痛点11 立体几何中的组合体问题(原卷版)
- 格式:doc
- 大小:535.33 KB
- 文档页数:6
人教版高中数学必修第二册8.1基本立体图形第2课时旋转体、组合体同步练习一、选择题(本大题共8小题,每小题5分,共40分)1.一个等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是()A.两个共底面的圆锥B.半圆锥C.圆锥D.圆柱2.如图L8-1-8所示的几何体可以由选项中某个平面图形旋转而成,这个图形是()图L8-1-8ABCD图L8-1-93.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括()A.一个圆柱、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆台、两个圆锥4.(多选题)下列说法中正确的是()A.用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫圆台B.棱台的侧棱延长后一定相交于一点C.以直角梯形的一条腰所在直线为轴旋转一周所得的旋转体是圆台D.球的半径是连接球面上任意一点和球心的线段5.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2B.2πC.2π或4πD.π2或π46.如图L8-1-10所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面(且与底面不重合),则截面图形为()图L8-1-10ABCD图L8-1-117.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的()ABCD图L8-1-128.如图L8-1-13,圆锥的正视图是等边三角形,圆锥的底面半径为2,假如点B有一只蚂蚁只能沿圆锥的表面爬行,它要想吃到母线AC的中点P处的食物,那么它爬行的最短路程是()图L8-1-13A.6B.25C.4D.5二、填空题(本大题共4小题,每小题5分,共20分)9.正方形绕其一条对角线所在直线旋转一周,所得几何体是.10.如图L8-1-14所示的几何体的结构特征是.图L8-1-1411.关于如图L8-1-15所示几何体的结构特征,下列说法正确的有.(填序号)①该几何体是由两个同底的四棱锥组成的几何体②该几何体有12条棱、6个顶点③该几何体有8个面,并且各面均为三角形④该几何体有9个面,其中一个面是四边形,其余均为三角形图L8-1-1512.我国古代某著作中有如下记载:“今有木长三丈五尺,围之四尺.葛生其下,缠木三周,上与木齐,问葛长几何?”其意思为:圆木长3丈5尺,圆周为4尺,葛藤从圆木的底部开始向上生长,绕圆木三周,刚好顶部与圆木平齐,问葛藤最少长尺.(注:1丈等于10尺)三、解答题(本大题共2小题,共20分)13.(10分)指出图L8-1-16中的两个几何体分别是由哪些简单几何体组成的.图L8-1-1614.(10分)如图L8-1-17所示,四边形ABCD绕边AD所在的直线EF旋转,其中AD∥BC,AD⊥CD.当点A选在射线DE上的不同位置时,形成的几何体大小、形状不同,比较其不同点.图L8-1-1715.(5分)如图L8-1-18,某圆锥形物体的母线长为3m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处,若该小虫爬行的最短路程为33m,则圆锥底面圆的半径等于()图L8-1-18A.1mB.32mC.43mD.2m16.(15分)如图L8-1-19所示,四边形AA1B1B为矩形,AA1=3,CC1=2,CC1∥AA1,CC1∥BB1,这个几何体是棱柱吗?若是棱柱,指出是几棱柱;若不是棱柱,作出一个过点C1的截面,截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的名称.图L8-1-19参考答案与解析1.C[解析]等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是圆锥.故选C.2.A[解析]因为该几何体由一个圆台和一个圆锥组成,所以平面图形应由一个直角三角形和一个直角梯形(与底边垂直的腰在旋转轴上)构成,可排除B,C,D,故选A.3.A[解析]将等腰梯形分割成两个直角三角形和一个矩形,如图所示.矩形绕其一边所在直线旋转一周得到圆柱,直角三角形绕其一条直角边所在直线旋转一周得到圆锥.因此,将该等腰梯形绕它的较长的底边所在的直线旋转一周,可得一个圆柱和两个圆锥组合而成的几何体.故选A.4.ABD[解析]根据圆台的定义可知A正确;根据棱台的定义可知B正确;以直角梯形垂直于底边的一条腰所在直线为轴旋转一周可以得到圆台,故C错误;根据球的半径的定义可知D 正确.故选ABD.5.C[解析]设底面半径为r,若矩形的长为卷成圆柱底面的周长,则2πr=8,解得r=4π;若矩形的宽为卷成圆柱的底面周长,则2πr=4,解得r=2π.故选C.6.C[解析]截面图形应为图C所示的圆环面.7.B[解析]由组合体的结构特征知,球与正方体各面相切,与各棱相离,故选B.8.B[解析]如图,圆锥的底面半径为2,故底面周长为4π.由圆锥的正视图是等边三角形,可知圆锥的母线长为4.设圆锥侧面展开后扇形的圆心角为α,根据底面周长等于展开后扇形的弧长得4π=4α,解得α=π,故侧面展开图为半圆,记点B在展开图中对应的点为B',连接AB',PB',则∠CAB'=π2,蚂蚁沿表面爬行到P处的最短路程为B'P= 2+ '2=22+42=25,故选B.9.两个圆锥[解析]连接正方形的两条对角线,可知对角线互相垂直,故绕对角线所在直线旋转一周形成两个圆锥,且这两个圆锥的底面重合.10.由一个四棱锥和一个同底的四棱柱拼接,并在四棱柱中挖去了一个圆柱而形成的组合体[解析]由图可知,该组合体是由一个四棱锥和一个同底的四棱柱拼接,并在四棱柱中挖去了一个圆柱而形成的.11.①②③[解析]根据题意得,该几何体是由两个同底的四棱锥组成的几何体,共有12条棱、6个顶点、8个面,且每个面都是三角形.故①②③正确.12.37[解析]圆柱的侧面展开图是矩形,一条直角边(即圆木的高)长为3×10+5=35(尺),另一条直角边长为3×4=12(尺),因此葛藤长为352+122=37(尺).13.解:(1)该几何体由两个四棱锥和一个三棱柱拼接而成.(2)该几何体是从一个四棱柱中挖去一个圆柱与一个半球得到的.14.解:当AD>BC时,四边形ABCD绕EF旋转一周所得几何体是由底面半径为CD的圆柱和圆锥拼成的组合体;当AD=BC时,四边形ABCD绕EF旋转一周所得几何体是圆柱;当AD<BC时,四边形ABCD绕EF旋转一周所得几何体是从圆柱中挖去一个同底的圆锥而得到的.15.A[解析]作出该圆锥的侧面展开图,如图所示,则该小虫爬行的最短路程为PP'.由余弦定理可得cos∠POP'= 2+ '2- '22 · '=-12,所以∠POP'=2 3.设底面圆的半径为r,则2πr=2π3×3,解得r=1,故选A.16.解:因为这个几何体中没有两个互相平行的面,所以这个几何体不是棱柱.如图,在AA1上取点E,使AE=2,在BB1上取点F,使BF=2,连接C1E,EF,C1F,则过点C1,E,F的截面将原几何体分成两部分.其中一部分是三棱柱ABC-EFC1,其侧棱长为2;另一部分是四棱锥C1-EA1B1F,即截去的几何体是四棱锥.。
痛点11 立体几何中的组合体问题一、单选题1.(2020·江西南昌二中高三)某几何体的三视图如图所示,则该几何体的体积为( )A .23π B .πC .43π D .53π 【答案】D【详解】由三视图可知,该几何体是由圆柱,挖掉半个球和一个圆锥所得,所以几何体的体积为2321415ππ13π1π122333⨯⨯-⨯⨯⨯-⨯⨯⨯=. 2.(2020·涡阳县第九中学)如图,正方体1111ABCD A B C D -的棱长为1,E ,F 分别为线段1AA ,1B C 上的点,则三棱锥1D D EF -的体积为( )A .13B .14C .16D .112【答案】C【详解】∵1//B C 平面1EDD ,∴三棱锥1D EDF -的体积等于三棱锥1F EDD -的体积,而三棱锥1F EDD -,高为长方体1,底面1EDD ,是以1为底1为高的三角形,∴111613△-==⨯F EDD EDD V S CD 。
