CPA CPB ∠=∠=∠,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A. B. C. D.【答案】D 【解析】【分析】先证得PB ⊥平面PAC ,再求得2AB BC AC ===,从而得-P ABC 为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】PA PB PC == ,BPA CPA CPB ∠=∠=∠,所以AB BC AC ==,故ABC 为等边三角形,P ABC ∴-为正三棱锥,取AC 的中点O ,连接,PO BO ,则,AC BO AC PO ⊥⊥,又,,BO PO O BO PO =⊂ 面PBO ,所以AC ⊥面PBO ,又BP ⊂面PBO ,所以AC PB ⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,又,PA PC ⊂面PAC ,所以,PA PB PC PB ⊥⊥,PA PB PC === ,2AB BC AC ∴===,在APC △中由勾股定理得PA PC ⊥,P ABC ∴-为正方体一部分,2R ==2R =,344π338V R ∴=π=⨯=,故选:D .【点睛】思路点睛:补体法解决外接球问题,可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =,222sin a b c ab C +-=,cos sin a B b A c +=,则下列结论正确的是()A.tan 2C = B.π4A =C.b =D.△ABC 的面积为6【答案】ABD 【解析】【分析】A 选项,由余弦定理得sin cos 2CC =,求出sin tan 2cos C C C==;B 选项,由正弦定理和sin sin cos cos sin C A B A B =+化简得到sin cos A A =,求出π4A =;C 选项,在A 选项基础上求出sin 5C =,cos 5C =,从而得到sin 10B =,由正弦定理得到b =D 选项,由三角形面积公式求出答案.【详解】A 选项,由余弦定理得222sin sin cos 222a b c ab C CC ab ab +-===,故sin tan 2cos CC C==,A 正确;B 选项,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以sin cos sin sin sin cos cos sin A B B A A B A B +=+,即sin sin cos sin B A A B =,因为()0,πB ∈,所以sin 0B ≠,故sin cos A A =,又()0,πA ∈,故π4A =,B 正确;C 选项,由A 选项可知,sin cos 2C C =,又22sin cos 1C C +=,故25sin 14C =,因为()0,πC ∈,所以sin 0C >,解得sin 5C =,故5si cos n 2C C ==,()sin sin sin cos cos sin 252510=+=+=⨯+⨯=B AC A C A C ,由正弦定理得sin sin a bA B=12=b =C 错误;D 选项,△ABC的面积为11sin 6225ab C ==.故选:ABD10.如图所示,下列频率分布直方图显示了三种不同的分布形态.图(1)形成对称形态,图(2)形成“右拖尾”形态,图(3)形成“左拖尾”形态,根据所给图作出以下判断,正确的是()A.图(1)的平均数=中位数=众数B.图(2)的平均数<众数<中位数C.图(2)的众数<中位数<平均数D.图(3)的平均数<中位数<众数【答案】ACD 【解析】【详解】根据平均数,中位数,众数的概念结合图形分析判断.【分析】图(1)的分布直方图是对称的,所以平均数=中位数=众数,故A 正确;图(2)众数最小,右拖尾平均数大于中位数,故B 错误,C 正确;图(3)左拖尾众数最大,平均数小于中位数,故D 正确.故选:ACD.11.在直四棱柱1111ABCD A B C D -中,所有棱长均2,60BAD ∠=︒,P 为1CC 的中点,点Q 在四边形11DCC D 内(包括边界)运动,下列结论中正确的是()A.当点Q 在线段1CD 上运动时,四面体1A BPQ 的体积为定值B.若AQ//平面1A BP ,则AQ 5C.若1A BQ △的外心为M ,则11A B A M ⋅为定值2D.若17AQ =,则点Q 的轨迹长度为23π【答案】ABD 【解析】【分析】由题易证得1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,可判断A ;取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,由面面平行的判定定理可得平面1//A BP 面AMN ,因为AQ ⊂面AMN ,所以AQ//平面1A BP ,当AQ MN ⊥时,AQ 有最小值可判断B ;由三角形外心的性质和向量数量积的性质可判断C ;在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,易知点Q 的轨迹为圆弧23A A 可判断D.【详解】对于A ,因为11//A B D C ,又因为1A B ⊂面1A BP ,1D C ⊄面1A BP ,所以1//D C 面1A BP ,所以直线1CD 到平面1A BP 的距离相等,又1A BP 的面积为定值,故A 正确;对于B ,取1,DD DC 的中点分别为,M N ,连接,,AM MN AN ,则易证明://AM PC ,AM ⊄面1A BP ,PC ⊄面1A BP ,所以//AM 面1A BP ,又因为1//A B MN ,,MN ⊄面1A BP ,1A B ⊄面1A BP ,所以//MN 面1A BP ,MN AM M ⋂=,所以平面1//A BP 面AMN ,AQ ⊂面AMN ,所以AQ//平面1A BP当AQ MN ⊥时,AQ 有最小值,则易求出5,2,AM MN ==2212cos1204122172AN AD DN AD DN ⎛⎫=+-⋅︒=+-⨯⨯⨯-= ⎪⎝⎭,Q M 重合,所以则AQ 的最小值为5AM =,故B 正确;对于C ,若1A BQ △的外心为M ,,过M 作1MH A B ⊥于点H ,2212+2=22A B 则21111==42A B A M A B ⋅ .