大型齿轮渗碳淬火变形原因及其控制
- 格式:doc
- 大小:25.50 KB
- 文档页数:1
齿轮渗碳淬火热处理变形原因与改进技术摘要】齿轮是常见的机械零部件,其啮合传动力学在汽车、轮船等机械产品中广泛应用。
齿轮的重要作用不言而喻,但在齿轮的具体使用当中会存在齿轮失效的现象,此种现象的出现大部分是由于齿轮长期使用后磨损、折断所导致的。
齿轮的生产主要以渗碳淬火热处理的加工方式进行批量生产,但此种生产方式容易导致齿轮变形,不利于齿轮的批量成产与成本投入。
为保障齿轮的生产质量文章对齿轮渗碳淬火热处理技术进行分析,找寻齿轮变形原因并提出相关的改进措施,以供行业参考。
【关键词】渗碳淬火热处理齿轮渗碳淬火是当下齿轮生产中的重要工艺流程,渗碳淬火能够使齿轮的耐磨性能更加稳定。
渗碳淬火属于热处理技术,其具体工作开展分为多种形式,但渗碳淬火过程较为复杂,导致齿轮在淬火后容易发生变形。
齿轮变形属于齿轮制作过程中的常见问题,极大的影响了齿轮的使用质量,齿轮在机械中应用广泛,如何提高齿轮质量,改进工作技术成为当下技术研究的重点。
一、齿轮及渗碳淬火热处理工艺分析1.1齿轮结构从大部分的齿轮结构来讲,齿轮的整体结构呈现对称性,其制作材料主要包含调质钢、渗碳钢、合金钢等多种材料,制作完成的齿轮中间多为空心、内外径较大、齿轮壁较薄,渗碳淬火需要进行高温加热,以此齿轮容易发生变形现象。
1.2渗碳淬火热处理工艺齿轮的渗碳淬火热处理工艺较为复杂,包含直接淬火低温回火、预冷直接淬火低温回火、一次加热淬火低温回火、渗碳后感应加热淬火低温回火等多种工艺。
以20CrMnTi齿轮为例,首先要将齿轮要放置在炉温为920℃的渗碳淬火炉中进行长达3小时的渗碳处理,其次将渗碳炉的温度调至860℃,在保持50分钟的恒温状态后进行淬火出炉。
最后,使用淬火液处理,进行2小时的低温回火,在低温回火的过程中回火炉的温度应当保持在160℃。
在进行渗碳淬火热处理时,要注意四只齿轮在全过程当中要保持平放状态。
1.3齿轮渗碳淬火热处理后导致变形的因素在齿轮进行渗碳淬火热处理前后分别对齿轮的直径、公法线进行测量,发现在经过热工艺处理后,齿轮的内外直径与公法线均发生了变化。
机车从动齿轮渗碳淬火变形问题的分析与预防摘要齿圈类机车从动齿轮,因为尺寸较大的薄板形结构,渗碳淬火后不可避免地要发生变形。
这样既影响从动齿轮的精度,也严重影响齿轮的使用性能。
本文从材料、热处理等影响齿轮热处理变形的几个主要因素入手,分析其产生的原因,并通过适当的选材以及热处理工序等相应措施,减少齿轮热处理变形,从而提高齿轮加工精度。
关键词齿轮热处理变形因素变形控制1 前言目前,在铁路跨越式发展理念的引导下,各个主机厂都以“客运高速、货运重载”为目标,应用新材料、研究新工艺、开发新产品。
牵引从动齿轮是机车驱动装置上的关键零部件,它的好坏直接影响到机车是否能够高速重载。
由于大功率机车从动齿轮因为尺寸较大,渗碳淬火后易产生变形,已经成为制约产品质量和使用性能的瓶颈,所以对机车从动齿轮渗碳淬火的研究有重要的现实意义。
