大跨度结合梁斜拉桥抗风稳定分析
- 格式:pdf
- 大小:762.38 KB
- 文档页数:3
大跨度斜拉桥颤抖振响应及静风稳定性分析一、本文概述随着交通工程技术的不断发展和创新,大跨度斜拉桥作为现代桥梁工程的重要代表,其在桥梁建设领域的应用越来越广泛。
然而,随着桥梁跨度的增大,其结构特性和动力学行为也变得越来越复杂,尤其是在强风作用下的颤抖振响应和静风稳定性问题,已经成为桥梁工程领域研究的热点和难点。
本文旨在针对大跨度斜拉桥的颤抖振响应及静风稳定性进行深入的分析和研究,以期为提高大跨度斜拉桥的设计水平和安全性提供理论支持和实践指导。
本文首先将对大跨度斜拉桥的结构特点和动力学特性进行概述,阐述其在强风作用下的颤抖振响应机制和静风稳定性的基本概念。
接着,本文将详细介绍大跨度斜拉桥颤抖振响应的分析方法,包括颤振机理、颤振分析方法以及颤振控制措施等。
本文还将探讨大跨度斜拉桥的静风稳定性分析方法,包括静风稳定性评估方法、静风稳定性影响因素以及静风稳定性控制措施等。
本文将结合具体工程案例,对大跨度斜拉桥的颤抖振响应及静风稳定性进行实例分析,以验证本文所提分析方法的有效性和实用性。
本文的研究成果将为大跨度斜拉桥的设计、施工和运营提供有益的参考和借鉴,对于提高我国桥梁工程的设计水平和安全性具有重要的理论意义和实践价值。
二、大跨度斜拉桥颤抖振响应分析大跨度斜拉桥作为现代桥梁工程的重要形式,其结构特性和动力行为是桥梁工程领域研究的重点。
颤抖振,作为一种常见的桥梁振动形式,对桥梁的安全性和使用寿命有着重要影响。
因此,对大跨度斜拉桥的颤抖振响应进行深入分析,对于优化桥梁设计、确保桥梁安全具有重要的理论价值和实际意义。
在颤抖振分析中,首先要考虑的是桥梁结构的动力学特性。
大跨度斜拉桥由于其特殊的结构形式,其动力学特性相较于传统桥梁更为复杂。
在风的作用下,桥梁的振动会受到多种因素的影响,包括桥梁自身的结构参数、风的特性以及桥梁与风的相互作用等。
因此,在进行颤抖振分析时,需要综合考虑这些因素,建立准确的动力学模型。
要关注颤抖振的响应特性。
文章编号:1671-2579(2010)03-0114-04大跨度斜拉桥静风稳定性及影响参数分析张辉1,韩艳2,田仲初2(1.南阳理工学院,河南南阳 473004; 2.长沙理工大学土木与建筑学院)摘 要:随着跨径不断增大,斜拉桥存在静风失稳的可能性增加。
笔者综合考虑了静风荷载和结构自身非线性因素的影响,引用大跨度桥梁非线性静风稳定性分析理论,采用增量双重迭代搜索法对某大跨度斜拉桥进行了非线性静风稳定性分析,根据其非线性全过程分析结果探明其静风失稳机理,并探讨了不同参数对其静风稳定性的影响。
关键词:大跨度斜拉桥;静风失稳;非线性;增量双重迭代搜索法;Ansys 软件收稿日期:2010-05-10基金项目:国家自然科学基金资助项目(编号:50908025)作者简介:张辉,男,硕士.1 前言随着斜拉桥跨径的不断增大,新的问题不断出现,风荷载作用下大跨径桥梁的静风稳定问题就是其一。
但目前大跨度斜拉桥的抗风研究主要集中在结构的抖振响应和气动稳定问题上,而对其静风失稳现象重视不够。
近年来,风洞试验研究结果表明:随着跨径的不断增大,斜拉桥存在静风失稳的可能性增加。
因此,有必要对各种形式的大跨度斜拉桥的静风稳定性问题进行全面的考察研究。
静风失稳是静风荷载与结构变形耦合作用的一种体现。
过去,对大跨度悬索桥空气静力失稳的计算方法都比较简单,仅限于验算横向静风引起的侧倾失稳以及纯升力作用下的扭转发散,且没有考虑结构与风荷载非线性因素的相互作用,用于实际结构的静风稳定分析时,难以获取准确的静风失稳临界点,也无法揭示结构失稳全过程以及空气静力行为的非线性特征。
为了能全面了解大跨度斜拉桥静风失稳的发生机理,考察各种不同参数对结构静风失稳的影响,从而准确预测结构发生静风失稳的临界风速,为今后进行斜拉桥抗静风设计及状态评估奠定良好的基础。
笔者在综合考虑结构几何非线性和静风荷载非线性的基础上采用大跨度桥梁静风稳定性计算方法对某大跨度斜拉桥静风稳定性进行了计算,根据计算结果分析该大桥静风失稳的机理。
大跨径斜拉桥抗风稳定性研究摘要:伴随着我国桥梁跨径的不断延展伸长,对于柔性较大的斜拉桥来讲,在设计时需要考虑风致效应产生的空气动力问题,对应问题需要多方面因素出发提出风振控制手段措施,以保证大跨径斜拉桥具有足够的抗风稳定性。
