2015新青岛版§3.2 确定圆的条件教案
- 格式:doc
- 大小:54.50 KB
- 文档页数:6
初中数学青岛版九年级上册高效课堂资料
3.2.2 确定圆的条件教学设计
【目标确定的依据】
1.相关课程标准陈述
通过实例体会反证法的含义.
2.学情分析
在教学过程中,我们重视的不是学生如何解决矛盾,而是非常高兴地看到学生利用反证法对客观世界的认识提出了自己的问题,正是反证法教学所要教给学生的,这些正是学生学习数学应该学会的能力.
3.教材分析
反证法又称归谬法,用它来证明命题的基本过程分以下三个步骤:(1)做待证命题的否命题;(2)根据所做出的否命题,结合已知条件或已知的其他的真命题,推导出和已知条件或已知的真命题相矛盾的地方;(3)否定所做的否命题,也就是肯定原命题的正确性.
反证的批判思想有助于学生正确的认识客观世界,中学阶段,是一个人形成价值观的重要阶段,这些信息在学生头脑中留下各种是或非的印象,学生如果能正确的分析问题,不是被动的接受书本或是教师的灌输,对其今后的学习、工作,无疑将有很大的帮助.
【教学目标】
1.通过命题“过共线三点不能作圆”的证明实例介绍反证法,了解用反证法证明一个命题的基本思路和一般步骤.
2.通过合作交流,能运用反证法证明简单的几何命题,培养质疑,严谨的逻辑思维能力.
3.培养逆向思维能力,激发学习的兴趣和求知欲望.
【教学重难点】
重点:运用反证法证明命题的一般步骤.
难点:运用反证法证明简单的命题.
【课时安排】
1课时
【评价任务】
1.能说出反证法的定义及其步骤.
2.理解并掌握反证法,并会运用反证法解决简单的问题.
附:板书设计
3.2.2 确定圆的条件
1.反证法的定义
2.反证法的步骤【教学反思】。
3.2 确定圆的条件第2课时一.教学目标:知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点.过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣.二.教学重点:了解反证法的思考过程、特点三. 教学难点:反证法的思考过程、特点四.教具准备:与教材内容相关的资料.五.教学设想:利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况. 六.教学过程:学生探究过程:综合法与分析法(一)反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个.归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.(二)例题讲解例1.证明平行线的性质定理1:两条平行线被第三条直线所截,同位角相等.已知:如下图,直线AB//CD,直线EF与AB,CD分别相交于点G,H.求证:∠1=∠2.证明:假设∠1≠∠2.过点G 作直线A′B′,使∠EGB′=∠2.根据基本事实“两条直线被第三条直线所截,如果同位角相等,那么两直线平行”可得A′B′//CD.这样,过点G 就有两条直线AB 与A′B′与直线CD 平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”矛盾.这说明∠1≠∠2的假设是不对的,所以∠1=∠2.例2.证明:平行于同一条直线的两条直线平行.已知:如下图,直线a//c.b//c.求证:a//b.证明:假设直线a,b 不平行,那么它们相交,设交点为P.由已知a//c.b//c ,这样过点P 就有两条直线a,b 与直线c 平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”矛盾.这说明a,b 不平行的假设是不对的,所以a//b.(三)练习1.设233=+b a ,求证.2≤+b a证明:假设2>+b a ,则有b a ->2,从而.2)1(68126,61282233323+-=+->+-+->b b b b a b b b a因为22)1(62≥+-b ,所以233>+b a ,这与题设条件233=+b a 矛盾,所以,原不等式2≤+b a 成立.注意:当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行. 议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况.试根据上述,寻找矛盾的手段、方法的特点.2.已知,,求证:证:设a < 0, ∵abc> 0, ∴bc< 0又, 则 ∴与题设矛盾又:若a = 0,则与abc>0矛盾,∴必有a > 0同理可证:b> 0, c > 0课后作业:教材练习题(四)教学反思:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个.归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.。