3.(2020·宁夏其他模拟)如图,在四棱锥C ABOD -中,CO ⊥平面,//,ABOD AB OD OB OD ⊥,且212,2AB OD AD ===异面直线CD 与AB 所成角为30,点,,,O B C D 都在同一个球面上,则该球的半径为 ( )A .32 B.42 C .21 D.42【答案】C【解析】由条件可知AB OD ∥ ,所以,CDO ∠ 为异面直线CD 与AB 所成角,故30CDO ∠= ,而6OD =,故tan 3023OC OD =⋅= ,在直角梯形ABOD 中,易得6OB = ,以,,OB OC OD 为相邻的三条棱,补成一个长方体,则该长方体的外接球半径R 即为所求的球的半径,由()()22222236684R =++= ,故21R = .4.(2020·全国高三月考)一个几何体的三视图如图所示,已知其体积为483π+,则图中r 的值为( )A .1B .2C .3D .4【答案】B 【详解】由三视图可知,该几何体由两个相同圆锥的14与一个三棱柱组成,所以该几何体体积22331114228243263V r r r r r r r πππ=⨯⨯⨯+⨯=+=+⇒=.5.6的半球切削成一个正方体(保持正方体的一个面在半球底面所在平面上),所得正方体体积的最大值为( )A .42B .8C .22D .4【答案】B【详解】由题意:当正方体内接于半球时体积最大,如图,连接球心O 与点C ,连接1OC ,则16OC =.设正方体棱长为a ,则在1Rt OCC ∆中,22211OC CC OC +=,22262a a ⎛⎫+= ⎪ ⎪⎝⎭,解得2a =,故正方体体积的最大值为8. 6.(2020安徽高三)已知某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为( )A .17πB .34πC .51πD .68π【答案】B【详解】由三视图知原几何体是三棱锥A BCD -,如图,AB ⊥平面BCD ,CD ⊥平面ABD .由这两个线面垂直,得,AB BC AD CD ⊥⊥,因此AC 的中点O 到,,,A B C D 四顶点的距离相等,即为外接球球心. 由三视图得22345+=AD ,22225334AC AD CD =++,∴24()342AC S ππ=⨯=.7.现有一副斜边长相等的直角三角板.若将它们的斜边AB 重合,其中一个三角板沿斜边折起形成三棱锥A BCD -,如图所示,已知,64DAB BAC ππ∠=∠=,三棱锥的外接球的表面积为4π,该三棱锥的体积的最大值为( )A .33B 3C .324D .348【答案】B【详解】设三棱锥A BCD -的外接球的半径为r ,因为244r ππ=⇒1r =,因为90ADB ACB ︒∠=∠=,所以AB 为外接球的直径,所以2AB =,且3,1,2AD BD AC BC ====当点C 到平面ABD 距离最大时,三枝锥A BCD -的体积最大,此时平面ABC ⊥平面ABD ,且点C 到平面ABD 的距离1d =,所以11133113326A BCD C ABD ABD V V S d --==⋅=⨯⨯=△. 8.(2020·沙坪坝·重庆一中)阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( )A .43π B .16πC .163π D .323π 【答案】D【详解】设圆柱的底面半径为r ,则其母线长为2l r =,因为圆柱的表面积公式为2=22S r rl ππ+圆柱表,所以222224r r r πππ+⨯=,解得2r,因为圆柱的体积公式为2=2V Sh r r π=⋅圆柱,所以3=22=16V ππ⨯⨯圆柱,由题知,圆柱内切球的体积是圆柱体积的23,所以所求圆柱内切球的体积为2232=16=333V V ππ=⨯圆柱. 9.(2020·陕西高三)已知正四面体的内切球体积为v ,外接球的体积为V ,则Vv=( )A .4B .8C .9D .27【答案】D【详解】设正四面体的棱长为1,取BC 的中点为D ,连接AD ,作正四面体的高为PM ,则323,233AD AM AD ===,2263PM PA AM ∴=-=,136234312P ABC V -∴=⨯⨯=, 设内切球的半径为r ,内切球的球心为O ,则134434P ABC O ABC V V r --==⨯⨯,解得:612r =;设外接球的半径为R ,外接球的球心为N ,则MN PM R =-或R PM -,AN R =,在Rt AMN ∆中,由勾股定理得222AM MN AN +=,22163R R ⎫∴+-=⎪⎪⎝⎭,解得64R =,3R r ∴=,3327V R v r ∴==。
专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。
高一下学期期中复习备考精准测试卷---第二篇 专题提升卷专题4 立体几何中的组合体问题类型一 组合体的表面积与体积【典型例题】早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin 36︒按35计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.【变式训练】已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个内接圆柱.当此圆柱的侧面积最大时,此圆柱的体积等于___________.类型二 棱锥与球【典型例题】在四面体PABC 中,PA PB ⊥,3PA PB ==,AC =BC ,则该四面体外接球的表面积为( )A .B .C .9πD .18π【变式训练】四棱锥P ABCD -的顶点都在球O 的球面上,ABCD 是边长为P ABCD -体积的最大值为54,则球O 的表面积为( )A .36πB .64πC .100πD .144π 类型三 棱柱与球【典型例题】已知直三棱柱111ABC A B C -的顶点都在球O 上,且4AB =,16AA =,30ACB ∠=︒,则此直三棱柱的外接球O 的表面积是( )A .25πB .50πC .100πD .500π3【变式训练】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,15AA=,则V的最大值是()A.4πB.92πC.1256πD.323π类型四旋转体与球【典型例题】阿基米德(Archimedes,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.他推导出的结论“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”是其毕生最满意的数学发现,后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径,若球的体积为36π,则圆柱的体积为()A.36πB.45πC.54πD.63π【变式训练】伟大的科学家阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面,则图案中圆锥、球,圆柱的体积比为()A.1:2:3B.C.3D.2:3:61. 若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积取最小值时,该圆锥体积与其内切球体积比为()A .2:1B .4:1C .8:1D .8:32. 如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为( )A .18πB .20πC .223πD .26π3.棱长为4的正方体的内切球的表面积为( )A .4πB .12πC .16πD .20π4.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为8,底面正方形的边长为2,现将该鲁班锁放进一个球形容器内,则该球形容器的体积(容器壁的厚度忽略不计)的最小值为( )A .B .C .D .以上结果都不对5.如图所示,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,则棱锥C -A ′DD ′的体积与剩余部分的体积之比为 .6.已知正四棱柱的体积为24,底面边长为2,则该正四棱柱的外接球的表面积为___________.7.如图所示的几何体是一棱长为4cm 的正方体,若在它的各个面的中心位置上打一个直径为2cm 、深为1cm 的圆柱形的孔,则打孔后的几何体的表面积是为 .(π取3.14)8.立方、堑堵、阳马和鳖臑等这些名词都出自中国古代数学名著《九章算术商功》,在《九章算术商功》中有这样的记载:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,一为鳖臑”意思是说:把一块长方体沿斜线分成相同的两块,这两块叫“堑堵”,如图,再把一块“堑堵”沿斜线分成两块,其中以矩形为底,另有一棱与底面垂直的四棱锥,称为“阳马”,余下的三棱锥是由四个直角三角形组成的四面体,称为“鳖臑”,如图.现有一四面体ABCD ,已知2AB =,3BC =,4CD =,5DB =,AC =AD =史料中“鳖臑”的由来,可求得这个四面体的体积为___________,及该四面体的外接球的体积为___________.9.《九章算术》把底面为直角三角形,且侧棱垂直于底面的三梭柱称为“堑堵”,把底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”现有如图所示的“堑堵”111ABC A B C -,其中1,1AC BC AA AC ⊥==,当“阳马”即四棱锥11B A ACC -体积为13时,则“堑堵”即三棱柱111ABC A B C -的外接球的体积为_________.10.两个相同的正四棱锥组成如图所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有____个.11.中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器,如图,某沙漏由上、下两个圆锥容器组成,圆锥的底面圆的直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为___________cm.12.如图,某几何体的下部分是长、宽均为8,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:(1)该几何体的体积;(2)该几何体的表面积.13. 如图,圆锥PO的底面直径和高均是a,过PO上的一点O'作平行于底面的截面,以该截面为底面挖去一个圆柱.(1)若O'是PO的中点,求圆锥挖去圆柱剩下几何体的表面积和体积;(2)当OO'为何值时,被挖去的圆柱的侧面积最大?并求出这个最大值.14.一个透明的球形装饰品内放置了两个具有公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球的表面积的316,设球的半径为R,圆锥底面半径为r.(1)试确定R与r的关系,并求出大圆锥与小圆锥的侧面积的比值.(2)求出两个圆锥的总体积(即体积之和)与球的体积之比.。
