高考数学仿真试题(一)c
- 格式:doc
- 大小:338.50 KB
- 文档页数:7
2023高考模拟练习(一)数学一、单选题:本题共8小题 每小题5分 共40分。
在每小题给出的四个选项中 只有一项是符合题目要求的.1.已知集合{}245A y y x x ==-- (){}2lg 1B x y x ==- 则A B ⋂=( ) A .()1,1-B .()1,+∞C .[)9,+∞D .[)()9,11,--⋃+∞2.已知命题p :()00,x ∃∈+∞ 001x a x +< 若p 为假命题 则a 的取值范围为( ) A .()1,+∞B .()2,+∞C .(],1-∞D .(],2-∞ 3.已知等差数列{}n a 的前n 项和为n S 若954S = 8530S S -= 则11S =( )A .77B .88C .99D .110 4.若函数()()2ln 2023R f x x a x x a =---∈在区间[)1,+∞上单调递增,则a 的取值范围是( )A. (),1-∞B. (],1-∞C. 1,8⎛⎫-∞- ⎪⎝⎭ D.1,8⎛⎤-∞- ⎥⎝⎦5.已知正四棱锥各棱的长度均为2 其顶点都在同一个球面上 则该球的表面积是( )A .83πB .8πC .16πD .32π6.已知0x > 0y > 21x y += 则()()11x y xy ++的最小值为( ) A .443+ B .12 C .83+ D .167.已知在△ABC 中 3AB = 4AC = 3BAC π∠= 2AD DB = P 在CD 上12AP AC AD λ=+ 则AP BC ⋅的值为( ) A .116- B .72 C .4 D .68.已知2ln2a a -= 3ln 3b b -= 3ln 2c c -= 其中a b ()0,1c ∈ 则( ) A .c b a << B .c a b << C .a b c <<D .a c b <<二、多项选择题:本大题共4小题 每小题5分 共20分.在每小题给出的四个选项中 有多项符合要求 全部选对得5分 选对但不全的 得2分 有选错的得0分.9.演讲比赛共有9位评委分别给出某选手的原始评分 评定该选手的成绩时 从9个原始评分中去掉1个最高分、1个最低分 得到7个有效评分.7个有效评分与9个原始评分相比 可能变化的数字特征是( )A .中位数B .平均数C .方差D .极差10.已知函数()()sin 0,0,2f A x A x πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示 下列说法正确的是( )A .函数()y f x =的图象关于点,06π⎛⎫- ⎪⎝⎭对称B .函数()y f x =的图象关于直线512x π=-对称 C .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 D .该图象向右平移6π个单位可得2sin 2y x =的图象11.如果双曲线()222210,0x y a b a b -=>>的一条渐近线上的点(3M -关于另一条渐近线的对称点恰为右焦点F P 为双曲线上的动点 已知()3,1A 则12PA PF +的值可能为( )A .32B .2C .52D .412.在正方体1111ABCD A B C D -中 点P 满足1BP BC BB λμ=+ 其中[]0,1λ∈ []0,1μ∈ 则下列说法正确的是( )A .当λμ=时 1A P ∥平面1ACDB .当1μ=时 三棱锥1P A BC -的体积为定值C .当1λ=时 △PBD 的面积为定值D .当1λμ+=时 直线1A D 与1D P 所成角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦三、填空题:本大题共4小题 每小题5分 共20分.把答案填在题中横线上.13.若复数z 满足()20222i z i -= 则z = .14.4211x x ⎛⎫-+ ⎪⎝⎭的展开式中常数项是 . 15.已知函数2(1),0(),(1),0x x x e x f x x x e⎧+<⎪=⎨+≥⎪⎩若关于x 的方程()()20f x a f x -=⎡⎤⎣⎦有3个不相等的实数根 则实数a 的取值范围是_______________ 16.已知双曲线222:1(0)4y x C b b -=>的上顶点、下焦点分别为M F 以M 为圆心 b 为半径的圆与C 的一条渐近线交于A B 两点 若60AMB ∠=︒ AB 的中点为Q (Q 在第一象限) 点P 在双曲线的下支上 则当||||PF PQ +取得最小值时 直线PQ 的斜率为__________.四、解答题:本题共6小题 共70分。