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
3.2 确定圆的条件目标导引1. 理解不在同一直线上的三个点确定一个圆并掌握它的运用2.了解三角形的外接圆和三角形外心的概念3.了解反证法重点不在同一直线上的三个点确定一个圆及其运用难点反证法的证明思路一、新课导入长沙马王堆一号汉墓的发掘,是我国考古界惊人的发现,在世界考古学史上,也产生了深远的影响.一位考古学家在马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助这位考古学家将这个破损的圆形瓷器复原,以便于进行深入的研究吗?二、教学建议1.过平面内的点作圆建议:引导学生分类探究,循序渐进,在教学时,注意以下几个方面的问题:(1)从圆的定义出发,分析过已知点作圆时,要抓住对圆心和半径的探究.由于作圆要过已知点,圆心确定了,半径也就确定了,因此作圆的关键是找圆心.(2)经过三点作圆的问题,关键在于能否找到一个点,使它到三个已知点的距离相等.引导学生联系线段垂直平分线的性质,同时探究讨论对比三点在同一直线及不在同一直线上时能否作圆的问题,了解反证法的基本思路和证明的一般步骤.(3)了解三角形的外接圆和三角形外心的概念,让学生明确“接”的含义,结合图形考虑“内”“外”关系即可,对外心的性质要加强训练.2.反证法建议:(1)通过对简单例子的分析,引导学生了解反证法也是一种重要的证明方法,激发学生学习反证法的兴趣.(2)引导学生分析如何用反证法证题,掌握用反证法证题的三个步骤.(3)用反证法证题时,必须考虑结论的反面出现的可能情况.如果结论的反面只有一种情况,只需否定这种情况就可以了;如果结论的反面不止一种情况,那么必须把各种可能情况全部列举出来,并且一一否定.(4)引导学生知道,用反证法证题的关键是经过逻辑推理推出矛盾(与公理、已证定理、定义或已知条件相矛盾).三、本课小结1.不在同一直线上的三个点确定一个圆.2.三角形的外接圆:经过三角形三个顶点的圆.3.三角形的外心:三角形三条边垂直平分线的交点.4.反证法:假设命题不成立→推出矛盾→原命题成立.关闭Word文档返回原板块。
3.2确定圆的条件教学目标【知识与能力】1.了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点作圆的方法;2.了解三角形的外接圆、三角形的外心等概念.【过程与方法】1.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力.2.通过探索不在同一直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.【情感态度价值观】形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.教学重难点【教学重点】确定圆的条件.【教学难点】学会利用反证法证明.课前准备多媒体课件教学过程第一环节:引入新课确定直线的条件:(1)经过一点、两点、三点你能否画出一条直线吗?若能,可以画出几条直线?(2)通过以上问题的回答,你有什么体会?(3)已知线段AB,求作线段AB的中垂线?第二环节:讲授新课探究一:①作圆,使它经过已知点A,你能作出几个这样的圆?为什么有这样多个圆?作图并从从图中可以观察到:圆可以有无数个,而且无规律②作圆,使它经过已知点A、B,你是如何做的?依据是什么?你能作出几个这样的圆?其圆心分布有什么特点?与线段AB有什么关系?为什么?步骤1:连接两点,画出中垂线步骤2:以任意一点为圆心,都可以画出一个圆通过两点结论:过已知点A,B作圆,可以作无数个圆.③作圆,使它经过不在同一直线的已知点A、B、C,你是如何做到的.你能作出几个这样的圆?为什么?思路点拨:1.能否转化为2的情况:经过两点A,B的圆的圆心在线段AB的垂直平分线上.2.经过两点B,C的圆的圆心在线段BC的垂直平分线上.3.经过三点A,B,C的圆的圆心应该这两条垂直平分线的交点O的位置.作图步骤:步骤1:连接AB、BC步骤2:分别做线段AB、BC的垂直平分线DE和FG,DE与FG相交于点O步骤3:以O为圆心,以OB为半径做圆,圆O就是所要求的圆结论:不在同一条直线上的三个点确定一个圆.由此可知:1.三角形的三个顶点确定一个圆,这圆叫做三角形的外接圆.这个三角形叫做圆的内接三角形.2.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.探究二:师:通过预习我们知道反证法,什么叫做反证法?生:从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法. 