压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平面关系、垂直关系、体积、表面积等综合问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面○热○点○题○型一点、线、面间的位置关系和空间几何体的体积、表面积一、单选题1.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A .若//l α,//m α,则//l mB .若//l α,//l β,则//αβC .若l α⊥,m α⊥,则//l mD .若αγ⊥,βγ⊥,则//αβ2.将半径为6的半圆卷成一个无底圆锥(钢接处不重合),则该无底圆锥的体积为()A .273πB .27πC .3πD .9π3.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A ,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB4.如图是一款多功能粉碎机的实物图,它的进物仓可看作正四棱台,已知该四棱台的上底面边长为40cm ,下底面边长为10cm ,侧棱长为30cm ,则该款粉碎机进物仓的容积为()A .32cmB .386003cmC .3105002cmD .33cm5.已知在春分或秋分时节,太阳直射赤道附近.若赤道附近某地在此季节的日出时间为早上6点,日落时间为晚上18点,该地有一个底面半径为4m 的圆锥形的建筑物,且该建筑物在一天中恰好有四个小时在地面上没有影子,则该建筑物的体积为()A .643πB .π3C .16π3D .π36.攒尖是古代中国建筑中屋顶的一种结构形式,依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑.如故宫中和殿的屋顶为四角攒尖顶,它的主要部分的轮廓可近似看作一个正四棱锥,设正四棱锥的侧面等腰三角形的顶角为60°,则该正四棱锥的侧面积与底面积的比为()A .4B 3C D 7.在三棱锥A BCD -中,4AB AC BD CD BC =====,平面α经过AC 的中点E ,并且与BC 垂直,则α截此三棱锥所得的截面面积的最大值为()A B .34C 2D .328.已知圆台的母线长为4,上底面圆和下底面圆半径的比为1:3,其侧面展开图所在扇形的圆心角为π2,则圆台的高为()A .BC .4D .二、多选题9.已知平面α,β,直线l ,m ,则下列命题正确的是()A .若αβ⊥,,,m l m l αβα⋂=⊥⊂,则l β⊥B .若l αβα⊂∥,,m β⊂,则//l mC .若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件D .若m α⊂,l α⊄,则“l α∥”是“l m ”的必要不充分条件10.下列说法正确的是()A .若直线a 不平行于平面α,a α⊄,则α内不存在与a 平行的直线B .若一个平面α内两条不平行的直线都平行于另一个平面β,则αβ∥C .设l ,m ,n 为直线,m ,n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的充要条件D .若平面α⊥平面1α,平面β⊥平面1β,则平面α与平面β所成的二面角和平面1α与平面1β所成的二面角相等或互补三、解答题11.已知直棱柱1111ABCD A B C D -的底面ABCD 为菱形,且2AB AD BD ===,1AA =,点E 为11B D 的中点.(1)证明://AE 平面1BDC ;(2)求三棱锥1E BDC -的体积.12.如图,在三棱柱111ABC A B C -中,ABC 为边长为2的正三角形,D 为BC 的中点,12AA =,且160CCB ∠= ,平面11BB C C ⊥平面ABC .(1)证明:1C D AB ⊥;(2)求三棱锥111B AA C -的体积.○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()AB .32C .1D .22.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为12,则该圆锥的内切球的体积为()A .4π3B C D 5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π6.已知矩形ABCD 的顶点都在球心为O 的球面上,3AB =,BC =,且四棱锥O ABCD-的体积为,则球O 的表面积为()A .76πB .112πCD 7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .68.已知三棱锥-P ABC 的四个顶点均在球O 的球面上,2PA BC ==,PB AC ==PC AB =Q 为球O 的球面上一动点,则点Q 到平面PAB 的最大距离为()A 2211B C 2211D 二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.10.如图,在直三棱柱111ABC A B C -中,1AA AB BC ==.设D 为1AC 的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.11.如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12,则该棱锥的内切球半径为___.○热○点○题○型三平面关系、垂直关系、体积、表面积等综合问题1.已知直棱柱1111ABCD A B C D -的底面ABCD 为菱形,且2AB AD BD ===,1AA =,点E 为11B D 的中点.(1)证明://AE 平面1BDC ;(2)求三棱锥1E BDC -的体积.2.如图,在四棱锥P ABCD -中,PAD 是等边三角形,底面ABCD 是棱长为2的菱形,平面PAD ⊥平面ABCD ,O 是AD 的中点,π3DAB ∠=.(1)证明:OB ⊥平面PAD ;(2)求点O 到平面PAB 的距离.3.如图,在三棱柱111ABC A B C -中,ABC 为边长为2的正三角形,D 为BC 的中点,12AA =,且160CCB ∠= ,平面11BB C C ⊥平面ABC .(1)证明:1C D AB ⊥;(2)求三棱锥111B AAC -的体积.4.如图1,在直角梯形ABCD 中,90ADC ∠=︒,AB CD ,122AD CD AB ===,E 为AC 的中点,将ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D ABC -中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD EF ,求几何体F BCE -的体积.5.在如图所示的几何体中,四边形ABCD 为菱形,60BCD ∠=︒,4AB =,EF CD ∥,2EF =,4CF =,点F 在平面ABCD 内的射影恰为BC 的中点G .(1)求证:平面ACE 平面BED;(2)求该几何体的体积.。
衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,专题08 立体几何中的计算1、【2019年江苏数】.如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、【2018年高考江苏数】.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BCP 到平面ABC 的距离为___________.4、【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)5、【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.6、【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.7、【2019.若圆柱的一个底衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.8、【2018年高考全国II 卷文数】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30 ,若SAB △的面积为8,则该圆锥的体积为__________.一、柱、锥、台和球的侧面积和体积注意:(1)分的处理.(2)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,二、在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.(1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题. 三、方法与技巧(1)棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状. (2)要注意将空间问题转化为平面问题.(3)求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解. (4)一些几何体表面上的最短距离问题,常常利用几何体的展开图解决. 四、失误与防范(1)几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.(2)与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.题型一 多面体的表面积与体积求多面体的表面积与体积常用方法:1、公式法:可以运用规则的几何体;2、割补法:把不规则的图衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,形分割成规则的图形,或者把几何体补成熟悉的几何体。