上海市浦东新区普通高中2025届高考仿真卷数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足()134i z i +=+,则z 对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 2.已知函数()2ln 2x x f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e ⎛⎤-∞+ ⎥⎝⎦ B .21,e e ⎛⎫-∞+ ⎪⎝⎭ C .21,e e ⎡⎫-+∞⎪⎢⎣⎭ D .21,e e ⎛⎫-+∞ ⎪⎝⎭3.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,3520a a +=,2664a a =,则5S =( )A .48B .36C .42D .314.设函数()f x 在定义城内可导,()y f x =的图象如图所示,则导函数()y f x '=的图象可能为( )A .B .C .D .5.为计算23991223242...100(2)S =-⨯+⨯-⨯++⨯-, 设计了如图所示的程序框图,则空白框中应填入( )A .100i <B .100i >C .100i ≤D .100i ≥6.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离之比为22,当P ,A ,B 不共线时,PAB ∆的面积的最大值是( )A .22B 2C .223D .237.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不修要条件8.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .109.已知正项等比数列{}n a 满足76523a a a =+,若存在两项m a ,n a ,使得219m n a a a ⋅=,则19m n+的最小值为( ). A .16 B .283 C .5 D .410.已知单位向量a ,b 的夹角为34π,若向量2m a =,4n a b λ=-,且m n ⊥,则n =( ) A .2B .2C .4D .6 11.若()*3n x n N x x ⎛+∈ ⎝的展开式中含有常数项,且n 的最小值为a ,则22a aa x dx --=( ) A .36π B .812π C .252π D .25π12.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为( )A .B .C .D . 二、填空题:本题共4小题,每小题5分,共20分。
2024年高考数学模拟试题含答案(一)一、选择题(每题5分,共40分)1. 若函数f(x) = 2x - 1在区间(0,2)上是增函数,则实数a的取值范围是()A. a > 0B. a ≥ 1C. a ≤ 1D. a < 0【答案】C【解析】由题意知,f'(x) = 2 > 0,所以函数在区间(0,2)上是增函数。
又因为f(0) = -1,f(2) = 3,所以f(x)在区间(0,2)上的取值范围是(-1,3)。
要使得f(x)在区间(0,2)上是增函数,只需保证a ≤ 1。
2. 已知函数g(x) = x² - 2x + 1,则下列结论正确的是()A. 函数g(x)在区间(-∞,1)上是增函数B. 函数g(x)在区间(1,+∞)上是减函数C. 函数g(x)的对称轴为x = 1D. 函数g(x)的顶点坐标为(1,0)【答案】D【解析】函数g(x) = x² - 2x + 1 = (x - 1)²,所以函数的顶点坐标为(1,0),对称轴为x = 1。
根据二次函数的性质,当x > 1时,函数g(x)递增;当x < 1时,函数g(x)递减。
3. 已知数列{an}的前n项和为Sn,且满足Sn =2an - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^nC. an = 2^n + 1D. an = 2^(n-1)【答案】D【解析】由Sn = 2an - 1,得an = (Sn + 1) / 2。
当n = 1时,a1 = (S1 + 1) / 2 = 1。
当n ≥ 2时,an = (Sn + 1) / 2 = (2an - 1 + 1) / 2 = 2an-1。
所以数列{an}是首项为1,公比为2的等比数列,通项公式为an = 2^(n-1)。
4. 已知函数h(x) = |x - 2| - |x + 1|,则函数h(x)的图像是()A. 两条直线B. 两条射线C. 一个三角形D. 一个抛物线【答案】B【解析】函数h(x) = |x - 2| - |x + 1|表示数轴上点x到点2的距离减去点x到点-1的距离。
四川省自贡一中、二中重点中学2025届高考仿真卷数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .2.在边长为2的菱形ABCD 中,23BD =将菱形ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的外接球的表面积为( ) A .23π B .2πC .4πD .6π3.已知(2sin,cos),(3cos,2cos)2222xxxxa b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( ) A .85[,)52B .75[,)42C .57[,)34D .7(,2]44.