2 齿轮热处理变形的影响因素2.1齿轮材料对齿轮变形的影响由于同一牌号的钢材,其淬透性曲线会在一定范围内变化,导致了淬透性带宽的不同,渗碳淬火后的组织就会出现差异,变形也就不一样,如果淬透性带宽过宽,必然会导致齿轮热处理变形无规律。
实验表明,钢的淬透性越高,热处理后齿轮的变形就越大。
当心部硬度高于HRC40时,变形就会明显增大。
目前,使用与从动齿轮强度相匹配的窄淬透性带宽的渗碳钢已经成为齿轮行业选材的共识。
2.2 预备热处理对齿轮变形的影响齿轮预备热处理组织的均匀性和稳定性对齿轮最终热处理变形的影响很大,因为齿轮各部分的原始组织不同,其比热就不同,在热处理过程中产生的尺寸变化也就不同。
齿轮经高温锻造后,由于其组织粗大不利于随后的渗碳处理,所以一般高温锻造后的齿轮需要经过正火处理,以达到细化晶粒和改善显微组织的目的。
但是,往往正火硬度过高,出现大量索氏体或魏氏体组织,它们的存在都会使内孔变形增大,所以必须引起足够的重视。
2.3 渗碳工艺对齿轮的影响2.3.1 温度的均匀性对齿轮的影响温度的均匀性是造成热处理变形的因素之一。
齿轮渗碳淬火变形原因及控制措施研究摘要:齿轮零件在前期加工期间若是遭受到热处理变形作用,将会导致其获取的精度遭受到严重的影响,一旦出现变形即使是使用校直及磨齿等先进的修形技术也难以达到恢复的效果。
尤其是齿轮在遭受到渗碳淬火之后会出现变形情况,具有较大的变形量,该种变形无法通过控制来实现,并且变形过大,也会增加磨削成本及磨削量,对齿轮制造精度会造成极大的影响,承载能力显著降低,寿命也会随之而下降。
本文着重分析齿轮渗碳淬火变形原因,并提出合理化的变形控制措施。
关键词:齿轮渗碳淬火;变形原因;控制措施前言:在制造硬齿面汽车齿轮期间,目前所使用的主流工艺是渗碳淬火,但是在使用之后不得不面对的问题便是出现变形情况,会对齿轮的加工质量造成极大的影响。
有相关的研究报告显示,之所以会导致碳淬火齿轮出现变形,与锻造质量、原材料质量、齿轮的结构设计、毛坯预备热处理有直接关系,并且以上几种因素之间彼此也会出现相互影响的情况,进而增加了上述因素的控制难度。
现如今,在汽车齿轮制造中控制变形量已经成为一项需要解决的重难点问题。
一、齿轮渗碳淬火变形原因(一)渗碳件变形原因渗碳低碳钢,经过对原始相结构进行分析可知,由少量珠光体组织及铁素体共同来构成,经过对整个体积的占比情况进行了解可知,铁素体量的占比高达80%,当加温到AC1以上温度之后,珠光体会向奥氏体进行转变。
当温度为900℃时,铁素体会向奥氏体进行转变。
当渗碳的温度为920℃-940℃时,零件表面的奥氏体区碳浓度的升高度为0.6%-1.2%,碳浓度比较高的奥氏体区碳浓度会增加至0.6%-1.2%,当奥氏体的温度冷却到600-650℃时,会向索氏体及珠光体进行转变[1]。
当低碳奥氏体处于心部区时,若是在900℃的高温下会将其转变为铁素体,当冷却到550℃时,会全部转变完成。
比容增大的过程是心部奥氏体向铁素体进行转变的过程,而通过对表层奥氏体冷却情况进行探究可知,可将热缩量增加变化的整个过程呈现出来,在冷却期间,在生成心部铁素体时,会遭受到表层高碳奥氏体区的压力影响[2]。
齿轮渗碳淬火工艺培训讲义一、齿轮受力状态及失效形式:1、受力状态:齿面摩擦力、齿面接触应力和齿根弯曲应力。