故C 错误;对于D ,过1A 作111A O C D ⊥于点O ,易知1A O ⊥平面11C D D ,111cos 13OD A D π==在111,DD D C 上取点32,A A ,使得13123=1D A D A =,,则13127A A A A ==,32732OA OA ==-=所以若17AQ =,则Q 在以O 为圆心,2为半径的圆弧23A A 上运动,又因为1131,3,D O D A ==所以323A OA π∠=,则圆弧23A A 等于23π,故D 正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.在ABC 中,120,2,7,ACB AC AB ACB ∠∠=== 的角平分线交AB 于D ,则CD =__________.【答案】23【解析】【分析】在ABC 中,由余弦定理可得:1BC =,由正弦定理可得21sin 7B =,根据角平分线的性质可得:2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BD B DCB =∠即可求解.【详解】因为在ABC 中,120,2,7ACB AC AB ∠===由余弦定理可得:2222cos AB AC BC AB BC ACB =+-⋅⋅∠,解得1BC =由正弦定理可得:sin sin AC AB B ACB =∠,即27sin 3B =,解得:21sin 7B =,因为ACB ∠的角平分线交AB 于D ,所以60BCD ︒∠=,由角平分线性质可得:BD BCDA AC=,所以2723DA BD ==,在BCD △中,由正弦定理可得:sin sin CD BDB DCB =∠7321372=23CD =故答案为:2313.某同学用“随机模拟方法”计算曲线ln y x =与直线,0x e y ==所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[]1,e 上的均匀随机数i x 和10个在区间[]0,1上的均匀随机数i y (*,110i N i ∈≤≤),其数据如下表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22y 0.840.250.980.150.010.600.590.880.840.10lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值为_________.【答案】()315e -【解析】【分析】先根据题意以及题中数据,可得:向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,由此即可估计出曲边三角形的面积.【详解】由题意以及表中数据可得,向矩形区域101x ey ≤≤⎧⎨≤≤⎩内随机抛掷10个点,有6个点在曲边三角形内,所以其频率为63105=,因为矩形区域面积为()111e e -⨯=-,所以这个曲边三角形面积的一个近似值为()315e -.故答案为()315e -【点睛】本题主要考查几何概型,以及定积分在求面积中的应用,属于常考题型.14.若正四面体ABCD 的顶点都在一个表面积为6π的球面上,过点C 且与BD 平行的平面α分别与棱,AB AD 交于点,E F ,则空间四边形BCFE 的四条边长之和的最小值为__________.【答案】4+4【解析】【分析】根据条件求出正四面体ABCD 的棱长为2,设(01)AF AD λλ=<<,利用几何关系得到空间四边形BCFE 的四条边长之和4L =+,即可求出结果.【详解】如图,将正四面体放置到正方体中,易知正四面体外接球即正方体的外接球,设正四面体ABCD ,所以正方体的边长为a ,易知正方体的外接球直径为体对角线DH 的长,又DH =,所以正四面体的半径22DH R ==,依题有224π3π6πR a ==,得到a =,即正四面体ABCD 的棱长为2,因为//BD 面CEF ,面ABD ⋂面CEF EF =,BD ⊂面ABD ,所以//EF BD ,设(01)AF AD λλ=<<因为2AB AD BD ===,则2AF AE λ==,22BE DF λ==-,在EAF △中,因为π3EAF ∠=,所以2EF λ=,在FDC △中,π3FDC ∠=,2DC =,则FC =,所以空间四边形BCFE 的四条边长之和2222442L λλ=+-++++,又01λ<<,当12λ=时,min 4L =+,故答案为:4+.【点睛】关键点点晴:本题的关键在于设出(01)AF AD λλ=<<后,利用几何关系得出FC =2EF λ=,22BE λ=-,从而得出空间四边形BCFE 的四条边长之和4L =+,转化成求L 的最小值来解决问题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.成都石室中学生物基地里种植了一种观赏花卉,这种观赏花卉的高度(单位:cm )介于[]15,25之间,现对生物基地里部分该种观赏花卉的高度进行测量,所得数据统计如下图所示.(1)求a 的值;(2)若从高度在[)15,17和[)17,19中分层抽样抽取5株,再在这5株中随机抽取2株,求抽取的2株高度均在[)17,19内的概率.【答案】(1)0.125;(2)310【解析】【分析】(1)由频率分布直方图各小矩形的面积和等于1,可求得a 的值;(2)再由[)15,17和[)17,19的频率比0.120.153=,确定这5株分别在[)15,17和[)17,19的株数,最后由古典概型的计算公式求得结果即可.