已知函数()f x 是定义域为R 的偶函数,且满足()(2)f x f x =-,当[0,1]x ∈时,()f x x =,则函数4()()12x F x f x x+=+-在区间[9,10]-上零点的个数为( ) A .9B .10C .18D .205.已知复数z 满足121iz i i+⋅=--(其中z 为z 的共轭复数),则z 的值为( ) A .1B .2C 3D 56.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①直线OB 与直线OE 的斜率乘积为2-; ②//AE y 轴;③以BE 为直径的圆与抛物线准线相切. 其中,所有正确判断的序号是( ) A .①②③B .①②C .①③D .②③7.直线1y kx =+与抛物线C :24x y =交于A ,B 两点,直线//l AB ,且l 与C 相切,切点为P ,记PAB 的面积为S ,则S AB -的最小值为( ) A .94-B .274-C .3227-D .6427-8.在满足04i i x y <<≤,i i y xi i x y =的实数对(),i i x y (1,2,,,)i n =⋅⋅⋅⋅⋅⋅中,使得1213n n x x x x -++⋅⋅⋅+<成立的正整数n 的最大值为( ) A .5B .6C .7D .99.设,,a b R i ∈是虚数单位,则“复数z a bi =+为纯虚数”是“0ab =”的( ) A .充要条件B .必要不充分条件C .既不充分也不必要条件D .充分不必要条件10.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x 的值为( )A .3B .3.4C .3.8D .411.已知向量(3sin ,2)a x =-,(1,cos )b x =,当a b ⊥时,cos 22x π⎛⎫+= ⎪⎝⎭( )A .1213-B .1213C .613-D .61312. “1cos 22α=-”是“3k παπ=+,k Z ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。
2025届河北省普通高中高考仿真卷数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从3名男生1A ,2A ,3A 和3名女生1B ,2B ,3B 中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则1A 和1B 两人组成一队参加比赛的概率为( ) A .19B .29C .13D .492.已知函数()[]010x x f x x x ⎧≥⎪=⎨⎪⎩,,<([]x 表示不超过x 的最大整数),若()0f x ax -=有且仅有3个零点,则实数a 的取值范围是( ) A .12,23⎛⎤⎥⎝⎦B .12,23⎡⎫⎪⎢⎣⎭C .23,34⎡⎫⎪⎢⎣⎭D .23,34⎛⎤⎥⎝⎦3.已知双曲线2222:1(0)x y M b a a b -=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆222()a c y x +=-的两条切线互相垂直,则双曲线M 的离心率的取值范围是( )A.B.C.D.4.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是( )A .16163π+ B .8163π+C .32833π+ D .321633π+ 5.2(1ii +=- ) A .132i +B .32i+ C .32i- D .132i-+ 6.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中错误的是( ) A .若m //α,α//β,则m //β或m β⊂B .若m //n ,m //α,n α⊄,则n //αC .若m n ⊥,m α⊥,n β⊥,则αβ⊥D .若m n ⊥,m α⊥,则n //α7.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:222233=,333388=,44441515=,55552424=,则按照以上规律,若10101010n n=具有“穿墙术”,则n =( ) A .48B .63C .99D .1208.如图,在三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥,现从该三棱锥的4个表面中任选2个,则选取的2个表面互相垂直的概率为( )A .12B .14C .13D .239.若直线2y kx =-与曲线13ln y x =+相切,则k =( ) A .3B .13C .2D .1210.集合{2,1,1},{4,6,8},{|,,}A B M x x a b b B x B =--===+∈∈,则集合M 的真子集的个数是 A .1个B .3个C .4个D .7个11.5(12)(1)x x ++的展开式中2x 的系数为( ) A .5B .10C .20D .3012.一袋中装有5个红球和3个黑球(除颜色外无区别),任取3球,记其中黑球数为X ,则()E X 为( )A .98B .78C .12D .6256二、填空题:本题共4小题,每小题5分,共20分。