关键词:大跨径桥梁;风致效应;气动措施中图分类号:TU 13 文献标志码:A 文章编号:1940年塔科马海峡大桥发生严重风毁事件,引发了国际桥梁工程界及空气动力界的极大关注,这也标志着自此为桥梁风工程研究的起点,使得在桥梁设计之中开始考虑桥梁风致效应的严重性。
由此可见风致效应对大跨径桥梁有着极其重要的作用,桥梁在抗风方面的研究也有着举足轻重的意义。
明确大跨径斜拉桥在抗风设计中的设计要点;找到大跨径斜拉桥不同设计参数对结构气动稳定性的影响;根据风致振动的机理,能够采用相应的结构措施、气动措施、机械措施来提高桥梁的抗风性能[1],具有重要工程价值及研究意义。
1 桥梁风致灾害实例2020年5月5日下午15时左右,连接珠江两岸的广东虎门大桥发生了异常的抖动现象,悬索桥桥面晃动不但感知明显,影响了行车的舒适性及交通安全性,且其振幅在监控中显示为波浪形,幅值过大。
这件事情引发了不单有我国桥梁工程专业的广泛关注,在社会中也激发了广大人民群众的激烈讨论及反响。
此次虎门大桥的异常晃动并没有发生一定的损失,相关部门也立即采取措施,对虎门大桥进行双向封闭管制,对虎门大桥也进行了紧急的全面检查检测,交通运输部也组建了专家工作组到现场进行研究指导。
随着我国大跨径桥梁的发展建设,桥梁风害也时有发生,例如广州九江公路斜拉桥在施工过程中吊机被8级大风吹倒进而砸坏主梁;江西长江公路铁路两用桥吊杆发生涡激共振;上海杨浦大桥斜拉索的风雨振引起的拉索索套严重毁坏等[3]。
灾害的发生时刻警醒着人们,大跨径斜拉桥的设计中有关抗风设计日益成为焦点;桥梁风害的问题的重要性,促使着人们对桥梁风致效应的研究不断深入。
2 桥梁结构的风致效应桥梁结构的风致效应十分复杂,它受结构的形状、刚度、风的自然特性以及二者相互作用的影响。
桥梁设计中的抗风性能优化与评估研究在现代交通基础设施建设中,桥梁作为跨越江河湖海、山谷沟壑的重要建筑物,发挥着至关重要的作用。
然而,风对桥梁的影响不容忽视,强风可能导致桥梁结构的振动、失稳甚至破坏,严重威胁着桥梁的安全和正常使用。
因此,在桥梁设计中,抗风性能的优化与评估成为了一个关键的研究课题。
一、风对桥梁的作用及影响风对桥梁的作用主要包括静力作用和动力作用。
静力作用是指风对桥梁结构产生的稳定压力和吸力,如桥梁的主梁、桥墩等部位会受到风的压力和吸力,可能导致结构的变形和内力增加。
动力作用则更为复杂,包括颤振、抖振和涡振等。
颤振是一种自激振动,当风速超过一定临界值时,桥梁结构可能发生大幅的、不稳定的振动,甚至导致结构破坏。
抖振是由风的脉动成分引起的随机振动,虽然不会导致结构的立即破坏,但长期的抖振作用会使结构产生疲劳损伤。
涡振则是由于风绕流桥梁结构时产生的周期性漩涡脱落引起的结构振动,通常振幅较小,但在特定条件下也可能对桥梁的舒适性和安全性产生影响。
二、桥梁抗风性能的优化设计方法为了提高桥梁的抗风性能,在设计阶段可以采取多种优化方法。
1、合理的桥型选择不同的桥型在抗风性能上具有不同的特点。
例如,悬索桥和斜拉桥由于其柔性较大,对风的敏感性相对较高;而梁桥和拱桥则相对较为刚性,抗风性能较好。
在设计时,应根据桥梁的跨度、地形条件和使用要求等因素,选择合适的桥型。
2、优化桥梁的外形和截面桥梁的外形和截面形状对风的绕流特性有重要影响。
通过采用流线型的外形和合理的截面形状,可以减小风的阻力和漩涡脱落,从而降低风对桥梁的作用。
例如,在主梁设计中,可以采用箱梁截面代替传统的 T 型梁截面,以提高抗风性能。
3、增加结构的阻尼阻尼是结构消耗能量的能力,增加结构的阻尼可以有效地抑制风振响应。
常见的增加阻尼的方法包括使用阻尼器、在结构中设置耗能构件等。
4、加强结构的连接和整体性良好的结构连接和整体性可以提高桥梁在风作用下的稳定性。
斜拉桥的稳定性分析摘要:为了探讨大跨预应力混凝土斜拉桥的稳定性,为桥梁设计施工提供重要的理论依据,本文对斜拉桥稳定性的分析理论与计算方法进行了阐述,用ANSYS非线性有限元程序,结合重庆一座超大跨径预应力混凝土斜拉桥—奉节长江大桥,线性与非线性稳定安全系数进行了数值模拟分析,得到奉节长江大桥安全系数能够满足使用要求和规范规定,并验证了方法的合理性。
关键词桥梁工程斜拉桥稳定性0 引言随着斜拉桥跨径的不断增大,其索塔越来越高,加劲梁越来越纤细,跨度增加引起梁、塔承受的轴向压力剧增,索的垂度效应、梁塔p-Δ效应、结构大位移等几何非线性效应明显增大。