【小问1详解】依题意可得()0.050.0750.150.121a ++++⨯=,解得0.125a =;【小问2详解】由(1)可得高度在[)15,17的频率为:20.0500.1⨯=;高度在[)17,19的频率为:20.0750.15⨯=;且0.120.153=,所以分层抽取的5株中,高度在[)15,17和[)17,19的株数分别为2和3,因此记高度在[)15,17植株为,m n ,记高度在[)17,19植株为,,A B C ,则所有选取的结果为(m ,n )、(m ,A )、(m ,B )、(m ,C )、(n ,A )、(n ,B )、(n ,C )、(A ,B )、(A ,C )、(B ,C )共10种情况,令抽取的2株高度均在[)15,17内为事件M ,事件M 的所有情况为(A ,B )、(A ,C )、(B ,C )共3种情况,由古典概型的计算公式得:()310P M =.16.在平面四边形ABCD 中,90ABC ∠=︒,135C ∠=︒,BD =CD =.(1)求cos CBD ∠;(2)若ABD △为锐角三角形,求ABD △的面积的取值范围.【答案】(1(2)()1,5【解析】【分析】(1)在BCD △中,由正弦定理可得sin CBD ∠,从而求得cos CBD ∠.(2)解法一:由(1)求得sin ADB ∠sin cos 55A A =∠+∠,AB 21tan A =+∠,从而ABD S = 21tan A +∠,再利用ππ22ABD A -∠<∠<,即可求得ABD △面积的取值范围;解法二:作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,求得1A D ,1A B ,2A D ,分别求出1A BD S ,2A BD S ,利用12A BD ABD A BD S S S <<△△△即可求得范围.【小问1详解】在BCD △中,由正弦定理可得sin sin BD CDBCD CBD ∠∠=,所以22sin 5CBD ∠==,又π0,4CBD ⎛⎫∠∈ ⎪⎝⎭,所以cos 5CBD ∠==.【小问2详解】解法一:由(1)可知,πsin sin cos 25ABD CBD CBD ⎛⎫∠=-∠=∠= ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,所以()sin sin ADB A ABD ∠=∠+∠sin cos cos sin A ABD A ABD =∠∠+∠∠sin cos 55A A =∠+∠,在ABD △中,由正弦定理得sin sin AB BDADB A=∠∠,所以sin 2cos sin sin ADB A AAB A A∠∠+∠==∠∠21tan A =+∠,1sin 2ABD S AB BD ABD=⋅⋅∠122112tan 5tan A A⎛⎫=⨯+⨯=+ ⎪∠∠⎝⎭,因为()πADB ABD A ∠=-∠+∠,且ABD △为锐角三角形,所以()π0π2π02ABD A A ⎧<-∠+∠<⎪⎪⎨⎪<∠<⎪⎩,所以ππ22ABD A -∠<∠<,所以πtan tan 2A ABD ⎛⎫∠>-∠⎪⎝⎭πsin cos 12πsin 2cos 2ABD ABD ABD ABD ⎛⎫-∠ ⎪∠⎝⎭===∠⎛⎫-∠ ⎪⎝⎭,所以102tan A<<∠,所以2115tan A<+<∠,即15ABD S <<△,所以ABD △的面积的取值范围为()1,5.解法二:由(1)可知,sin sin cos 25πABD CBD CBD ∠∠∠⎛⎫=-== ⎪⎝⎭,因为ABD ∠为锐角,所以5cos 5ABD ∠=,tan 2ABD ∠=,如图,作1A D AB ⊥于1A ,作2A D BD ⊥于D ,交BA 于2A ,所以15sin 525A D BD ABD ∠=⋅==,15cos 515A B BD ABD ∠=⋅==,所以112112A BD S =⨯⨯=△,又2tan 5225A D BD ABD ∠=⋅==,所以215552A BD S =⨯=△.由图可知,仅当A 在线段12A A 上(不含端点)时,ABD △为锐角三角形,所以12A BD ABD A BD S S S <<△△△,即15ABD S <<△.所以ABD △面积的取值范围为()1,5.17.年级教师元旦晚会时,“玲儿姐”、“关关姐”和“页楼哥”参加一项趣味问答活动.该活动共有两个问题,如果参加者两个问题都回答正确,则可得到一枝“黑玫瑰”奖品.已知在第一个问题中“玲儿姐”回答正确的概率为23,“玲儿姐”和“关关姐”两人都回答错误的概率为215,“关关姐”和“页楼哥”两人都回答正确的概率为310;在第二个问题中“玲儿姐”、“关关姐”和“页楼哥”回答正确的概率依次为324,,435.且所有的问答中回答正确与否相互之间没有任何影响.(1)在第一个问题中,分别求出“关关姐”和“页楼哥”回答正确的概率;(2)分别求出“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率,并求三人最终一共获得2枝“黑玫瑰”奖品的概率.【答案】(1)“关关姐”和“页楼哥”回答正确的概率分别为31;52;(2)“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122,,;255三人最终一共获得2枝“黑玫瑰”奖品的概率825【解析】【分析】(1)根据独立事件的乘法公式分别求解即可;(2)综合应用独立事件的乘法公式和互斥事件的概率加法公式分别求解即可.【小问1详解】记=i A “玲儿姐回答正确第i 个问题”,i B =“关关姐回答正确第i 个问题”,i C =“页楼哥回答正确第i 个问题”,1,2i =.根据题意得111111122()()()(1())(1())(1)(1())315P A B P A P B P A P B P B ==--=--=,所以13()5P B =;1111133()()()()510P B C P B P C P C ===,所以11()2P C =;故在第一个问题中,“关关姐”和“页楼哥”回答正确的概率分别为35和12.【小问2详解】由题意知222324(),(),()435P A P B P C ===,“玲儿姐”获得一枝“黑玫瑰”奖品的概率为11212231()()()342P P A A P A P A ====;“关关姐”获得一枝“黑玫瑰”奖品的概率为21212322()()()535P P B B P B P B ====;“页楼哥”获得一枝“黑玫瑰”奖品的概率为31212142()()()255P P C C P C P C ===⨯=;三人最终一共获得2枝“黑玫瑰”奖品的概率为123123123(1)(1)(1)P P P P P P P PP P =-+-+-122132123825525525525=⨯⨯+⨯⨯+⨯=.