师:本节将进一步研究反证法证题的方法,反证法证题的步骤是什么?生:共分三步:(1)假设命题的结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确.师:反证法是一种间接证明命题的基本方法.在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明.思考:在△ABC中,AB=c,BC=a,AC=b,如果∠C=90°,a、b、c三边有何关系?为什么?解析:由∠C=90°可知是直角三角形,根据勾股定理可知a2+b2=c2.问题:若将上面的条件改为“在△ABC中,AB=c,BC=a,AC=b,∠C≠90°”,请问结论a2+b2≠c2成立吗?请说明理由.分析:假设a2+b2=c2,由勾股定理可知三角形ABC是直角三角形,且∠C=90°,这与已知条件∠C≠90°矛盾.假设不成立,从而说明原结论a2+b2≠c2成立.这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确.像这样的证明方法叫做反证法.第三环节:例题解析例1、证明平行线的性质定理1:两条平行线被第三条直线所截,同位角相等.例2、证明:平行与同一条直线的两条直线平行.第四环节:习题巩固(1)分别作出锐角三角形、直角三角形、钝角三角形的外接圆,并说明它们外心的位置情况.(2)判断题:①经过三点一定可以作圆.()②任意一个三角形有且只有一个外接圆.()③三角形的外心是三角形三边中线的交点.()④三角形外心到三角形三个顶点的距离相等.()(3)两直角边分别为15和20的直角三角形的外接圆半径为()A.12.5 B.25C.20 D.10(4).三角形外心具有的性质是()A.到三个顶点距离相等B.到三边距离相等C.外心必在三角形外第五环节:课堂小结1.确定圆的条件:不在同一直线上的三点;圆心、半径2.外心的位置:(1)锐角三角形外心在三角形的内部(2)直角三角形的外心在斜边上(3)钝角三角形的外心在三角形的3.反证法。
《确定圆的条件》教案一、学生知识状况分析学生的知识技能基础:通过本章前面几节课的学习,学生知道经过一点可以画无数条直线,经过两点有且只有一条直线等知识。
同时具备了用尺规作“线段垂直平分线”等操作技能,掌握了“线段垂直平分线的性质”。
学生活动经验基础:在经过点画直线等知识的学习过程中,学生具备了一定的合作精神和探究能力,具有一定的分类讨论的数学思想方法和类比方法。
二、教学任务分析本节课的教学目标是:知识与技能1、了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三点作圆的方法;2.了解三角形的外接圆、三角形的外心等概念。
过程与方法1.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力。
2.通过探索不在同一直线上的三个点确定一个圆的问题,进一步体会解决数学问题策略。
情感态度与价值观形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。
教学重点:确定圆的条件教学难点:确定圆的条件三、教学过程分析第一环节:课前准备活动内容:布置学生在课前复习,回答如下的问题:(1)经过一点、两点、三点你能否画出一条直线吗?若能,可以画出几条直线?(2)通过以上问题的回答,你有什么体会?(3)已知线段AB,求作线段AB的中垂线?实际教学效果:在回答“经过三点能否画直线”问题上出现分歧,部分回答“不能画出直线”或“可以画一条直线”或“以上两种情况都有可能”等。
通过对问题的争论、回答,达到了预期目标,培养了学生学会与人合作,能与他人交流思维的过程和结果。
第二环节:情景引入活动内容:学生小组讨论如下问题:某地区一空地上新建了三个居住小区A、B、C。
现要规划一间学校,使学校到三个小区的距离相等,你如何选取这所学校的地点?活动目的:①通过问题的思考讨论,有承上启下的作用,而先要解决这三个小区是否在一直线上。
②引起学生回想圆的定义,得出作圆的关键是定圆心、定半径。
③借助实际问题情景,激发学生解决问题的兴趣,为解决本节课的目标“确定圆的条件”和下环节的探究活动注入动力。