这些不利因数的影响降低了桥梁结构抵抗静力失稳的能力,安全系数大为减少,稳定问题愈加突出。
1 斜拉桥第一类稳定问题分析理论从欧拉公式的推导可以明确第一类稳定问题提出的实质是对理想结构在理想的受力状态下,即不考虑变形产生的二次力效应及结构的初始缺陷,荷载增加至一定数量时结构出现平衡状态的分支,对于理想中心压杆而言即为直的和微弯的平衡状态。
欧拉公式如下所示:(1)式中:β—与边界条件有关的系数,EI—结构的刚度,L —构件的长度。
从上式可以看出,欧拉荷载只与结构的边界条件、刚度和长度有关。
而与结构的材料的应力-变形性能无关。
这可以称其为第一类弹性屈曲的稳定问题。
在很多的文献当中,均认为第一类稳定问题即是只考虑结构线弹性的稳定问题,下面通过有限元平衡方程来表达结构失稳状态,并通过第二章给出的结构刚度矩阵中组成项的考虑给出对于第一类稳定问题的几何非线性及弹塑性屈曲概念。
2斜拉桥第二类稳定问题分析理论从有限元计算的角度看,分析桥梁结构极限承载能力的实质就是通过求解计入几何非线性和材料非线性对结构刚度矩阵的影响,根据平衡方程,寻找其极限荷载的过程。
桥梁结构在不断增加的外载作用下,结构刚度不断发生变化。
当外载产生的压应力或剪应力使得结构刚度矩阵趋于奇异时,结构承载能力就达到了极限,此时的外荷载即为结构的极限荷载。
改善大跨度桥梁抗风稳定性的建议摘要:山区峡谷阵风强烈、频繁,湍流强度大,非平稳特性突出,这就使得风致振动特别是颤振稳定性成为影响和控制大跨度桥梁的设计和建设的重要因素。
在桥梁设计中,如不采取颤振控制措施,往往不能满足颤振稳定性的要求,难以达到桥梁设计抗风要求。
本文以黔西地区某大跨钢桁架加劲梁悬索桥初步设计方案为例(主梁标准横断面如图1所示),通过节段模型风洞试验,探讨研究采用中央开槽、增设裙板和气动翼板等各种气动控制措施,测试对颤振临界风速的影响,最终确定气动控制措施优化方案,为同类桁架加劲梁抗风设计提供借鉴。
关键词:桥梁工程;颤振;稳定性abstract: the mountain valley strong wind, frequent, turbulence intensity, the steady characteristics is outstanding, this makes wind induced vibration especially flutter stability be influence and control the large span bridge construction design and the important factors. in the design of the bridge, such as not take flutter control measures, often cannot meet the requirements of the flutter stability, it is difficult to meet the wind resistance of bridge design requirements. this paper in one big cross long-ripened douchiba steel truss stiffening girder suspension bridge design scheme for example preliminary(standard cross section girder is shown in figure 1 below), through the section model wind tunnel test, the research used central slot, add skirt board and pneumatic wing, etc. various kinds of pneumatic control measures, testing to flutter the influence of critical wind speed, and finally determined that pneumatic control measures optimization scheme, for the similar truss stiffening girder to provide a reference for the design of the wind.keywords: bridge engineering; flutter; stability中图分类号:[tu997]文献标识码:a文章编号:1 气动优化措施风洞试验颤振节段模型试验在某风工程实验中心进行。