专题25 立体几何中综合问题命题规律内 容典 型1 棱锥与球的切接问题 2020年高考全国Ⅰ卷理数10 2 棱柱(圆柱)与球的切接问题 2020年高考天津卷5 3 研究球的截面问题2020高考山东卷 4 以传统文化为载体考查几何体的性质2019年高考全国Ⅱ卷理数 5以几何体中空间角为条件研究几何体的截面问题2018年高考全国Ⅰ卷理数命题规律一 棱锥与球的切接问题【解决之道】(1)三条侧棱互相垂直的三棱锥的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,那么可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心;②如果三棱锥的三条侧棱互相垂直但不相等,那么可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心. (2)一条侧棱垂直于底面的棱锥的外接球问题,可以将其补成以棱锥的底面为底面、垂直与底面的侧棱为高的直棱柱,则补成直棱柱的外接球即为该三棱锥的外接球.(3)正棱锥(圆锥)的外接球问题,已知正棱锥的底面的外接圆半径为r 、高为h ,外接球的半径为R ,则222)(R h r R -+=.(4)已知三棱锥中某两个面所成二面角为θ的外接球问题,关键是作出球心,即分别过两个半平面的截面圆的圆心作截面圆的垂线,垂线的交点即为球心,再利用球的截面性质,即可求出求的半径. (5)对两个直角三角形共斜边的三棱锥的外接球问题,则直角三角形的斜边为球的直径.(6)对对棱相等的三棱锥的外接球问题,将其看成在长方体中面的对角线,则长方体的外接球即该三棱锥的外接球.(7)求一个棱锥内切球的半径,可以根据球心到各个面的距离相等以及棱锥的体积列式得出.也可以先找准切点,通过作截面来解决,作截面时主要抓住棱锥过球心的对角面来作. 【三年高考】1.【2020年高考全国Ⅰ卷理数10】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC ∆的外接圆.若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 2.【2020年高考全国Ⅱ卷文数11理数10】已知ABC ∆是面积为439的等边三角形,且其顶点都在球O 的表面上,若球O 的表面积为16π,则球O 到平面ABC 的距离为 ( ) A .3B .23 C .1 D .233.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C .D4.【2018年高考全国Ⅲ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .命题规律二 棱柱(圆柱)与球的切接问题【解决之道】(1)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于其外接球的直径,即a 2+b 2+c 2=2R .(2)直棱柱(圆柱)的外接球:已知直棱柱的底面半径为r ,高为h ,则其外接球半径为22)2(hr R +=【三年高考】1.【2020年高考天津卷5】若棱长为 ) A .12πB .24πC .36πD .144π命题规律三 研究球的截面问题【解决之道】解决此类问题的关键为作出截面,作截面的关键在作截线,方法如下:①若已知两点在同一平面内,只要连接这两点,就可以得到截面与多面体的的一个面的截线;②若面上只有一个已知点,应设法在同一平面内找出第2个确定的点;③若两个已知点分别在相邻的面上,应找出这两个平面的交线与截面的交点;④两个平行平面的一个平面与截面有绞线,另一个平面上只有一个已知点,则按面面平行得截面与平面的交线;⑤若有一点在面上而不在棱上,则可通过作辅助平面化为棱上的点的问题;⑥若已知点在体内,可通过作辅助平面化为面上的点的,再化为棱上的点的问题来解决. 【三年高考】1.【2020年高考山东卷16】已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=,以1D 为半径的球面与侧面11BCC B 的交线长为 .命题规律四 以传统文化为载体考查几何体的性质【解决之道】解决此类问题,首项要认真读题,挖掘出所蕴含的几何体及其有关量,转化为数学问题,然后利用几何体的有关知识求解. 【三年高考】1.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.).命题规律五 以几何体中空间角为条件研究几何体的截面问题【解决之道】解决此类问题的关键为作出截面,作截面的关键在作截线,方法如下:①若已知两点在同一平面内,只要连接这两点,就可以得到截面与多面体的的一个面的截线;②若面上只有一个已知点,应设法在同一平面内找出第2个确定的点;③若两个已知点分别在相邻的面上,应找出这两个平面的交线与截面的交点;④两个平行平面的一个平面与截面有绞线,另一个平面上只有一个已知点,则按面面平行得截面与平面的交线;⑤若有一点在面上而不在棱上,则可通过作辅助平面化为棱上的点的问题;⑥若已知点在体内,可通过作辅助平面化为面上的点的,再化为棱上的点的问题来解决. 【三年高考】1.【2018年高考全国Ⅲ卷理数】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .4 B .3C D。
微专题10牛顿运动定律应用之组合体问题1.整体法若组合体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).2.隔离法组合体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若组合体内各物体具有相同的加速度,且要求出物体之间的作用力时,一般采用“先整体求加速度,后隔离求内力”.【专题训练】1、如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端组合一个质量为m 的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为()B.M m -m A .g g D.M m+m C .0g 【解析】以框架为研究对象进行受力分析可知,当框架对地面压力为零时,其重力与弹簧对其弹力平衡,即F =Mg ,故可知弹簧处于压缩状态,再以小球为研究对象分析受力可知F +mg =ma ,联立可解得,小球的加速度大小为a =M +m g ,故选项D 正确m .【答案】D2、如图所示,质量不等的木块A 和B 的质量分别为m 1和m 2,置于水平面上,A 、B 与水平面间动摩擦因数相同。
当水平力F 作用于左端A 上,两物体一起作匀加速运动时,A 、B 间作用力大小为F 1。
当水平力F 作用于右端B 上,两物体一起作匀加速运动时,A 、B 间作用力大小为F 2,则()A .在两次作用过程中,物体的加速度的大小相等B .在两次作用过程中,F 1+F 2<FC .在两次作用过程中,F 1+F 2>FD .在两次作用过程中,F F 21=m 1m 2【解析】对木块A 、B 整体,根据牛顿第二定律得,F -μ(m 1+m 2)g =(m 1+m 2)a ,两次F 作用加速度的大小相等,a =m 1+-μg ,故A 正确;当F 作用在左端A 上时,F 1-μm 2m 2g 2F =m 2a ,解得F 1=m m 1m 1+2F 。
一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π2.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m3.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π4.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A .13 B .36C .33 D .1165.在三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ,且12AC BC =,则直线11B C 与平面1ABC 所成的角的大小为( )A .30°B .45°C .60°D .90°6.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( ) A .728B .728-C .3714D .3714-7.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π8.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,P 是上底面A 1B 1C 1D 1内一点,若AP ∥平面BDEF ,则线段AP 长度的取值范围是( ) A .[322,5] B .[5,22]C .[324,6] D .[6,22]9.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为( )A .64B .48C .32D .1610.已知E ,F 是四面体的棱AB ,CD 的中点,过EF 的平面与棱AD ,BC 分别相交于G ,H ,则( ) A .GH 平分EF ,BH AGHC GD = B .EF 平分GH ,BH GDHC AG = C .EF 平分GH ,BH AGHC GD= D .GH 平分EF ,BH GDHC AG= 11.一个几何体的三视图如图所示,则该几何体的体积为( )A .4B .8C .12D .1412.