《确定圆的条件》教学设计教学目标(1)探索并理解不在同一直线上的三个点确定一个圆.(2)了解三角形的外接圆、三角形的外心、圆的内接三角形的概念.(3)让学生经历探索过程,提高分析问题解决问题能力.教学重难点教学重点:确定圆的条件.教学难点:探索确定圆的条件的过程.教学过程一、创设问题情境教师:同学们!我们都有爱美之心,都喜欢照镜子,老师也爱美,每次出门前都要照照镜子,一天我的圆形镜子碎成四块,我想带其中一块到玻璃店修复它,应该带那一块去呢?课件演示:破镜如何重圆?有一天家里的圆形玻璃镜子打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形镜片,带到商店去的一块镜子碎片应该是哪一块?设计说明:利用常见生活问题引发学生思考,激发学生求知欲,又为新知识的应用埋下伏笔,能很自然的引出课题.如果学生说不会,可直接出示课题;如果学生用其他方法(垂径定理)解决,告诉学生还有新的方法可解决这个问题,进而引出课题;如果学生提前预习,利用新课知识模糊的说出解决办法,教师要对学生加以肯定,强调为了更好解决这个问题需要继续深入研究学习,进而引出课题.二、认定本课学习目标教师:请看本课学习目标,大家齐读.学习目标:1.经历探索过程,理解“不在同一直线上的三个点确定一个圆”.2.了解三角形的外接圆、三角形的外心、圆的内接三角形的概念.3.会过不在同一直线上的三个点作圆.设计说明:学习目标是给学生看的,本着简洁、通俗易懂的目的设计.让学生一起读一读,让学生对本课学什么有一个大概的了解,真正落实目标是在教学过程中,真正回扣目标是在课堂小结处.三、复习巩固旧知课前教师一定要安排学生完成相关题目,如果占用课上时间完成势必影响新课进度.教师: 为了更好学习新课,需要对前面学习内容加以巩固,请看学案“课前延伸”部分. 课前已安排大家学习,请小组长带领大家统一答案.课前延伸1.线段垂直平分线的相关知识(1)线段垂直平分线的性质: .(2)线段垂直平分线的判定: .(3)作图:在图1中,作出线段AB的垂直平分线.2.圆的相关知识(1)平面内的点与圆有种位置关系.分别是 .(2)确定一个圆的两个要素是和;它们分别决定圆的和 .设计说明:第1题复习线段垂直平分线,因为作一个圆,必需先找到圆心,探究二、三都需要利用线段垂直平分线找圆心,没有这个知识储备,学生根本找不到圆心,本课也就无法顺利进行;第2题复习圆的相关知识,复习点与圆的位置关系为经过点作圆做好铺垫,因为经过点的意思就是点在圆上.重点强调确定一个圆的两个要素是圆心和半径,作圆问题离不开这两个先决条件,黑板板书圆心、半径会加深学生对重点内容的了解.四、探究确定圆的条件教师:课前延伸部分大家做的非常好,刚才复习线段垂直平分线(板书)、确定一个圆的要素:圆心和半径(板书),这些知识为本课学习打下了很好的基础,相信同学们学习本课会非常顺利!下面我们就探究确定圆的条件,先从最简单条件开始研究,请看问题探究一(读题).探究一:如图2,经过一点A作圆,你能作出多少个圆?···A A B图2 图3设计说明:教师告诉学生从最简单的条件开始探究,为两个点及多个点探究埋下伏笔,也符合学生由简单到复杂循序渐进的认知规律.重点是让学生动手操作,在操作中学会画圆,知道圆心、半径都不能确定,所以经过一点可作无数个圆,既不能确定圆.教师:同学们!经过一点不能确定圆,经过两点能否确定一个圆呢?请看问题探究二(读题).探究二:如图3,经过两点A、B作圆,你能作出多少个圆?这些圆的圆心在哪里?设计说明:一个点不能确定圆,自然过渡到两个点问题,关键是是让学生在探究中发现圆心分布规律.教师一定放手学生先独立操作,遇到问题小组交流,最后让学生展示,在探究活动中悟出新知.教师:同学们!经过两点不能确定圆,经过三点能否确定一个圆呢?请看问题探究三(读题).探究三:经过任意三点A、B、C能做出一个圆吗?如果能,怎样作出过这三点的圆?经过这三点的圆的圆心在哪里?经过这三点可以作出多少个圆?请在下面空白处作出图形.设计说明:有两个点过渡到三个点顺理成章,我改变课本设计,课本是直接提出过不在同一直线上三个点作圆,我觉这样设计限制了学生思维,把问题放给学生,如果学生没想到三点共线这种情况,再加以适当引导效果会更好.此问题是本课最重点内容,问题探究一定给学生充分的时间和空间,此处处理的是否得当关系到这节课的成败.学生展示时教师要适时追问,圆心怎么找到的?过这三个点还能作一个不同的圆吗?过任意三点能作一个圆?追问促使学生思考,从而明确过不在同一直线三个点只能作一个圆,得出本课核心问题确定圆的条件.得出结论一定让学生记一记,对重点内容一定让学生记扎实,这样才能更好的学以致用.五、应用新知回扣课始疑问教师:同学们!利用新学到的知识能不能解决上课开始提出的问题?破镜重圆:利用刚学过知识解决创设情境中提出的问题,带到商店去的一块镜子碎片应该是哪一块?尝试在这一块残缺镜片上破镜重圆.设计说明:学了新知识让学生马上用有两个好处,一是检验学生学习状况,二是让学生产生一种利用新知解决问题的成就感,提升学生学习积极性.教师要注重检查反馈,对学生出现问题及时纠正.六、自学领悟新概念教师分析由黑板上学生三点作圆图形(用不同颜色笔标记三角形).教师:这三个点连起来之后就组成一个三角形,三角形和圆有了特殊位置关系,它们又分别称作什么呢?请同学们自学课本117页,找出相应概念!