2025届浙江省绍兴市高考仿真卷数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线22221x y C a b-=:的一条渐近线与直线350x y -+=垂直,则双曲线C 的离心率等于( ) A .2? B .10 3 C .10? D .222.已知31(2)(1)mx x--的展开式中的常数项为8,则实数m =( ) A .2 B .-2 C .-3 D .33.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺4.设集合{}1,0,1,2A =-,{}22530B x x x =-++>,则A B =( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1,0,1-5.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( )A .2430x y --=B .2430x y +-=C .4230x y +-=D .2430x y -+=6.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3 1.732≈),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .647.设集合{}12M x x =<≤,{}N x x a =<,若M N M ⋂=,则a 的取值范围是( )A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 8.若0,0a b >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 9.对于任意x ∈R ,函数()f x 满足(2)()f x f x -=-,且当1x 时,函数()1f x x =-.若111,,223⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a fb fc f ,则,,a b c 大小关系是( ) A .b c a << B .b a c << C .c a b << D .c b a <<10.已知i 是虚数单位,则(2)i i +=( )A .12i +B .12i -+C .12i --D .12i -11.已知n S 是等差数列{}n a 的前n 项和,1252a a +=,234+=a a ,则10S =( ) A .85 B .852 C .35 D .35212.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .32二、填空题:本题共4小题,每小题5分,共20分。
高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
深圳市育才中学2024年高三高考数学试题系列模拟卷(1)注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .12.若复数z 满足(1)34i z i +=+,则z 的虚部为( )A .5B .52C .52-D .-53.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .4.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A发生的概率为 A .14B .58C .38D .125.已知向量(1,4)a =,(2,)b m =-,若||||a b a b +=-,则m =( )A .12-B .12C .-8D .86.设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 与圆22:(3)3C x y +-='交于M ,N 两点,若||6MN =,则MNF 的面积为( )A .28B .38C .328D .3247.已知变量x ,y 间存在线性相关关系,其数据如下表,回归直线方程为 2.10.5ˆ8y x =+,则表中数据m 的值为( )变量x 01 2 3 变量y m35.57A .0.9B .0.85C .0.75D .0.58.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( ) A .112⎡⎤⎢⎥⎣⎦, B .112⎛⎫ ⎪⎝⎭, C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭, 9.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+10.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元11.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .12.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。