所以“玲儿姐”、“关关姐”和“页楼哥”获得一枝“黑玫瑰”奖品的概率分别为122255,,;三人最终一共获得2枝“黑玫瑰”奖品的概率为825.18.如图,在直三棱柱111ABC A B C -中,M 为棱AC 的中点,AB BC =,2AC =,1AA =.(1)求证:1//B C 平面1A BM ;(2)求证:1AC ⊥平面1A BM ;(3)在棱1BB 上是否存在点N ,使得平面1AC N ⊥平面11AA C C ?如果存在,求此时1BNBB 的值;如果不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,112BN BB =.【解析】【分析】(1)连接1AB 与1A B ,两线交于点O ,连接OM ,利用三角形中位线性质得到1//OM B C ,再利用线面平行的判定即可证.(2)应用线面垂直的性质、判定可得BM ⊥平面11ACC A ,从而得到1BM AC ⊥,根据11AC C A MA∠=∠和111190AC C C AC A MA C AC ∠+∠=∠+∠=得到11A M AC ⊥,再利用线面垂直的判定即可证.(3)当点N 为1BB 的中点,设1AC 的中点为D ,连接DM ,DN ,易证四边形BNDM 为平行四边形,从而得到//BM DN ,进而有DN ⊥平面11ACC A ,再利用面面垂直的判定即可证.【小问1详解】连接1AB 与1A B ,两线交于点O ,连接OM,在1B AC △中M ,O 分别为AC ,1AB 的中点,所以1//OM B C ,又OM ⊂平面1A BM ,1B C ⊄平面1A BM ,所以1//B C 平面1A BM .【小问2详解】因为1AA ⊥底面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥.又M 为棱AC 的中点,AB BC =,所以BM AC ⊥.因为1AA AC A = ,1AA ,AC ⊂平面11ACC A ,所以BM ⊥平面11ACC A ,1AC ⊂平面11ACC A ,所以1BM AC ⊥.因为2AC =,所以1AM =.又1AA =,在1Rt ACC V 和1Rt A AM中,11tan tan AC C A MA ∠=∠=,所以11AC C A MA ∠=∠,即111190AC C C AC A MA C AC ∠+∠=∠+∠=,所以11A M AC ⊥,又1BM A M M = ,BM ,1A M ⊂平面1A BM ,所以1AC ⊥平面1A BM .【小问3详解】当点N 为1BB 的中点,即112BN BB =时,平面1AC N ⊥平面11AA C C .证明如下:设1AC 的中点为D ,连接DM ,DN,因为D ,M 分别为1AC ,AC 的中点,所以1//DM CC 且112DM CC =,又N 为1BB 的中点,所以//DM BN 且DM BN =,所以四边形BNDM 为平行四边形,故//BM DN ,由(2)知:BM ⊥平面11ACC A ,所以DN⊥平面11ACC A ,又DN ⊂平面1AC N ,所以平面1AC N ⊥平面11ACC A .19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,0.212s ==,18.439≈,()()1618.5 2.78ii x x i =--=-∑其中ix 为抽取的第i 个零件的尺寸,1,2,...,16i =.(1)求()(),1,2,...,16i x i i =的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在()3,3x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )请利用已经学过的方差公式:()2211n i i s x x n ==-∑来证明方差第二公式22211n i i s x n x ==-∑.(iii )在()3,3x s x s -+之外的数据称为离群值,试剔除离群值,并利用(ii )中公式估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本()(),1,2,...,i i x y i n =的相关系数ˆniix ynxyr-=∑0.09≈.【答案】(1)0.178-;可以认为零件的尺寸不随生产过程的进行而系统地变大或变小(2)(i )从这一天抽检的结果看,需对当天的生产过程进行检查;(ii )证明见解析;(iii )均值10.02;标准差0.09【解析】【分析】(1)根据数据和公式即可计算r 的值,根据0.25r <的规则进行判断即可;(2)(i )计算()3,3x s x s -+的值,根据13个零件的尺寸与区间的关系进行判断;(ii )根据已学公式进行变形即可证明;(iii )代入公式计算即可.【小问1详解】由题可得()()16118.5 2.78n i iii i x y nxy x x i ==-=--=-∑∑,40.848s===,18.439=≈所以 2.780.180.84818.439ˆniix ynxyr--=≈-⨯∑,则0.180.25r =<,所以可以认为零件的尺寸不随生产过程的进行而系统地变大或变小【小问2详解】(i )由题可得39.9730.2129.334x s -=-⨯=,39.9730.21210.606x s +=+⨯=,因为第13个零件的尺寸为9.22,9.229.334<,所以从这一天抽检的结果看,需对当天的生产过程进行检查;。
高一数学下册期末试卷及答案心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家分享一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。