设计说明:因为三角形和圆具备了新的位置关系,从而产生了新的概念,概念无需探究,因此安排学生自学,这也是放手学生的的重要体现.学生学完以后,再以填空形式要学生学习情况及时反馈,追问“内”,“外”和“接”的含义,为进一步拓展圆内接四边形及圆内接多边形等内容做好铺垫.教师:大家刚才学习的新概念理解了没有?尝试做出以下练习.跟踪练习:1.填空:(1)△ABC是⊙O的三角形;(2)⊙O是△ABC的圆;(3)点O是△ABC的 .2.知识拓展:思考:什么是圆的内接四边形?设计说明:第1题非常简单,主要是即时反馈学生对概念的理解,另一方面看看学生能否学会知识迁移,把数学文字语言转化为符号语言.设计第2题主要是拓展新学内容,也检验学生是否真正明确“内”,“外”和“接”的含义,也进一步为学生设置悬念,延伸本课与后续学习内容的联系.教师:今后学习中,除了学习圆内接四边形,还要学习圆内接五边形、多边形等内容,请看大屏幕!课件演示:设计说明:通过课件展示几个圆内接多边形,利用图形的形象直观性,让学生深刻明确所学概念.学案上没设计这组图形,主要原因是文字叙述更容易引导学生思考,直接出示图形反而让学生对知识学习停留在表面想象,不利于认识问题的本质.七、学以致用教师:刚才大家明确了三角形外接圆的概念,给你一个三角形你能否作出它的外接圆?请看学案“学以致用”,大家要看清题目要求,先独立作图,再小组分享交流,注意结合问题总结规律!已知:△ABC,求作⊙O,使它经过A、B、C三点,并观察外心与三角形位置.(注:小组分工,每人选一种类型的三角形作出图形,独立完成后小组交流分享!)交流发现:(1)三角形外心与三角形位置关系是: .(2)三角形外心还有哪些性质: .设计说明:本设计抓住学生刚学会三角形外接圆概念想尽快应用的心理,顺理成章过渡,也让学生进一步明确三角形形外接圆定义;另一方面,学生能利用本课学习的重点“三点作圆”来解决这个问题,因此本设计是对前面两块知识的巩固和应用,也含有反馈学生前段学习情况的意义.设计三种类型三角形,是为了让学生通过画图体会三角形外心与三角形位置关系,让学生在操作展示中,学会分类分析问题,提炼数学观点,形成数学能力.八、课堂小结教师:同学们讲得非常好,作图规范,我们本节课基本学习任务已完成,请谈一下本节课的收获!课堂小结总结你的收获:知识……方法……感悟……设计说明:本设计引导学生从这三方面总结本课学习内容,改变原来学生只总结知识,而忽视能力和方法的学习习惯.九、当堂检测教师:为了检查同学们本课学习情况,请同学们独立完成以下练习.自我检测1.判断:(1)三点确定一个圆. ()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆. ()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形. ()(4)三角形的外心是三角形三边中线的交点. ()(5)三角形的外心到三角形各顶点距离相等. ()2.Rt△ABC中,∠C=900,AC=6cm,BC=8cm,则其外接圆的半径为 .设计说明:设计这组测验为了反馈学生学习情况,第1题较简单,也是为了让提高学生学习士气,体会到成功的快乐;第2题稍微有点挑战性,利用直角三角形外心位置规律解答,也满足不同层次学生的不同需求.教师可们采用抢答方式调动学生积极性,学生抢答,师生共同反馈答题情况,教师最后出示正确答案并做总结评价.十、布置作业教师:通过刚才测验反馈说明大家学的非常好,为了更好学好本课,我给大家准备了几道课外思考题,请大家课后完成.课件演示:拓展延伸1.思考:经过4个(或4个以上的)点是不是一定能作圆?2.作业:A层课本118页习题A组1,2,3; B层习题B组.设计说明:设计第1题的原因保证了知识的完整性,学生在探究完三个点作圆以后,肯定有一个思维延续,不同一直线上三个点确定一个圆,四个点又会怎样?四个点又分共线和不共线两种情况,不共线的四点作圆问题又能用三点确定一个圆去解释,本题既应用了新学知识,又给学生提供了更广泛地思考空间.第2题,主要是让学生进一步巩固新学知识,规范解题步骤.十一、完美收官教师:同学们,和本课有关的学习任务大家完成的非常好,让我们在本课刚学习的图形中结束这节课,请看大屏幕!课件展示:教师:同学们!是圆让我们相识,一块共同学习是我们的缘分,愿我们的友谊源远流长,愿我们学过的知识三角形一样的稳定,愿我的生活想圆一样的完美!设计说明:本课所学重点知识都凝结在这个图形中,出示本图是对对本课内容的进一步小结,同时又是对学生情绪的调动和激励,让学生在激情与诗意中满载而归!十二、板书设计。