2、失效形式:齿面剥落:表面网状碳化物和渗碳过渡区拉应力是造成齿面剥落的原因。
麻点:齿面金属的塑性变形和齿面的摩擦力导到齿面产生疲劳裂纹,润滑油挤入加速裂纹扩展,由此而产生麻点。
断裂:表现为断齿或断轴,原因为齿轮基体强度不夠。
二、齿轮渗碳淬火通用技术要求:1、对原材料的要求要:根据不同使用要求对材料疏松、成份偏析、非金属夹物、带状组织、原始晶粒度和材料淬透性等均有不同级别要求。
2、对预备热处理组织状态和热处理硬度的要求:包括组织状态、基体硬度、晶粒度等。
3、对最终热处理质量的要求:包括渗碳淬火表面硬度、渗碳层深度和渗层金相组织、工件基体组织及硬度、强度等。
三、齿轮渗碳淬火工艺规程:1、渗碳淬火齿轮(低速重载和高速齿轮) 选材:2、渗碳齿轮工艺流程:锻造---正火---机加工---渗碳淬火---精加工---强力喷丸。
3、齿轮渗碳淬火技术要求:4、正火热处理:5、齿轮渗碳工艺:渗碳淬火工艺曲线温度时间6、使用设备: 可控气氛多用炉。
7、装炉工装及装料方式:详见附图。
(1)使用工装:工装料架应为抗渗碳、抗热疲劳、高温具有高强度的高Ni-Cr 含量材质的工装。
工装结构视工件大小、结构特征而定。
工装的结构应保证工件加热、冷却均匀,有利于减小工件淬火变形。
(2)、装料方式:一般齿轮类工件垂直挂装,套类齿轮多层碼放。
工件间应留有一定间隙,以保证不同工件和相同工件不同部位加热和冷却均匀。
滚动件均匀、薄层应平摊于料筛底部,采用多层料筛叠放装料的形式较好。
8、淬火介质及淬火冷却方式:(1)、淬火介质采用德润宝或好富顿淬火油较好。
因为这类淬火油蒸气膜持续时间短,蒸气薄且厚度均匀,奥氏体不稳定区冷速较高,有利于避免其产生非马转变;马氏体转变温度下的冷却速度较慢,有利于减小工件淬火应力和淬火变形。
(2)、淬火介质的搅拌强度和循环方向:选择强力向下搅拌为宜,但最终应根据工件淬火效果确定。
试论20CrMnTi齿轮渗碳淬火变形的影响因素与处理技术措施作者:张江学李虎来源:《城市建设理论研究》2012年第01期摘要:本文通过对齿轮渗碳淬火后的变形情况做点研究, 并找出了影响20CrMnTi齿轮渗碳淬火变形的因素, 最后提出齿轮渗碳淬火变形的处理技术措施。
关键词:汽车齿轮;热处理;变形因素;处理措施0前言对于热处理变形的产生,至今尚没有用来分析和解决实际工件热处理变形的系统而实用的方法。
因此,一方面,应加强理论研究,正确地模拟齿轮的热处理变形过程,分析各种因素的影响机理,为解决变形问题提供理论依据。
另一方面,各厂应根据自己的实际情况,有针对性地摸索出各种因素对齿轮变形的影响规律,有效地减少齿轮的热处理变形。
所选择的加工工艺哪些是影响齿轮热处理的重要指标,如何将这些指标纳入控制系统,这是一个系统工程。
我们研究的特点就是将热处理变形问题与生产的各个环节相联系,期望通过研究,建立起对生产过程系统变形控制的方法,全方位解决热处理变形问题。
1实验材料及方案本次实验使用20CrMnTi钢,化学成分如表1。
