4 储层裂缝
- 格式:ppt
- 大小:3.67 MB
- 文档页数:87
储层裂缝发育等级划分研究张晓峰1,2,潘保芝3【摘要】摘要:为避免由非裂缝因素引起单个裂缝参数响应所导致的裂缝储层误判,综合考虑裂缝参数对裂缝发育等级划分进行研究。
对裂缝分维、裂缝概率、裂缝孔隙度和次生孔隙度等4个参数进行了深入研究。
给出这4个参数的计算公式,通过对比分析得出裂缝发育的分级标准,将4个参数相结合对裂缝发育程度进行等级划分。
依据裂缝发育的划分标准对邛西A井致密砂岩储层裂缝参数进行评价,评价结果与成像测井识别的裂缝符合率为72%,取得了较好的效果。
【期刊名称】测井技术【年(卷),期】2013(037)004【总页数】4【关键词】测井解释;裂缝分维;裂缝概率;裂缝孔隙度;次生孔隙度;裂缝发育0 引言随着全球油气勘探程度提高,裂缝型油气藏已成为一个重要的勘探新领域[1]。
在裂缝性储层中,裂缝可作为主要的油气储集空间,更为重要的是裂缝通常是连通基质孔隙的主要渗流通道,控制着油气产能[2]。
裂缝性储层的评价是裂缝性储层油气产能求取的基础,所以裂缝性储层的准确评价非常重要。
许多学者针对裂缝性储层评价开展了大量研究工作。
李善军等[3]利用建立的双侧向测井响应模型对裂缝孔隙度的定量解释展开了研究。
范晓敏等[4]对碳酸盐岩储层声波时差曲线的波动和增幅现象与裂缝之间的关系进行了研究。
闫伟林等[5]对火山岩中的网状裂缝双侧向测井响应特征进行了总结。
傅爱兵等[6]利用成像测井对裂缝性储层进行评价研究,指出成像测井能提供详细而丰富的储层及地质信息,可直接用于裂缝的识别及其有效性评价,计算储层裂缝孔隙度、裂缝开度等参数。
张晓峰等[7-8]利用小波变换方法对裂缝识别和裂缝密度进行了研究,并对成像测井的裂缝进行了追踪处理。
徐国盛等[9]对塔河三号油田奥陶系溶蚀缝洞储层的研究中,以塔河3号油田下奥陶统碳酸盐岩储层的岩心观察为基础对缝洞储层进行了分级评价。
为更好地评价裂缝储层,本文将裂缝发育程度分为I级、II级、III级、IV级等4个级别,其中I级为裂缝发育,II级为裂缝较发育,III级为裂缝不发育,IV 级为致密层。
储层裂缝的综合表征技术
尽管油气开采的广泛性和复杂性,但储层裂缝的综合表征技术已经在地质勘查和开发领域中取得一些突破。
基于不同的目标和需求,这种技术主要由三个步骤组成:裂缝识别、裂缝描述和裂缝解释。
首先,裂缝识别是对裂缝存在的基础性研究,主要依靠现场观察、荧光微观及超声波成像等方式进行。
通过利用这些方法,可以从宏观和微观两个层面上确保对裂缝的全面识别,为后续工作提供了基础。
其次,裂缝描述主要是对裂缝的基本特征进行详细记录。
包括裂缝的数量、长度、宽度、方向、连通性等。
为了获取更准确的数据,通常需要采用特殊的测量工具和技术,如光学偏振显微镜、电子探针等。
最后,裂缝解释是基于对裂缝的识别和描述,结合地层条件、地质历史、流体活动等多方面因素,对裂缝的生成机理、分布规律以及对油气的富集和运移作用等方面进行细致的研究和解读。
以上三个步骤是储层裂缝的综合表征技术的主要内容,结合这些技术可以更准确和全面地了解储层裂缝,进而为油气开采提供有效支持。
同时,这些技术在不断发展和进步,相信在未来的地质勘查和开发中,会有更多的应用和突破。
储层天然裂缝与压裂裂缝关系分析李玉喜 肖淑梅(大庆石油学院经管系) (大庆职工大学) 摘要 方法 运用构造物理分析方法,论述了储层中天然裂缝与压裂裂缝之间的关系。
目的 确定天然裂缝对人工压裂裂缝的影响。
结果 储层中不同天然裂缝组合及其与最大主应力间的相对方位,决定了压裂裂缝的方位和裂缝宽度等空间分布规律。
