2 2
6 cos 6 x 3. = = lim π x → 2 cos 2 x
2
注意:洛必达法则是求未定式的一种有效方法, 注意:洛必达法则是求未定式的一种有效方法, 但与其它求极限方法结合使用,效果更好. 但与其它求极限方法结合使用,效果更好. 例6 解
tan x x . 求 lim 2 x → 0 x tan x
0 ( ) 0
(tan x )′ sec2 x = 1. 原式 = lim = lim x →0 x→0 → ( x )′ 1
x3 3 x + 2 . 例2 求 lim 3 2 x →1 x x x + 1
0 ( ) 0
3 x2 3 6x 3 解 原式 = lim 2 = lim = . x →1 3 x 2 x 1 x →1 6 x 2 2
2
1 ln(1 + ) x ; 2, 2, lim x → +∞ arctan x
3,lim x cot 2 x ;
x →0
2 1 ); 4, 4,lim( 2 x →1 x 1 x 1
1 tan x 6, 6, lim ( ) ; x → +0 x
5, lim x
x → +0
sin x
;
2 7, lim ( arctan x) x . x → +∞ π
sec 2 x 1 tan x x = lim 原式 = lim 2 3 x →0 x →0 3x x tan x 1 2 sec 2 x tan x 1 = lim = lim = . x →0 6x 3 x →0 x 3
0 二, ∞ , ∞ ∞ ,0 ,1 , ∞ 型未定式解法
0 0
∞
关键:将其它类型未定式化为洛必达法则可解决 关键: 的类型 ( 0 ), ( ∞ ) .