斜拉桥静风稳定分析斜拉桥是一种广泛应用于大型桥梁建设中的结构形式。
斜拉桥在高度、跨度、结构性能和建设工艺等方面都具有许多优势,成为了现代化城市的象征之一。
然而,斜拉桥在建设过程中,不能忽略风的影响。
为了保证斜拉桥的稳定性,在设计斜拉桥时必须进行静风稳定性分析。
本文将对斜拉桥静风稳定性分析进行详细介绍。
一、斜拉桥的建设及结构形式斜拉桥是一种跨度大、高度高的桥梁形式。
相对于悬索桥和梁桥,它具有以下优点:(1)空间利用效率高,桥梁总重量小;(2)斜拉桥整体性好,较震动响应较小;(3)斜拉桥适用于跨度800米以上的大跨度桥梁建设。
斜拉桥主要分为单塔斜拉桥和双塔斜拉桥两种类型。
单塔斜拉桥是建造成本相对较低的一种形式,适用于中小跨度的桥梁建设。
而双塔斜拉桥具有较大的跨度和携带荷载能力,避免了单塔斜拉桥中的单点故障问题。
二、斜拉桥静风稳定性分析风是影响桥梁安全的关键因素之一。
斜拉桥因其高度和跨度较大,更为容易受到风的影响,从而对整体结构的稳定性产生影响。
因此在斜拉桥的设计过程中,必须对斜拉桥的静风稳定性进行分析。
静风稳定性分析主要是对斜拉桥在无风荷载和静止风荷载作用下的结构稳定性进行分析,其中静止风荷载是指风速不高于27mph的风力。
1.斜拉桥的静态稳定性斜拉桥的静态稳定性是指在不进行任何振动或非线性行为时斜拉桥是否处于平衡状态。
对于单孔连续斜拉桥,其静态稳定性由桥梁的几何形状和支座状态决定;而对于双塔斜拉桥,其静态稳定性由塔和桥箱整体的平衡状态决定。
2.斜拉桥的动态稳定性斜拉桥在静止风荷载给予作用后,其会产生风振效应。
因此、在设计斜拉桥时,必须对斜拉桥的风振效应进行分析,以确保斜拉桥的动态稳定性。
风振效应的产生、传递和影响都是由空气极化、结构振动和空气阻尼等多种因素共同作用形成的。
因此、在设计斜拉桥时,必须对斜拉桥的空气动力、结构振动和阻尼等因素进行合理的分析和研究。
3.斜拉桥的直线稳定性斜拉桥的直线稳定性指斜拉桥的各构件、部位在受到静止风荷载和动态风荷载后,是否能够保持平衡状态, 从而避免斜拉桥出现异常形变和塑性变形。
斜拉桥的稳定性分析周超舟1,蔡登山2,吕小武3,马 森4(1.中铁大桥局股份公司施工设计事业部,湖北武汉430050; 2.中铁大桥局集团桥科院有限公司,湖北武汉430034; 3.河南省交通厅工程处,河南郑州450052; 4.辽宁省交通勘测设计院,辽宁沈阳110000)摘 要:利用有限元方法,将斜拉桥的主梁和桥塔离散成三维板壳单元,用悬链线索单元来考虑斜拉索的非线性影响,对大跨度斜拉桥的稳定性进行了分析,所建立的有限元分析方法,在大跨度斜拉桥的稳定性分析中具有一定的实用价值。
关键词:斜拉桥;有限元法;稳定性分析中图分类号:U 448.27;T U 311.2文献标识码:A文章编号:1671-7767(2006)04-0044-03收稿日期:2006-04-19作者简介:周超舟(1971-),男,高级工程师,1994毕业于西南交通大学,工学学士。
1 前 言斜拉桥的斜拉索承受轴向拉力,其水平分力对主梁产生巨大的轴向压力,而竖直分力则对桥塔产生轴向压力,且随着跨度的加大,主梁和桥塔的轴向压力也增大。
所以,大跨度斜拉桥的稳定性分析是一个十分重要的问题。
国内外虽然有许多学者对斜拉桥的稳定性进行过分析[1,2],但大都是针对钢斜拉桥的,且多用等效弹性模量来考虑斜拉索的非线性影响,这使得计算结果的误差较大,不便于推广应用。
在PC 斜拉桥中,结构自重在总荷载中所占的比例很大,为了减轻自重,可采取两种方法:①使用轻质混凝土;②减小主梁的横截面。
结合目前的材料水平、经济状况和施工条件等因素,以第②种方法用得较多。
但这样就更加突出了PC 斜拉桥的稳定性问题。
大跨度PC 斜拉桥一般都采用悬臂施工的方法来建造[3],凭直观分析可知,斜拉桥在施工时的最大悬臂状态,即中跨未合龙之前,是一个较危险的状态,此时结构的整体刚度还不能实现,而在较大的施工荷载的作用下,主梁极易发生失稳破坏。
近年来,国内几座斜拉桥在施工时出现的事故也证实了这一结论。