一.选择题1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为( )A.-1B.0C.3D.不确定[答案] B[解析] 因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点,故必有一个为原点另两个横坐标互为相反数.∴x1+x2+x3=0.2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,则f(x)=0在[a,b]内( )A.至少有一实数根B.至多有一实数根C.没有实数根D.有惟一实数根[答案] D[解析] ∵f(x)为单调减函数,x∈[a,b]且f(a)?f(b)<0,∴f(x)在[a,b]内有惟一实根x=0.3.(09?天津理)设函数f(x)=13x-lnx(x>0)则y=f(x)( )A.在区间1e,1,(1,e)内均有零点B.在区间1e,1,(1,e)内均无零点C.在区间1e,1内有零点;在区间(1,e)内无零点D.在区间1e,1内无零点,在区间(1,e)内有零点[答案] D[解析] ∵f(x)=13x-lnx(x>0),∴f(e)=13e-1<0,f(1)=13>0,f(1e)=13e+1>0,∴f(x)在(1,e)内有零点,在(1e,1)内无零点.故选D.4.(2010?天津文,4)函数f(x)=ex+x-2的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)[答案] C[解析] ∵f(0)=-1<0,f(1)=e-1>0,即f(0)f(1)<0,∴由零点定理知,该函数零点在区间(0,1)内.5.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是( )A.m≤1B.0C.m>1D.0[答案] B[解析] 设方程x2+(m-3)x+m=0的两根为x1,x2,则有Δ=(m-3)2-4m≥0,且x1+x2=3-m>0,x1?x2=m>0,解得06.函数f(x)=(x-1)ln(x-2)x-3的零点有( )A.0个B.1个C.2个D.3个[答案] A[解析] 令f(x)=0得,(x-1)ln(x-2)x-3=0,∴x-1=0或ln(x-2)=0,∴x=1或x=3,∵x=1时,ln(x-2)无意义,x=3时,分母为零,∴1和3都不是f(x)的零点,∴f(x)无零点,故选A.7.函数y=3x-1x2的一个零点是( )A.-1B.1C.(-1,0)D.(1,0)[答案] B[点评] 要准确掌握概念,“零点”是一个数,不是一个点.8.函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为( )A.至多有一个B.有一个或两个C.有且仅有一个D.一个也没有[答案] C[解析] 若a=0,则b≠0,此时f(x)=bx+c为单调函数,∵f(1)>0,f(2)<0,∴f(x)在(1,2)上有且仅有一个零点;若a≠0,则f(x)为开口向上或向下的抛物线,若在(1,2)上有两个零点或无零点,则必有f(1)?f(2)>0,∵f(1)>0,f(2)<0,∴在(1,2)上有且仅有一个零点,故选C.9.(哈师大附中2009~2010高一期末)函数f(x)=2x-log12x的零点所在的区间为( )A.0,14B.14,12C.12,1D.(1,2)[答案] B[解析] ∵f14=214-log1214=42-2<0,f12=2-1>0,f(x)在x>0时连续,∴选B.10.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为( )x -1 0 1 2 3ex 0.37 1 2.72 7.39 20.09A.(-1,0)B.(0,1)C.(1,2)D.(2,3)[答案] C[解析] 令f(x)=ex-x-2,则f(1)?f(2)=(e-3)(e2-4)<0,故选C.二、填空题11.方程2x=x3精确到0.1的一个近似解是________.[答案] 1.412.方程ex-x-2=0在实数范围内的解有________个.[答案] 2三、解答题13.借助计算器或计算机,用二分法求方程2x-x2=0在区间(-1,0)内的实数解(精确到0.01).[解析] 令f(x)=2x-x2,∵f(-1)=2-1-(-1)2=-12<0,f(0)=1>0,说明方程f(x)=0在区间(-1,0)内有一个零点.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)≈0.46>0.因为f(-1)?f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈-0.03>0.因为f(-1)?f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-0.875,-0.75),x0∈(-0.8125,-0.75),x0∈(-0.78125,-0.75),x0∈(-0.78125,-0.765625),x0∈(-0.7734375,-0.765625).由于|(-0.765625)-(0.7734375)|<0.01,此时区间(-0.7734375,-0.765625)的两个端点精确到0.01的近似值都是-0.77,所以方程2x-x2=0精确到0.01的近似解约为-0.77.14.证明方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2.[解析] 令f(x)=(x-2)(x-5)-1∵f(2)=f(5)=-1<0,且f(0)=9>0.f(6)=3>0.∴f(x)在(0,2)和(5,6)内都有零点,又f(x)为二次函数,故f(x)有两个相异实根,且一个大于5、一个小于2.15.求函数y=x3-2x2-x+2的零点,并画出它的简图.[解析] 因为x3-2x2-x+2=x2(x-2)-(x-2)=(x-2)(x2-1)=(x-2)(x-1)(x+1),所以函数的零点为-1,1,2.3个零点把x轴分成4个区间:(-∞,-1],[-1,1],[1,2],[2,+∞].在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值(取精确到0.01的近似值)表:x … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 …y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 …在直角坐标系内描点连线,这个函数的图象如图所示.16.