3.2 确立圆的条件教课目的【知识与能力】1.认识不在同向来线上的三个点确立一个圆,以及过不在同向来线上的三个点作圆的方法;2.认识三角形的外接圆、三角形的外心等观点.【过程与方法】1.经历不在同向来线上的三个点确立一个圆的研究过程,培育学生的研究能力.2.经过研究不在同向来线上的三个点确立一个圆的问题,进一步领会解决数学识题的策略.【感情态度价值观】形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.教课重难点【教课要点】确立圆的条件.【教课难点】学会利用反证法证明.课前准备多媒体课件教课过程第一环节:引入新课确立直线的条件:(1)经过一点、两点、三点你可否画出一条直线吗?若能,能够画出几条直线?(2)经过以上问题的回答,你有什么领会?(3)已知线段AB,求作线段AB的中垂线?第二环节:讲解新课研究一:①作圆,使它经过已知点A,你能作出几个这样的圆?为何有这样多个圆?作图并从从图中能够察看到:圆能够有无数个,并且无规律②作圆,使它经过已知点A、B,你是怎样做的?依照是什么?你能作出几个这样的圆?其圆心散布有什么特色?与线段AB有什么关系?为何?步骤 1:连结两点,画出中垂线步骤 2:以随意一点为圆心,都能够画出一个圆经过两点结论:过已知点A,B 作圆,能够作无数个圆.③作圆,使它经过不在同向来线的已知点 A、 B、 C,你是怎样做到的.你能作出几个这样的圆?为何?思路点拨:1.可否转变为 2 的状况:经过两点A,B 的圆的圆心在线段AB的垂直均分线上.2.经过两点B, C的圆的圆心在线段BC的垂直均分线上.3.经过三点A, B,C的圆的圆心应当这两条垂直均分线的交点O的地点.作图步骤:步骤 1:连结AB、BC步骤 2:分别做线段AB、 BC的垂直均分线DE和 FG, DE与 FG订交于点 O步骤 3:以O为圆心,以OB为半径做圆,圆O就是所要求的圆结论:不在同一条直线上的三个点确立一个圆.由此可知:1.三角形的三个极点确立一个圆,这圆叫做三角形的外接圆.这个三角形叫做圆的内接三角形.2.外接圆的圆心是三角形三边垂直均分线的交点,叫做三角形的外心.研究二:师:经过预习我们知道反证法,什么叫做反证法?生:从命题结论的反面出发,引出矛盾,进而证明原命题建立,这样的证明方法叫做反证法 . 师:本节将进一步研究反证法证题的方法,反证法证题的步骤是什么?生:共分三步:(1)假定数题的结论不建立,即假定结论的反面建立;(2)从假定出发,经过推理,得出矛盾;(3)由矛盾判断假定不正确,进而必定数题的结论正确.师:反证法是一种间接证明命题的基本方法. 在证明一个数学命题时,假如运用直接证明法比较困难或难以证明时,可运用反证法进行证明.思虑:在△ ABC中, AB=c, BC=a, AC=b,假如∠ C=90°, a、 b、 c三边有何关系?为何?分析:由∠ C=90°可知是直角三角形,依据勾股定理可知a2+b2= c2.问题:a2+b2≠ c2成若将上边的条件改为“在△ABC中, AB=c, BC=a, AC=b,∠ C≠90°”,请问结论立吗?请说明原因.剖析:假定 a2+b2= c2,由勾股定理可知三角形ABC是直角三角形,且∠C=90°,这与已知条件∠C≠90°2 2 2这类证明方法与前方的证明方法不一样,它是第一假定结论的反面建立,而后经过正确的;逻辑推理得出与已知、定理、公义矛盾的结论,进而获得原结论的正确. 像这样的证明方法叫做反证法 .第三环节:例题分析例 1、证明平行线的性质定理1:两条平行线被第三条直线所截,同位角相等.例 2、证明:平行与同一条直线的两条直线平行.第四环节:习题稳固(1)分别作出锐角三角形、直角三角形、钝角三角形的外接圆,并说明它们外心的地点状况.(2)判断题:①经过三点必定能够作圆.()②随意一个三角形有且只有一个外接圆.()③三角形的外心是三角形三边中线的交点.()④三角形外心到三角形三个极点的距离相等.()(3)两直角边分别为15 和 20 的直角三角形的外接圆半径为()A. 12. 5B.25C. 20D.10(4).三角形外心拥有的性质是()A.到三个极点距离相等B.到三边距离相等C.外心必在三角形外第五环节:讲堂小结1.确立圆的条件:不在同向来线上的三点;圆心、半径2.外心的地点:(1)锐角三角形外心在三角形的内部(2)直角三角形的外心在斜边上(3)钝角三角形的外心在三角形的3.反证法。
3.2确定圆的条件
教学目标
(一)教学知识点
了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.
(二)能力训练要求
1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.
2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.
(三)情感与价值观要求
1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.
2.学会与人合作,并能与他人交流思维的过程和结果.
教学重点