2024年高考仿真模拟数试题(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ()A.4B.5C.6D.7【答案】C 【解析】【分析】根据百分位数的定义求解即可.【详解】这组数据为:1,1,,4,5,5,6,7a ,但a 大小不定,因为80.756⨯=,所以这组数据的75%分位数为从小到大的顺序的第6个数和第7个数的平均数,经检验,只有6a =符合.故选:C .2.已知椭圆E :()222210x y a b a b+=>>的长轴长是短轴长的3倍,则E 的离心率为()A.3B.223C.33D.233【答案】B 【解析】【分析】根据题意可得26a b =,再根据离心率公式即可得解.【详解】由题意,26a b =,所以13b a =,则离心率3c e a ====.故选:B .3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =()A.150B.120C.75D.68【答案】D 【解析】【分析】由等差数列的性质及求和公式计算即可得解.【详解】由等差数列的性质可知78910911205a a a a a a ++++==,所以94a =,()1171791717682a a S a +===,故选:D.4.已知空间中,l 、m 、n 是互不相同直线,α、β是不重合的平面,则下列命题为真命题的是()A.若//αβ,l ⊂α,n β⊂,则//l nB.若//l α,//l β,则//αβC.若//m β,//n β,m α⊂,n ⊂α,则//αβD.若l α⊥,//l β,则αβ⊥【答案】D 【解析】【分析】对A 、B 、C 选项,可通过找反例排除,对D 选项,可结合线面平行的性质及面面垂直的判定定理得到.【详解】对A 选项:若//αβ,l ⊂α,n β⊂,则l 可能与n 平行或异面,故A 错误;对B 选项:若//l α,//l β,则α与β可能平行或相交,故B 错误;对C 选项:若//m β,//n β,m α⊂,n ⊂α,可能//m n ,此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p ,又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选:D.5.7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有()种站排方式.A.672 B.864 C.936 D.1056【答案】D 【解析】【分析】分甲站在每一排的两端和甲不站在每一排的两端这两种情况解答即可.【详解】当甲站在每一排的两端时,有4种站法,此时乙的位置确定,剩下的人随便排,有554A 480=种站排方式;当甲不站在每一排的两端时,有3种站法,此时乙和甲相邻有两个位置可选,丙和甲不相邻有四个位置可选,剩下的人随便站,有1142443C C A 576=种站排方式;故总共有4805761056+=种站排方式.故选:D .6.在平面直角坐标系xOy 中,已知()1,0A ,()0,3B ,动点P 满足OP xOA yOB =+,且1x y +=,则下列说法正确的是()A.P 的轨迹为圆B.P 到原点最短距离为1C.P 点轨迹是一个菱形D.点P 的轨迹所围成的图形面积为4【答案】C 【解析】【分析】由题意得3x ab y =⎧⎪⎨=⎪⎩,结合1x y +=可知33a b +=,画出图形可知P 点轨迹是一个菱形,故C错误A 正确;由点到直线的距离即可验证B ;转换成ABC 面积的两倍来求即可.【详解】设P 点坐标为(),a b ,则由已知条件OP xOA yOB =+ 可得3a x b y =⎧⎨=⎩,整理得3x a b y =⎧⎪⎨=⎪⎩.又因为1x y +=,所以P 点坐标对应轨迹方程为33a b +=.0a ≥,且0b ≥时,方程为33a b +=;0a ≥,且0b <时,方程为33b a =-;a<0,且0b ≥时,方程为33b a =+;a<0,且0b <时,方程为33a b +=-.P 点对应的轨迹如图所示:3AB CD k k ==-,且AB BC CD DA ====P 点的轨迹为菱形.A 错误,C 正确;原点到AB :330a b +-=1.10=<B 错误;轨迹图形是平行四边形,面积为122362⨯⨯⨯=,D 错误.故选:C .7.已知函数()3sin 44sin 436f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,设()00,,()x x f x f x ∀∈∃∈≤R R ,则02tan 43x π⎛⎫-⎪⎝⎭等于()A.43-B.34-C.34D.43【答案】B 【解析】【分析】根据诱导公式得到()f x 最大值,即得到关于0x 的关系式,代入02tan 43x π⎛⎫-⎪⎝⎭利用诱导公式即可.【详解】()3sin 44sin 43sin(4)4sin(4)36323f x x x x x πππππ⎛⎫⎛⎫=++-=++-++ ⎪ ⎪⎝⎭⎝⎭,()3sin(4)4cos(433f x x x ππ∴=+++,4()5sin(4)(tan 33f x x πϕϕ∴=++=,max 5()f x =∴,()00,,()x x f x f x ∀∈∃∈≤R R ,0234(Z)2k k x πππϕ+=+∈+∴,0213tan 4tan(2)32tan 4x k πππϕϕ⎛⎫∴-=-+-=-=- ⎪⎝⎭.