表120CrMnTi钢化学成分(质量分数%)钢号 C Si Mn Cr Ti20CrMnTi 0.20 0.18 1.0 1.1 0.08这种钢是国内使用最普遍的渗碳钢,油淬临界直径为10~30mm,经渗碳热处理后具有耐磨的表面与强韧的心部,并具有较高的低温冲击韧度。
钢在加热时过热敏感性小,渗碳速度快,过渡层均匀,渗碳后可以降温直接淬火,淬火变形小。
此钢可与20MnVB等钢互相替代。
试验设备为气体渗碳炉、回火炉、数控车床等。
2渗碳工艺的确定2.1渗碳过程渗碳是机械制造工业中应用最广泛的一种表面热处理工艺,是将钢制工件放在含碳介质中加热到高温,以增加工件表层含碳量的化学热处理工艺。
渗碳过程中包括分解、吸收和扩散三个基本过程。
2.2渗碳温度渗碳温度对渗碳过程及结果有如下几方面的影响:①影响渗碳速度,提高温度可显著加速扩散过程,加速渗碳速度,缩短渗碳时间;②影响渗碳层的碳浓度,表层含碳量并非越高越好,一般控制在0.8%~1.1%之间比较理想;③温度过高,容易引起钢的晶粒长大,降低韧性,零件翘曲变形的可能性增加;④如果采用渗碳后直接淬火工艺,渗碳温度的升高容易导致渗层中残余奥氏体量增加及渗碳温度冷到淬火温度的时间相应延长;综合考虑了以上各种影响后,多数选择900~950℃渗碳,以920~930℃用得最多(表2)。
大型齿轮渗碳淬火变形原因及其控制
2 大型齿轮渗碳淬火变形规律
对大型齿轮质量和寿命影响最大的变形来自齿轮外径、公法线长度和螺旋角等。
一般说来,变形趋势如下:
2.1 大型齿轮变形规律:大型齿轮渗碳淬火后齿顶圆外径呈明显胀大趋势,且上下不均匀呈锥形;径长比(齿轮外径/齿宽)越大,外径胀大量越大。
碳浓度失控偏高时,齿轮外径呈收缩趋势。
2.2 大型齿轮轴变形规律:齿顶圆外径呈明显收缩趋势,但一根齿轴的齿宽方向上,中间呈缩小,两端略有胀大
2.3 齿圈变形规律:大型齿圈经渗碳淬火后,其外径均胀大,齿宽大小不同时,齿宽方向呈锥形或腰鼓形。
3 渗碳淬火齿轮变形原因
3.1 渗碳件变形的实质
渗碳的低碳钢,原始相结构是由铁素体和少量珠光体组成,铁素体量约占整个体积的80%。
当加热至AC1以上温度时,珠光体转变为奥氏体,900℃铁素体全部转变为奥氏体。
920—940℃渗碳时,零件表面奥氏体区碳浓度增加至0.6—1.2%,这部分碳浓度高的奥氏体冷至600—650℃才开始向珠光体、索氏体转变,而心部区的低碳奥氏体在900℃即开始分解为铁素体,冷至550℃左右全部转变完成。
心部奥氏体向铁素体转变是比容增大的过程,表层奥氏体冷却时是热收缩量增加的变化过程。
在整个冷却过程中,心部铁素体生成时总是受着表层高碳奥氏体区的压应力。
此外,大型齿轮由于模数大、渗层深,渗碳时间较长,由于自重影响,也会增加变形。
3.2 大型齿轮渗碳淬火变形的原因
工件淬火时,淬火应力越大,相变越不均匀,比容差越大,则淬火变形越严重。
淬火变形还与钢的屈服强度有关,塑性变形抗力越大,其变形程度就越小。
从齿轮和齿轮轴渗碳淬火冷却各部位冷却速度、组织及硬度状态比较分析,可以发现上中下各部位冷却速度的差别,以及表面、过渡区、心部冷却速度差别,和其组织转变的不同时性是造成齿轮变形的主要原因。
减小大型齿轮渗碳淬火变形也要通过提高各环节的均匀性来实现。