1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.
2.掌握过不在同一条直线上的三个点作圆的方法.
3.了解三角形的外接圆、三角形的外心等概念.
教学难点
经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.
教学方法
教师指导学生自主探索交流法.
教具准备
投影片三张
第一张:(记作§3.4A)
第二张:(记作§3.4B)
第三张:(记作§3.4C)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.Ⅱ.新课讲解
1.回忆及思考
投影片(§3.4A)
1.线段垂直平分线的性质及作法.
2.作圆的关键是什么?
[生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.
作法:如下图,分别以A、B为圆心,以大于1
2
AB长为半径画弧,在AB的
两侧找出两交点C、D,作直线CD,则直线CD就是线段AB的垂直平分线,直线CD上的任一点到A与B的距离相等.
[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?
[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.2.做一做(投影片§3.4B)
(1)作圆,使它经过已知点A,你能作出几个这样的圆?
(2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?
(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?
[师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答.
[生](1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).
(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB 的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).
(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.
因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.
[师]大家的分析很有道理,究竟应该怎样找圆心呢?
3.过不在同一条直线上的三点作圆.
投影片(§3.4C)
他作的圆符合要求吗?与同伴交流.
[生]符合要求.
因为连结AB,作AB的垂直平分线ED,则ED上任意一点到A、B的距离相等;连结BC,作BC的垂直平分线FG,则FG上的任一点到B、C的距离相等.ED与FG的满足条件.
[师]由上可知,过已知一点可作无数个圆.过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.
不在同一直线上的三个点确定一个圆.
4.有关定义
由上可知,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接
圆(circumcircle of triangle),这个三角形叫这个圆的内接三角形.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).
Ⅲ.课堂练习
已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?
解:如下图.
O为外接圆的圆心,即外心.
锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.
Ⅳ.课时小结
本节课所学内容如下:
1.经历不在同一条直线上的三个点确定一个圆的探索过程.
方法.
3.了解三角形的外接圆,三角形的外心等概念.
Ⅴ.课后作业
习题3.6
Ⅵ.活动与探究
如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?
解:因为A、B两点在圆上,所以圆心必与A、B两点的距离相等,又因为和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在CD所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.
板书设计
§3.2 确定圆的条件
一、1.回忆及思考(投影片§3.4A)
2.做一做(投影片§3.4B)
3.过不在同一条直线上的三点作圆.
4.有关定义
二、课堂练习
三、课时小结
四、课后作业。