故选:B.8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,离心率为e ,直线(0)y kx k =≠分别与C 的左、右两支交于点M ,N .若1MF N 的面积为160MF N ∠=︒,则22e 3a +的最小值为()A.2B.3C.6D.7【答案】D 【解析】【分析】作出辅助线,121F NF MF N S S == 124NF NF ⋅=,利用双曲线定义和余弦定理求出21243b F N F N ⋅=,求出23b =,进而求出22223e 31317a a a +=++≥+=.【详解】连接22,NF MF ,有对称性可知:四边形12MF NF 为平行四边形,故2112,NF MF NF MF ==,12120FNF ∠=︒,121F NFMF N S S ==由面积公式得:121sin1202NF NF ⋅︒=124NF NF ⋅=,由双曲线定义可知:122F N F N a -=,在三角形12F NF 中,由余弦定理得:()222221212121212244cos12022F N F N F N F N cF N F N c F N F N F N F N-+⋅-+-︒==⋅⋅2121224122F N F N b F N F N ⋅-==-⋅,解得:21243b F N F N ⋅=,所以2443b =,解得:23b =,故22223e 31317a a a +=++≥+=,当且仅当2233a a=,即21a =时,等号成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()2sin sin 2f x x x=-,则下列结论正确的有()A.()f x 为奇函数B.()f x 是以π为周期的函数C.()f x 的图象关于直线π2x =对称 D.π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x的最大值为22-【答案】AD 【解析】【分析】对于A ,由正弦函数的奇偶性即可判断;对于B ,判断()()πf x f x +=是否成立即可;对于C ,判断ππ22f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭是否成立即可;对于D ,可得π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,由此即可得解.【详解】对于A ,()2sin sin 2f x x x =-的定义域为()π,2k x k ≠∈Z (关于原点对称),且()()()()22sin sin sin 2sin 2f x x x f x x x ⎛⎫-=--=--= ⎪-⎝⎭,对于B ,()()()()22πsin πsin sin 2sin 2πf x x x f x x x +=+-=--≠⎡⎤+⎣⎦,故B 错误;对于C ,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫+=+-=+⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭+ ⎪⎢⎥⎝⎭⎣⎦,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫-=--=-⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭- ⎪⎢⎥⎝⎭⎣⎦,但ππ22f x f x ⎛⎫⎛⎫+≠-⎪ ⎪⎝⎭⎝⎭,即()f x 的图象不关于直线π2x =对称,故C 错误;对于D ,π0,4x ⎛⎤∈ ⎥⎝⎦时,sin ,sin 2y x y x ==均单调递增,所以此时2sin 2y x=-也单调递增,所以π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,其最大值为π2242f ⎛⎫=- ⎪⎝⎭.故选:AD.10.已知复数1z ,2z ,则下列命题成立的有()A.若1212z z z z +=-,则120z z = B.11,Z nnz z n =∈C.若22120z z +=,则12=z z D.1212z z z z ⋅=⋅【答案】BCD 【解析】【分析】举例说明判断A ;利用复数的三角形式计算判断B ;利用复数的代数形式,结合模及共轭复数的意义计算判断CD.