借助计算器或计算机用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.(精确到0.1)[解析] 原方程为x3-4x2+x+5=0,令f(x)=x3-4x2+x+5.∵f(-1)=-1,f(0)=5,f(-1)?f(0)<0,∴函数f(x)在(-1,0)内有零点x0.取(-1,0)作为计算的初始区间用二分法逐步计算,列表如下端点或中点横坐标端点或中点的函数值定区间a0=-1,b0=0 f(-1)=-1,f(0)=5 [-1,0]x0=-1+02=-0.5f(x0)=3.375>0 [-1,-0.5]x1=-1+(-0.5)2=-0.75 f(x1)≈1.578>0 [-1,-0.75]x2=-1+(-0.75)2=-0.875 f(x2)≈0.393>0 [-1,-0.875]x3=-1-0.8752=-0.9375 f(x3)≈-0.277<0 [-0.9375,-0.875]∵|-0.875-(-0.9375)|=0.0625<0.1,∴原方程在(-1,0)内精确到0.1的近似解为-0.9.17.若函数f(x)=log3(ax2-x+a)有零点,求a的取值范围.[解析] ∵f(x)=log3(ax2-x+a)有零点,∴log3(ax2-x+a)=0有解.∴ax2-x+a=1有解.当a=0时,x=-1.当a≠0时,若ax2-x+a-1=0有解,则Δ=1-4a(a-1)≥0,即4a2-4a-1≤0,解得1-22≤a≤1+22且a≠0.综上所述,1-22≤a≤1+22.18.判断方程x3-x-1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1).[解析] 设函数f(x)=x3-x-1,因为f(1)=-1<0,f(1.5)=0.875>0,且函数f(x)=x3-x-1的图象是连续的曲线,所以方程x3-x-1=0在区间[1,1.5]内有实数解.取区间(1,1.5)的中点x1=1.25,用计算器可算得f(1.25)=-0.30<0.因为f(1.25)?f(1.5)<0,所以x0∈(1.25,1.5).再取(1.25,1.5)的中点x2=1.375,用计算器可算得f(1.375)≈0.22>0.因为f(1.25)?f(1.375)<0,所以x0∈(1.25,1.375).同理,可得x0∈(1.3125,1.375),x0∈(1.3125,1.34375).由于|1.34375-1.3125|<0.1,此时区间(1.3125,1.34375)的两个端点精确到0.1的近似值是1.3,所以方程x3-x-1=0在区间[1,1.5]精确到0.1的近似解约为1.3.。
2024学年郑州市高一年级(下)期末考试数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p :0x ∃>,0y >,使得不等式(5x y λ+>++成立,则命题p 成立的一个充分不必要条件可以是()A.52λλ⎧⎪≥⎨⎪⎪⎩⎭B.53λλ⎧⎪≥⎨⎪⎪⎩⎭C.54λλ⎧⎪>⎨⎪⎪⎩⎭D.55λλ⎧⎪>⎨⎪⎪⎩⎭2.已知 1.30.920.9, 1.3,log 3a b c ===,则()A.a c b <<B.c a b <<C .a b c<< D.c b a<<3.将函数()πcos 23f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,得到函数()g x 的图象,则函数()()242h x g x x x =-+-的零点个数为()A.1B.2C.3D.44.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为123,,234且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17245.华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数()y f x =的图象如图所示,则()f x 的解析式可能是()A.sin ()2xf x = B.cos ()2xf x = C.()sin 12xf x ⎛⎫= ⎪⎝⎭D.()cos 12xf x ⎛⎫= ⎪⎝⎭6.在ABC 中,D 为BC 上一点,且3BD DC =,ABC CAD ∠=∠,2π3BAD ∠=,则tan ABC ∠=()A.3913B.133C.33D.357.已知π02α<<,()2ππ1sin 2sin 2cos cos 2714αα+=,则α=()A.3π14B.5π28C.π7D.π148.已知z 是复数,z 是其共轭复数,则下列命题中正确的是()A.22z z= B.若1z =,则1i z --1+C.若()212i z =-,则复平面内z 对应的点位于第一象限D.若13i -是关于x 的方程20(R)x px q p q ++=∈,的一个根,则8q =-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.已知函数()()()sin 0,0,π2πf x A x A ωϕωϕ=+>><<的部分图象如图所示,其图象上最高点的纵坐标为2,且图象经过点()π0,1,,13⎛⎫-⎪⎝⎭,则()A.11π6ϕ=B.3ω=C.()f x 在π2π,23⎡⎤⎢⎥⎣⎦上单调递减D.方程()()21f x a a =-<<-在0,π][内恰有4个互不相等的实根10.已知a ,b ,c是平面上三个非零向量,下列说法正确的是()A.一定存在实数x ,y 使得a xb yc =+成立B.若a b a c ⋅=⋅,那么一定有()a b c⊥- C.若()()a c b c -⊥-,那么2a b a b c-=+- D .若()()a b c a b c ⋅⋅=⋅⋅ ,那么a ,b ,c 一定相互平行11.已知函数2()2sin cos 23cos f x x x x =-,则下列结论中正确的有()A.函数()f x 的最小正周期为πB.()f x 的对称轴为ππ32k x =+,k ∈Z C.