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中2O A ''=,45B A O '''∠=,//B C O A ''''.则原平面图形的面积为( )A .32B .62C .322D .34二、填空题13.已知ABC 三个顶点都在球O 的表面上,且1AC BC ==,2AB =,S 是球面上异于A 、B 、C 的一点,且SA ⊥平面ABC ,若球O 的表面积为16π,则球心O 到平面ABC 的距离为____________.14.如图,平面四边形ABCD 中,1AB AD ==,2,3,BD CD BD CD ==⊥将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,则四面体A BCD '-的外接球的球心到平面ACD '的距离等于__________.15.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为____________.16.点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===,若四面体ABCD 体积的最大值为32,则这个球的表面积为______. 17.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________.18.如图,已知ABC 的顶点C ∈平面α,点,A B 在平面α的同一侧,且||23,||2AC BC ==.若,AC BC 与平面α所成的角分别为5,124ππ,则ABC 面积的取值范围是_____19.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.20.已知正三棱柱木块111ABC A B C -,其中2AB =,13AA =,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.三、解答题21.如图,ABC 是边长为2的正三角形,ABD △是以AB 为斜边的等腰直角三角形,且2CD =.(1)求证:平面ABC ⊥平面ABD ; (2)求二面角A-BC-D 的余弦值.22.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ;(2)求三棱锥P ACM -的体积. 23.如图,在三棱锥A BCD -中,2,22,23,BCBD AB CD AC AB BD =====⊥(1)证明:平面ABC ⊥平面ABD .(2)在侧面ACD 内求作一点H ,使得BH ⊥平面ACD ,写出作法(无需证明),并求线段AH 的长.24.在三棱锥P ABC -中,AE BC ⊥于点,E CF AB ⊥于点F ,且AE CF O ⋂=,若点P 在平面ABC 上的射影为点O .(1)证明:AC PB ⊥;(2)若ABC 是正三角形,点,G H 分别为,PA PC 的中点.证明:四边形EFGH 是矩形.25.如图所示,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 是AB 的中点.(1)证明:1//BD 平面1A DE ; (2)证明:11D E A D ⊥;(3)求二面角1D EC D --的正切值.26.如图,在矩形ABCD 中,2AB AD =,M 为DC 的中点,将ADM △沿AM 折起使平面ADM ⊥平面ABCM .(1)求证:BM AD ⊥;(2)求直线DC 与平面DAB 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+, 解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.C解析:C 【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算. 【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V =三棱柱ABC A B C '''-V+四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.3.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCDV -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R = 所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.4.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,3DE DF ==, ∴在等腰三角形DEF 中,11324cos 3EF FED DE ∠=== 所以异面直线AB 与DE 3 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.A解析:A 【分析】证明CBA ∠就是BC 与平面1ABC 所成的角,求出此角后,利用11//B C BC 可得结论, 【详解】∵90BAC ∠=︒,12AC BC =,∴30CBA ∠=︒, ∵1BC AC ,AB AC ⊥,1BC ABB ,1,BC AB ⊂平面1ABC ,∴AC ⊥平面1ABC ,∴CBA ∠就是BC 与平面1ABC 所成的角,即BC 与平面1ABC 所成的角是30, ∵棱柱中11//B C BC ,∴11B C 与平面1ABC 所成的角的大小为30, 故选:A .【点睛】思路点睛:本题考查求直线与平面所成的角,解题方法是定义法,即过直线一点作平面的垂直,得直线在平面上的射影,由直线与其射影的夹角得直线与平面所成的角,然后在直角三角形中求出此角.解题过程涉及三个步骤:一作出图形,二证明所作角是直线与平面所成的角,三是计算.6.C解析:C【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案.【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==, 所以2211111122B D D C B C =+=213110B E =+=222415ED CE DC +=+==,所以222115914D E ED D D==+=+,由余弦定理得,从而22211111111137cos24214B D D E B EB D EB D D E+-∠===⨯⨯.故选:C【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.7.D解析:D【分析】连接OE交AB于点I,设E,F,G,H重合于点P,正方形的边长为x(0x>)cm,则2xOI=,62xIE=-,求出x的值,再利用勾股定理求R,代入球的表面积公式,即可得答案.【详解】连接OE交AB于点I,设E,F,G,H重合于点P,正方形的边长为x(0x>)cm,则2xOI=,62xIE=-,因为该四棱锥的侧面积是底面积的2倍,所以246222x xx⎛⎫⨯⨯-=⎪⎝⎭,解得4x=.设该四棱锥的外接球的球心为Q,半径为R,如图,则QP QC R==,22OC=16423OP=-=所以()(222R R =+,解得R =所以外接球的表面积为210043S ππ==(2cm ). 故选:D .【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.8.A解析:A【分析】分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,可证平面AMN ∥平面BDEF ,得P 点在线段MN 上.由此可判断当P 在MN 的中点时,AP 最小;当P 与M 或N 重合时,AP 最大.然后求解直角三角形得答案.【详解】如图所示,分别取棱A 1B 1、A 1D 1的中点M 、N ,连接MN ,连接B 1D 1,∵M 、N 、E 、F 为所在棱的中点,∴MN ∥B 1D 1,EF ∥B 1D 1,∴MN ∥EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴MN ∥平面BDEF ;连接NF ,由NF ∥A 1B 1,NF =A 1B 1,A 1B 1∥AB ,A 1B 1=AB ,可得NF ∥AB ,NF =AB ,则四边形ANFB 为平行四边形,则AN ∥FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则AN ∥平面BDEF .又AN ∩NM =N ,∴平面AMN ∥平面BDEF .又P 是上底面A 1B 1C 1D 1内一点,且AP ∥平面BDEF ,∴P 点在线段MN 上.在Rt △AA 1M 中,AM ===同理,在Rt △AA 1N 中,求得AN =△AMN 为等腰三角形.当P 在MN 的中点时,AP ,当P 与M 或N 重合时,AP∴线段AP 长度的取值范围是⎣. 故选:A .【点睛】本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点P的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题.9.C解析:C【分析】在长方体中还原三视图后,利用体积公式求体积.【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P-ABCD(补形法)且该长方体的长、宽、高分别为6、4、4,故该四棱锥的体积为1(64)4323V=⨯⨯⨯=.故选C.【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.10.C解析:C【分析】举特例舍去不正确选项,可得正确答案.