结论 天然裂缝在压裂时活动与否,主要取决于地应力差、岩石和天然裂缝的抗张强度及裂缝与最大主应力方向间的夹角等因素;在压裂造缝时要充分考虑现今应力场特征、岩石和天然裂缝的力学特征及其组合规律。
主题词 低渗透储集层 天然裂缝 压裂裂缝 抗张强度 地应力 分析引 言人工压裂造缝是提高低渗透油田产油率的重要手段之一。
在储层为均质体时,压裂裂缝的方向、形态受现今地应力场的特征控制[1]。
当储层有天然裂缝存在时,天然裂缝的抗张强度很低或为零,使得岩石的均一性受到破坏,这必然影响到压裂裂缝的产出特征。
本文在对裂缝性岩石压裂时一般破裂规律分析的基础上,阐述了储层中不同天然裂缝组合对压裂裂缝特征的影响。
裂缝性岩石压裂时一般破裂规律分析当岩石为均质体时(无限大平板),在与井壁平行(a=r,θ=0时)的最大主应力方向上,破裂压力与局部地应力、孔隙液压、岩石抗张强度等参数间的关系式为[1,2]:P f=3σ3-σ1-P p+S R(1)其中 a———井孔半径,m;P f———破裂压力,M Pa;P p———油层孔隙压力,M Pa;r———距井孔中心距离,m;S R———岩石抗张强度,M Pa;θ———任意径向方向与最大主应力间夹角; σ1、σ3———最大、最小主应力,M Pa。
在距井孔中心距离大于10a时,应力基本恢复为原地应力值[3]。
即井孔周围的应力异常只存在于井孔周围几米范围之内。
若远离井孔,在不考虑压裂液渗流所引起的应力改变且岩石为均质体时,则压裂裂缝延伸时主要受原地应力状态和地层的抗拉强度控制,并沿最大主应力方向延伸。
2009年11月第16卷第6期断块油气田1研究内容1.1裂缝系统的成因研究裂缝系统的成因可对裂缝几何形态和分布的可预测性有所了解。
对于裂缝,通常以力学成因和地质成因来分类[1]。
1)力学成因分类。
在实验室的挤压、扩张和拉张试验中,可以观察到与3个主应力以一致和可预测的角度相交所形成的3种裂缝类型:剪裂缝、张裂缝和张剪缝,所有裂缝必然与这些基本类型中的一类相符合。
2)地质成因分类。
裂缝的形成受到各种地质作用的控制,如局部构造、区域应力、成岩收缩、卸载、风化等。
主要裂缝类型有构造裂缝、区域裂缝、收缩裂缝、卸载裂缝、风化裂缝、层理缝等。
另外,还有次火山岩中的隐爆裂缝、岩溶体系中的岩溶裂缝等。
1.2影响油藏动态的裂缝性质阐述岩石-裂缝系统的岩石物理性质,将为预测因基质和裂缝系统特征的横向变化或因环境条件(深度、孔隙压力的衰减、流动方向等)的改变而引起的不同深度,构造位置上储集层响应的变化提供依据。
这包括确定裂缝系统的物理形态和分布及估计与裂缝系统特征有关的储集性质(孔隙度和渗透率等)[2]。
1)裂缝形态。
天然破裂面的形态有4种基本类型:开启裂缝、变形裂缝(包括被断层泥充填的裂缝和具擦痕面的裂缝)、被矿物充填的裂缝、孔洞裂缝。
2)裂缝宽度和渗透率。
天然裂缝系统对储集层性质及产能定量评价有重要的影响。
地下裂缝宽度和渗透率的确定是了解裂缝对油层动态的影响所必须的地质参数。
3)裂缝间距。
同裂缝宽度一样,裂缝间距是预测储集层裂缝孔隙度和裂缝渗透率的又一个重要参数[3]。
1.3裂缝与基质孔隙度的联系裂缝在油气生产及储存上起重要作用的任何储集层必须看成是双孔隙度系统,一个系统在基质中,另一个在裂缝中。
如果由于2种孔隙度之间存在不利的相互影响而使储集层分析不能识别出衰竭开采的最大产储层裂缝的研究内容及方法范晓丽苏培东闫丰明(西南石油大学资源与环境学院,四川成都610500)摘要储层中裂缝既是储油空间,又是油气运移的主要通道,因此储层裂缝的研究显得尤为重要。