()f x 的对称中心为ππ(0)3,2k +,k ∈ZD.()f x 的单调递增区间为π5π[π,π]1212k k -++,k ∈Z 三、填空题:本大题共3个小题,每小题5分,共15分.12.已知142x y >->-,,且21x y +=,则19214x y +++的最小值为_________.13.球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为R ,球冠的高是h ,球冠的表面积公式是2πS Rh =,如图2,已知,C D 是以AB 为直径的圆上的两点,π,6π3COD AOC BOD S ∠=∠==扇形,则扇形COD 绕直线AB 旋转一周形成的几何体的表面积为__________.14.已知点O 是ABC 的外心,60BAC ∠=︒,设AO mAB nAC =+,且实数m ,n 满足42m n +=,则mn 的值是___________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知,a b R ∈且0a >,函数4()4x xbf x a+=-是奇函数.(1)求a ,b 的值;(2)对任意(0,)x ∈+∞,不等式()02x mf x f ⎛⎫-> ⎪⎝⎭恒成立,求实数m 的取值范围.16.本学期初,某校对全校高二学生进行数学测试(满分100),并从中随机抽取了100名学生的成绩,以此为样本,分成[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示频率分布直方图.(1)估计该校高二学生数学成绩的平均数和85%分位数;(2)为进一步了解学困生的学习情况,从数学成绩低于70分的学生中,分层抽样6人,再从6人中任取2人,求此2人分数都在[)60,70的概率.17.已知ABC 的面积为9,点D 在BC 边上,2CD DB =.(1)若4cos 5BAC ∠=,AD DC =,①证明:sin 2sin ABD BAD ∠=∠;②求AC ;(2)若AB BC =,求AD 的最小值.18.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r,2AFFB =.(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为33,求平面1A BC 与平面ABCD 的夹角的余弦值.19.已知),cos2a x x =,()2cos ,1b x =- ,记()()R f x a b x =⋅∈(1)求函数()y f x =的值域;(2)求函数()y f x =,[]0,πx ∈的单调减区间;(3)若()π24F x f x m ⎛⎫=+- ⎪⎝⎭,π0,3x ⎛⎤∈ ⎥⎝⎦恰有2个零点12,x x ,求实数m 的取值范围和12x x +的值.2024学年郑州市高一年级(下)期末考试数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
年高一数学下册期末考试试题
第Ⅰ卷(选择题 共分)
一、选择题:每小题分,共分.
.在等差数列{}n a 中,若136,2a a ==,则5a =( )
. . . .
.如图,已知向量,,a b c ,那么下列结论正确的是( )
.a b c += .a b c +=- .a b c -=- .b c a += .用数学归纳法证明11112321
n n +
++<-(*,1n N n ∈>)时,第一步应验证不等式为( ) .1122+
< .111323++< .11113234+++< .111223
++< .已知平面向量a 和b 的夹角等于3π,2a =,1b =,则2a b -=( )
.
.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若030B =,c =,2b =,则C =
( )
.3π .3π或23π . 4π .4
π或54π .已知等比数列{}n a 中,12340a a a ++=,45620a a a ++=,则前项之和等于( ) . . . . .已知向量,a b 满足1a =,2b =
,且a 在b 方向上的投影与b 在a 方向上的投影相等,
则a b -等于( )
..
.已知数列{}n a 满足121a a ==,2111n n n n
a a a a +++-=,则65a a -的值为( ) . . . .
.已知数列{}n a 是各项均不为的正项数列,n S 为前n 项和,
且满足1n a =+,*
n N ∈,
128(1)n n a +≤+-对任意的*n N ∈恒成立,求实数λ的最大值为( ) . . .
.在ABC ∆中,AB AC =,点M 在BC 上,4BM BC =,N 是AM 的中点,
1sin 3
BAM ∠=,2AC =,则AM CN ∙=( ) . . . .
第Ⅱ卷(非选择题 共分)
二、填空题(本大题共小题,第题每小题分,第题每小题分,共分) .已知向量(2,5)a =,(,2)b x =-,且a b ⊥,则x =,a b -= .
.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c
,若01,30a b C ===,则c =,
ABC ∆的面积S = .
.已知等差数列{}n a 中,1013a =,927S =,则公差d =,100a = .
.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若1tan 2A =,1tan 3
B =,2b =,则tan
C =,c = . .已知向量3OA =1OB =,0OA OB ∙=,点C 在AOB ∠内,且060AOC ∠=,设OC OA OB λμ=+(,R λμ∈),则λμ
= . .已知数列{}n a 的前n 项和n S 满足21n n S a =-,则
1210181818a a a -+-+-= .
. O 是ABC ∆所在平面上的一点,内角,,A B C 所对的边分别是、、,且
3450OA OB OC ++=,若点P 在ABC ∆的边上,则OA OP ∙的取值范围为 .