【详解】过EF 的平面为平面ABF 时,G 在A 点, H 在B 点, 所以0BH AG HC GD ==,EF 平分GH , 即BH AG HC GD=,所以舍去ABD ,选C 故选:C 11.C解析:C【分析】根据三视图还原得其几何体为四棱锥,根据题意代入锥体体积公式计算即可.【详解】解:根据三视图还原得其几何体为四棱锥,图像如下:根据图形可得ABCD 是直角梯形,PA ⊥平面ABCD ,2,4,2,6AB CD PA AD ==== 所以11246212332P ABCD ABCD V S PA -+=⋅=⨯⨯⨯= 故选:C【点睛】识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图; (3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置. 12.A解析:A【分析】作出原平面图形,然后求出面积即可.【详解】45B A O '''∠=B O A '''=∠,则O A B '''△是等腰直角三角形, ∴2A B OB '''==,又O C C B ''''⊥,45C O B '''∠=︒,∴1B C ''=,在直角坐标系中作出原图形为:梯形OABC ,//OA BC ,2,1OA BC ==,高22OB =∴其面积为1(21)22322S =+⨯= 故选:A【点睛】方法点睛:本题考查斜二测法画平面图形直观图,求原图形的面积,可能通过还原出原平面图形求得面积,也可以通过直观图到原图形面积的关系求解:直观图面积为S ',原图形面积为S ,则24S S '= 二、填空题13.【分析】根据题中的垂直关系确定球心再根据球的表面积公式计算再求点到平面的距离【详解】由并且平面平面且平面是直角三角形和的公共斜边取的中点根据直角三角形的性质可知所以点是三棱锥外接球的球心设则则三棱锥 解析:142 【分析】根据题中的垂直关系,确定球心O ,再根据球的表面积公式计算SA ,再求点O 到平面ABC 的距离.【详解】由222AC BC AB +=,AC BC ∴⊥,并且SA ⊥平面ABC ,BC ⊂平面ABC ,SA BC ∴⊥,且AC SA A ⋂=BC ∴⊥平面SAC ,BC SC ∴⊥,SB ∴是直角三角形SBC 和SAB 的公共斜边,取SB 的中点O ,根据直角三角形的性质可知OA OB OC OS ===,所以点O 是三棱锥S ABC -外接球的球心,设SA x =,则211222r SB x ==+, 则三棱锥S ABC -外接球的表面积2416S r ππ==,()21264x +=,解得:14x =, 点O 到平面ABC 的距离11422d SA ==.14 【点睛】 方法点睛:本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,是两个直角三角形的公共斜边的中点是外接球的球心.14.【分析】取的中点为可证明为四面体外接球的球心利用等体积可得答案【详解】取的中点为连接因为平面平面平面平面平面故平面因为平面故因为故故又故平面因为平面故而为的中点故又所以故为四面体外接球的球心设球心到 解析:12【分析】取BC 的中点为M ,可证明M 为四面体A BCD '-外接球的球心,利用等体积可得答案.【详解】取BC 的中点为M ,连接,A M DM ',因为平面A BD '⊥平面BCD ,BD CD ⊥,平面A BD '平面BCD BD =, CD ⊂平面BCD ,故CD ⊥平面A BD ',因为BA '⊂平面A BD ',故CD BA '⊥,因为1A B A D ''==,2BD =222BD A B A D ''=+,故''⊥BA A D ,又A D DC D '⋂=,故'⊥BA 平面ACD ',因为A C '⊂平面ACD ',故A D A C ''⊥,而M 为BC 的中点,故MA MB MC '==,又BD DC ⊥,所以MD MB =,故M 为四面体A BCD '-外接球的球心.设球心M 到平面ACD '的距离为h ,因为2B A CD M A CD V V ''--=,所以11233A CD A CD SA B S h '''=⨯,即12h =. 故答案为:12. 【点睛】 本题考查四面体的外接球,此类问题一般是先确定球心的位置,再把球的半径放置在可解的平面图形中处理,如果球心的位置不易确定,则可以通过补体的方法来处理. 15.【分析】根据正方体的表面积可得正方体边长然后计算外接球的半径利用球的体积的公式可得结果【详解】设正方体边长正方体外接球的半径为R 由正方体的表面积为24所以则又所以所以外接球的体积为:故答案为:【点睛 解析:3π【分析】根据正方体的表面积,可得正方体边长a ,然后计算外接球的半径3R =,利用球的体积的公式,可得结果.【详解】设正方体边长a ,正方体外接球的半径为R ,由正方体的表面积为24,所以2624a =,则2a =,又3R =,所以3R ,所以外接球的体积为:()334434333R πππ==.故答案为:43π.【点睛】 方法点睛:求多面体的外接球的表面积和体积问题关键是要求出外接球的半径,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 16.【分析】先由题意得到的面积以及外接圆的半径记的外接圆圆心为为使四面体体积最大只需与面垂直由此求出设球心为半径为根据为直角三角形由勾股定理列出等式求出球的半径即可得出结果【详解】根据题意知是一个等边三 解析:254π 【分析】先由题意,得到ABC 的面积,以及ABC 外接圆的半径,记ABC 的外接圆圆心为Q ,为使四面体ABCD 体积最大,只需DQ 与面ABC 垂直,由此求出2DQ =,设球心为O ,半径为R ,根据AQO 为直角三角形,由勾股定理列出等式,求出球的半径,即可得出结果.【详解】根据题意知,ABC 是一个等边三角形,其面积为()221333 3322S ⎛⎫=-= ⎪ ⎪⎝⎭,ABC 外接圆的半径为1312sin 60r =⨯=,记ABC 的外接圆圆心为Q ,则1AQ r ==; 由于底面积ABC S 不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ⋅=,2DQ ∴=, 设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即2221(2)R R =+-,54R ∴=, 则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭. 故答案为:254π. 【点睛】思路点睛:求解几何体与球外接问题时,一般需要先确定底面外接圆的圆心位置,求出底面外接圆的半径,根据球的性质,结合题中条件确定球心位置,求出球的半径,进而即可求解. 17.【分析】取的中点连接可得所以或其补角即为异面直线与所成角在中求即可求解【详解】取的中点连接因为所以且所以或其补角即为异面直线与所成角设则所以因为是等边三角形所以因为平面平面所以所以在中因为异面直线所 解析:310 【分析】取11A C 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解.【详解】取11A C 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC ,因为112AE A A =,所以11//EO AC 且111=2EO AC , 所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,设1AB =,则12AA =,所以2211115=12222EO AC =+=,112BE =+=因为111A B C △是等边三角形,112AE A A =,所以11B O == 因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O ,所以12BO ===, 在1BEO中,22211115192cos 220BE EO BO BEO BE EO +-+-∠===-⨯,因为异面直线所成的角为锐角或直角,所以异面直线1AC 与BE所成角的余弦值为20,故答案为:20【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.18.【分析】由题意可得AB 的轨迹得到当ACBC 与轴l 共面时∠ACB 取到最大值和最小值求得sin ∠ACB 的范围代入三角形面积公式得答案【详解】∵ACBC 与平面α所成的角分别为且|AC|=2|BC|=2则A解析:【分析】由题意可得A ,B 的轨迹,得到当AC 、BC 与轴l 共面时,∠ACB 取到最大值和最小值,求得sin ∠ACB 的范围,代入三角形面积公式得答案. 【详解】∵AC ,BC 与平面α所成的角分别为512π,4π,且|AC |=|BC |=2, 则A ,B 分别在如图所示的两个不同的圆周上运动,当直线AC ,BC 与轴l 在同一平面内时,∠ACB 取到最大值和最小值, 于是,有63ACB ππ≤∠≤,∴sin6π≤sin ∠ACB ≤sin 3π,即12≤sin ∠ACB ≤3而ABC 的面积S =12|AC |⋅|BC |⋅sin ∠ACB =3∠ACB . ∴33S ≤≤.故答案为:[3,3] 【点睛】关键点睛:根据题意得到A ,B 的轨迹,利用几何直观和空间想象进行分析是解题的关键.19.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A--的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHNPGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值. 【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角MBC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MNMHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MNPGO MHNOG HN∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHNPGO MHN PGO MHN MHNα∠-∠∠=∠-∠==+∠⋅∠+∠,令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】 关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.20.【分析】将正三棱柱的侧面沿棱展开成平面连接与的交点即为满足最小时的点可知点为棱的中点即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比【详解】将正三棱柱沿棱展开成平面连接与的交点即为满足最小时 解析:1:1【分析】将正三棱柱111ABC A B C -的侧面沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M ,可知点M 为棱1BB 的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比. 【详解】将正三棱柱111ABC A B C -沿棱1BB 展开成平面,连接1AC 与1BB 的交点即为满足1AM MC +最小时的点M .由于2AB =,13AA =,再结合棱柱的性质,可得,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径,M ∴为1BB 的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:1111:1:1C AMB A A CBMC V V --=. 故答案为:1:1. 【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.三、解答题21.(1)证明见解析;(2)7. 【分析】(1)取AB 中点O ,连OC 、OD ,即可得到COD ∠是二面角C AB D --的平面角,再由勾股定理逆定理得到222OC OD CD +=,即可得到二面角是直二面角,即可得证; (2)过O 作OM ⊥BC 交BC 于M ,连DM ,即可证明BC ⊥平面DOM ,从而得到ODM ∠为二面角A-BC-D 的平面角,再利用锐角三角函数计算可得; 【详解】(1)证明:取AB 中点O ,连OC 、OD ,因为ABC 是边长为2的正三角形,ABD △是以AB 为斜边的等腰直角三角形, 所以OC AB ⊥,⊥OD AB ,所以COD ∠是二面角C AB D --的平面角. 在OCD 中,因为OC =1OD =,2CD =,所以222OC OD CD +=所以90COD ∠=︒. 所以平面ABC ⊥平面ABD .(2)过O 作OM ⊥BC 交BC 于M ,连DM ,由(1)可知DO ⊥面ABC ,又BC ⊂面ABC ,所以BC DO ⊥,由OMDO O =,,OM DO ⊂面DOM所以BC ⊥平面DOM因为DM ⊂面DOM ,所以BC ⊥DM , 则ODM ∠为二面角A-BC-D 的平面角.在Rt OMD 中,1OD =,2OM =,由勾股定理:DM =,∴二面角A-BC-D 的余弦值为cos OM OMD DM ∠==.【点睛】本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.22.(1)证明见解析;(2)23.【分析】(1)连接BD交AC于点O,由中位线定理得//OM PB,从而得证线面平行;(2)由M是PD中点,得12M ACD P ACDV V--=,求出三棱锥P ACD-的体积后可得.【详解】(1)如图,连接BD交AC于点O,连接OM,则O是BD中点,又M是PD中点,∴//OM PB,又PB⊄平面ACM,OM⊂平面ACM,所以//PB平面ACM;(2)由已知12222ACDS=⨯⨯=,11422333P ACD ACDV S PA-=⋅=⨯⨯=△,又M是PD中点,所以1223M ACD P ACDV V--==,所以23P ACM P ACD M ACDV V V---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 23.(1)证明见解析;(2)答案见解析,105AH =. 【分析】(1)由长度以及勾股定理逆定理可得,AB BC BD BC ⊥⊥,然后根据线面垂直的判定定理可得结果.(2)取CD 的中点E ,然后根据BH ⊥平面ACD 的判定定理找到点H ,计算,BE AE ,使用等面积法可得BH ,最后简单计算可得AH .【详解】(1)证明:因为2,22,23BCBD AB CD AC =====所以222222,AB BC AC BD BC CD +=+=, 则,AB BC BD BC ⊥⊥ 因为ABBD B =,,AB BD ⊂平面ABD所以BC ⊥平面ABD ,又BC ⊂平面ABC 所以平面ABC ⊥平面ABD (2)解:(作法)取CD 的中点E , 连接AE ,过B 作BH AE ⊥,垂足H 即为要求作的点如图。
立体几何中的组合体问题专题(有答案)例1.正方体与球问题:正方体的棱长为1.求球的半径:⑴若正方体的八个顶点都在球面上,⑵若球内切于正方体;⑶12条棱组成一个正方体,一充气球在正方体内,求球的最大半径.例2.正四面体与球问题:正四面体的棱长为1.求球的半径:⑴若正四面体的四个顶点都在球面上,⑵若球内切于正四面体;⑶6条棱组成一个正四面体,一充气球在正四面体内,求球的最大半径.例3.四球问题:四个球的半径都为1.⑴桌面放两两相切的3个球,这3个球上面放一个球,求这个球的最高点离桌面的距离;⑵求与上述4个球都相切的小球的半径.例4.圆锥、圆柱与球⑴底面半径为1cm高为10cm的圆柱内,可以放几个半径为0.5cm的小球?⑵圆锥底面半径为3,高为4,一个球内切于圆锥,求球的半径;⑶圆锥底面半径为3,高为4,两个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑷圆锥底面半径为3,高为4,三个半径相同的球两两相切,放在圆锥底面上,且内切于圆锥,求这两个球的半径;⑸圆锥底面半径为3,内接于一个半径为4的球,求圆锥的高.例5.圆锥与正四棱柱⑴圆锥底面半径为3,高为4,正四棱柱的高为3,且内接于圆锥,求正四棱柱的底面边长;⑵圆锥底面半径为3,高为4,正四棱柱的高为x,且内接于圆锥,求正四棱柱的体积.练习一、补(补成长方体或正方体)1. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为A 、3πB 、4πC 、33πD 、6π2. 在正三棱锥ABC S -中,M 、N 分别是棱SC 、BC 的中点,且AM MN ⊥,若侧棱32=SA ,则正三棱锥ABC S -外接球的表面积是( ) A .π12 B .π32 C .π36 D .π483. 点P 在直径为6的球面上,过P 作两两互相垂直的三条弦(两端点均在球面上的线段),若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是 A .6B .435C .2215D .210554. 一个正方体的体积是8,则这个正方体的内切球的表面积是( )A .8πB .6πC .4πD .π 5. 设正方体的棱长为233,则它的外接球的表面积为( )A .π38B .2πC .4πD .π346. 已知三棱锥S ABC -的三条侧棱两两垂直,且2,4SA SB SC ===,则该三棱锥的外接球的半径为 A .3 B .6 C .36 D .97. 已知长方体1111ABCD A B C D -的外接球的表面积为16,则该长方体的表面积的最大值为A .32B .36C .48D .648. 长方体1111ABCD A B C D -的各个顶点都在表面积为16π的球O 的球面上,其中1::2:1:3AB AD AA =,则四棱锥O ABCD -的体积为A .263 B . 63C .23D .3 9.【山东省潍坊一中2013届高三12月月考测试数学文】四棱锥P ABCD 的三视图如右图所示,四棱锥P ABCD 的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为22,则该球表面积为A .12B .24C .36D .4810. (河南省豫东、豫北十所名校2013届高三阶段性测试四)已知四面体ABCD 中,AB =AD =6,AC =4,CD =213,AB 丄平面ACD ,则四面体 ABCD 外接球的表面积为A . π36B . π88C . π92D . π12811. 正方体1111ABCD A B C D -的棱长为6,一个球与正方体的棱长都相切,则这个球的半径是____________.12. 三棱锥A -BCD 中,侧棱AB 、AC 、AD 两两垂直,ΔABC ,ΔACD , ΔADB 的面积分别为,222,则三棱锥A -BCD 的外接球的体积为. ______13. 四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为361、、,若四面体的四个顶点同在一个球面上,则这个球的表面积为 。
痛点11 立体几何中的组合体问题
一、单选题
1.(2020·江西南昌二中高三)某几何体的三视图如图所示,则该几何体的体积为()
A
.