三、解答题 (本大题共小题,共分)
. 已知向量,,a b c 是同一平面内的三个向量,其中(1,1)a =-. ()若32c =,且//c a ,求向量c 的坐标; ()若1b =,且(2)a a b ⊥-,求a 与b 的夹角θ.
. 在ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知cos (2)cos 0c B b a C ∙+-=. ()求角C 的大小;
()若2c =,a b ab +=,求ABC ∆的面积.
. 等比数列{}n a 的各项均为正数,且12231a a +=,2
3269a a a =,数列{}n b 满足
31323log log log n n b a a a =+++.
()求数列{}n a ,{}n b 的通项公式;
()求设1
n n n
c a b =+(*n N ∈),求数列{}n c 的前n 项和n S .
. 在锐角ABC ∆中,角,,A B C 所对的边分别是,,a b c ,s i n c o s 20A a C b c -+-=.
()求角A 的大小;
()求cos cos B C +的范围.
.已知数列{}n a 满足11a =,2
11
4n n a a p +=+.
()若数列{}n a 就常数列,求p 的值;
()当1p >时,求证:1n n a a +<;
()求最大的正数p ,使得2n a <对一切整数n 恒成立,并证明你的结论.
年高一数学下册期末考试试卷答案
一、选择题
、:
二、填空题
. , . , 4 . , . , . 1
3 . . [5,10]-
三、解答题
.解:
()设(,)c x y =,由=32c ,且//c a 可得22018
y x x y +=⎧⎨+=⎩ 所以33x y =-⎧⎨=⎩或33x y =⎧⎨=-⎩
故(3,3)c =-,或(3,3)c =- ()因为=1b ,且()2a a b ⊥-,所以()2=0a a b ⋅-
即220a a b -⋅=,所以220a b -⋅=,=1a b ⋅ 故2cos a b
a b θ⋅==⋅,4
πθ= .()∵()cos 2cos 0c B b a C ⋅+-=,cos cos 2cos 0c B b C a C +-=,2cos 0a a C -=, ∴1cos 2C =,=3
C π ()∵2c =,所以2222cos c a b ab C =+-,
()()22423a b ab ab a b ab =+--=+-
∴4ab =,1sin 2S ab C =
= .解:
()因为等比数列{}n a 中23269a a a =,故22349a a =,0n a >,故1=3
q 又因为122+31a a =,所以11=3a ,1=3n
n a ⎛⎫ ⎪⎝⎭
()313231log log log 122n n n n b a a a n +=+++=----=- ()因为数列1+n n n c a b =,令数列{}n a 前n 项和n T ,数列1n b ⎧⎫⎨⎬⎩⎭
的前n 项和为n Q
则1113311==112313
n n n T ⎛⎫- ⎪⎛⎫⎝⎭- ⎪⎝⎭- ()1211=2n n+11n b n n ⎛⎫=- ⎪+⎝⎭ 111111=212122311n Q n n n ⎛⎫⎛⎫-+-+-=- ⎪ ⎪++⎝⎭⎝⎭
1113211=1212312123n n n
S n n ⎛⎫⎛⎫⎛⎫---=-+- ⎪ ⎪ ⎪+
+⎝⎭⎝⎭
⎝⎭ .解:
cos 20A a C b c -+-=,
sin sin cos sin
2sin 0C A A C B C -+-=
因为()sin =sin sin cos cos sin B A C A C
A C +=+, sin cos sin 2sin 0C A A C C +-=
sin 0C ≠cos 2A A +=
sin()16A π+=,因为ABC ∆是锐角三角形,所以,62A ππ+=,3A π= ()因为3A π
=,所以23B C π+=,2cos cos cos cos =sin 36B C C C C ππ⎛⎫⎛⎫+=
-++ ⎪ ⎪⎝⎭⎝
⎭ 因为ABC ∆是锐角三角形,所以62C π
π
<<,
cos cos B C +的范围⎫⎪⎪⎝⎭
.解:
()若数列{}n a 是常数列,则2111=+144a a p p =
+=,34p =;显然,当34
p =时,有=1n a ()由条件得2211113=p 044
a a a p a -=+-->得21a a >, 又因为2221111,44n n n n a a p a a p +++=+=+, 两式相减得
()()()222221111111114444
n n n n n n n n n n a a a a a a a a a a ++++++-=-=-=-+ 显然有0n a >,所以21n n a a ++-与1n n a a +-同号,而210a a ->,所以10n n a a +->; 从而有1n n a a +<. ()因为()2211121144
k k k k k a a a a p a p p +-=-+=-+-≥-, 所以()()()()1211111n n n a a a a a a n p -=+-+->+--, 这说明,当1p >时,n a 越来越大,不满足2n a <,所以要使得2n a <对一切整数n 恒成立,只可能1p ≤,下面证明当1p =时,2n a <恒成立;用数学归纳法证明: 当1n =时,11a =显然成立;
假设当n k =时成立,即2k a <,则当1n k =+时,22111121244k k a a +=+<⨯+=成立,由上可知对一切正整数n 恒成立,因此,正数p 的最大值是。