2
3
πB.
πC.4
3
πD.5
3
π
2.(2020·涡阳县第九中学)如图,正方体1111
ABCD A B C D
-的棱长为1,E,F分别为线段
1
AA,
1
B C上的点,则三棱锥1
D D EF
-的体积为()
A.
1
3
B.
1
4
C.
1
6
D.
1
12
3.(2020·宁夏其他模拟)如图,在四棱锥C ABOD
-中,CO⊥平面,//,
ABOD AB OD OB OD
⊥,且212,62
AB OD AD
===,异面直线CD与AB所成角为30,点,,,
O B C D都在同一个球面上,则该球的半径为()
A.32B.42C21D42
4.(2020·全国高三月考)一个几何体的三视图如图所示,已知其体积为
4
8
3
π
+
,则图中r的值为( )
A .1
B .2
C .3
D .4
5.将一个半径为6的半球切削成一个正方体(保持正方体的一个面在半球底面所在平面上),所得正方体体积的最大值为( )
A .42
B .8
C .22
D .4
6.(2020安徽高三)已知某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为( )
A .17π
B .34π
C .51π
D .68π
7.现有一副斜边长相等的直角三角板.若将它们的斜边AB 重合,其中一个三角板沿斜边折起形成三棱锥
A BCD -,如图所示,已知,6
4
DAB BAC π
π
∠=
∠=
,三棱锥的外接球的表面积为4π,该三棱锥的体积
的最大值为( )
A 3
B .
36
C .
324
D .
348
8.(2020·沙坪坝·重庆一中)阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的
23,且球的表面积也是圆柱表面积的2
3
”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( )
A .
43
π B .16π
C .
16
3
π
D .
323
π 9.(2020·陕西高三)已知正四面体的内切球体积为v ,外接球的体积为V ,则V
v
=( )
A .4
B .8
C .9
D .27
10.(2020·贵州高三其他模拟)在三棱柱1111,ABC A B C AA -⊥面ABC ,23
BAC π
∠=
,14AA =,23AB AC ==,则三棱柱111ABC A B C -的外接球的表面积为( )
A .32π
B .48π
C .64π
D .72π
11.(2020·三亚市第二中学高三)在四面体ABCD 中,AD ⊥底面ABC ,10AB AC ==,2BC =,
点G 为三角形ABC 的重心,若四面体ABCD 的外接球的表面积为
244
9
π,则tan AGD ∠=( ) A .
12
B .2
C .
22
D .2
12.(2020安徽省舒城中学)已知球1O 与正三棱柱(底面为正三角形的直棱柱)的所有表面都相切,并且该三棱柱的六个顶点都在球2O 上,则球1O 与球2O 的表面积之比为( )
A .1:2
B .1:3
C .1:4
D .1:5
二、填空题
13.(2020·湖北黄冈·高三)在三棱锥D ABC -中,CD ⊥底面ABC ,AC BC ⊥,5AB BD ==,4BC =,则此三棱锥的外接球的表面积为___.
14.(2020·福建漳州·高三其他模拟(理))已知正三棱柱的底面边长为232,,A B 分别为该正三棱柱内切球和外接球上的动点,则,A B 两点间的距离最大值为__________. 15.已知三棱锥P ABC -中2,PA PB PC ABC ===3则三棱锥P ABC -的
外接球半径为________.
16.(2020·广西柳州·高三二模)已知三棱锥S -ABC 的各顶点都在同一个球面上,△ABC 所在截面圆的圆心
在AB 上,SO ⊥面ABC ,AC =1,BC =3,若三棱锥的体积是3
3
,则该球体的表面积是___________. 三、解答题
17.如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点.
(1)求证:平面CDE ⊥平面ABC ; (2)若2AB =,AC BC ⊥,3
ADB π
∠=
,3CD =
,求三棱锥C ADE -的体积.
18.在四棱锥P ABCD -中,底面ABCD 是直角梯形,AB CD ∥,BC AB ⊥,1
2
PD PA CD BC AB ====
,PB PC =.
(1)求证:平面PAD ⊥平面PBD ; (2)若三棱锥B PCD -的体积为
22
3
,求PC 的长. 19.(2020·安徽六安一中)如图,在四棱锥P ABCD -中,在底面ABCD 中,//,,AD BC AD CD Q ⊥是AD 的中点,M 是棱PC 的中点,PA =PD =2,BC =
1
2
AD =1,CD =3,PB =6.
(1)求证://PA 平面MQB (2)求证:平面PAD ⊥底面ABCD ; (3)试求三棱锥B PQM -的体积.
20.(2020·河南高三月考)如图,在四棱锥P —ABCD 中,底面ABCD 为直角梯形,AD //BC ,AD ⊥AB ,P A ⊥平面ABCD ,过AD 的平面与PC ,PB 分别交于点M ,N ,连接MN
.
(1)证明:BC //MN ;
(2)已知P A =AD =AB =2BC ,平面ADMN ⊥平面PBC
,求
P BDM
P ABCD
V V --的值.
21.(2020安徽高三)如图所示,四棱锥B AEDC -中,平面AEDC ⊥平面ABC ,F 为BC 的中点,P 为
BD 的中点,且AE ∥DC ,90ACD BAC ∠=∠=︒,2DC AC AB AE ===.
(Ⅰ)证明:平面BDE ⊥平面BCD ; (Ⅱ)若2DC =,求三棱锥E BDF -的体积.
22.(2020·陕西高三零模)如图,在四棱锥P ABCD -中,BP ⊥平面PDC ,四边形ABCD 是一个直角梯形,//AD BC ,90ABC ∠=︒,1
2
AD AB BC ==
.
(1)求证:CD ⊥平面PBD ;
(2)若AB BP PA ==,且162P ABCD V -=P ABD -的侧面积.。