【详解】对于A ,当121i,1i =+=-z z 时,12122z z z z +==-,而1220z z =≠,A 错误;对于B ,令1(cos isin ),0,R z r r θθθ=+≥∈,则1(cos isin )n nz r n n θθ=+,于是1|||cos isin |nnnz r n n r θθ=+=,而1||z r =,即有1||nnz r =,因此11nnz z =成立,B 正确;设复数1i(,R)z a b a b =+∈,2i(,)z c d c d =+∈R ,对于C ,由22120z z +=,得2222()(22)i 0a b c d ab cd -+-++=,则22220220a b c d ab cd ⎧-+-=⎨+=⎩,2222120z z -=-=,因此12=z z ,C 正确;对于D ,21(i)(i)()()i z a b c d ac bd c z ad b ⋅=++=-++,则21()()i z ac bd a b z d c ⋅=--+,12(i)(i)()()i z z a b c d ac bd ad bc ⋅=--=--+,因此1212z z z z ⋅=⋅,D 正确.故选:BCD11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则()()f x f y ≠.则()A.()0f 的值为2B.()()4f x f x +-≥C.若()13f =,则()39f = D.若()410f =,则()24f -=【答案】ABC 【解析】【分析】对于A ,令0x y ==,结合“若x y ≠,则()()f x f y ≠”即可判断;对于B ,由基本不等式相关推理结合()2040f =>即可判断;对于C ,令1y =得,()()()1332f x f x f x +++=+,由此即可判断;对于D ,令()1xf x =+,即可判断.【详解】对于A ,令0x y ==,得()()23002f f =+⎡⎤⎣⎦,解得()01f =或()02f =,若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,但这与②若x y ≠,则()()f x f y ≠矛盾,所以只能()02f =,故A 正确;对于B ,令y x =-,结合()02f =得,()()()()()()22f x f x f x f x f x f x ⎛⎫+-+-=⋅-≤ ⎪⎝⎭,解得()()4f x f x +-≥或()()0f x f x +-≤,又()02f =,所以()2040f =>,所以只能()()4f x f x +-≥,故B 正确;对于C ,若()13f =,令1y =得,()()()1332f x f x f x +++=+,所以()()121f x f x +=-,所以()()2161521f f =-=-=,所以()()21101932f f =-=-=,故C 正确;对于D ,取()1xf x =+,则()()11232xyx yx yf x f y +⎡⎤⎡⎤+++=+++⎢⎥⎢⎥⎣⋅=⎣+⎦⎦()()()f x y f x f y +++=且()1xf x =+单调递增,满足()410f =,但()423f -=,故D 错误.故选:ABC.【点睛】关键点睛:判断D 选项的关键是构造()1xf x =+,由此即可证伪.三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}2,0,1M =-,{}1N x x a =-<,若M N ⋂的真子集的个数是1,则正实数a 的取值范围为______.【答案】()()0,11,3 【解析】【分析】分{}0M N = 和{}2M N = 讨论即可.【详解】{}1N x x a =-<,则11x a -<-<,解得11a x a -+<<+,若M N ⋂的真子集的个数是1,则M N ⋂中只含有一个元素,因为a 为正实数,则11a +>,11a -+>-,若{}0M N = ,则10120a a a -+<⎧⎪+≤⎨⎪>⎩,解得01a <<,若{}2M N = ,则012120a a a ≤-+<⎧⎪+>⎨⎪>⎩,解得13a <<,综上所述,a 的取值范围为()()0,11,3 .故答案为:()()0,11,3 .13.已知正四棱台1111ABCD A B C D -的上、下底面边长分别为4、6,则正四棱台1111ABCD A B C D -的体积为______,外接球的半径为______.【答案】①.3②.【解析】【分析】利用棱台的体积公式计算即可得第一空,根据棱台与球的特征结合勾股定理计算即可得第二空.【详解】根据题意易知该棱台的上、下底面积分别为:2212416,636S S ====,所以正四棱台1111ABCD A B C D -的体积为()12176233V S S =++=;连接AC ,BD 交于点2O ,连接11A C ,11B D 交于点1O,如图所示:当外接球的球心O 在线段12O O 延长线上,设1OO h =,外接球半径为R,则(222O O h =-,因为12=O O ,上、下底面边长分别为4、6,则111112==D O B D 212DO BD ==,所以(22222112R D O h DO h h R =+=+-⇒==当外接球的球心O 在线段21O O 延长线上,显然不合题意;当球心O 在线段12O O 之间时,则)222O O h =,同上可得,h =故答案为:3.14.若sin 0αβγ+-=+-的最大值为______.【答案】【解析】≤=消去α、β求最大值即可,再应用三角函数的单调性即可得.【详解】由题意得:0sin 1αβγ≤+=≤,0α≥,0β≥,则()22αβαβαβαβ=+++++=+,当且仅当αβ=时等号成立,+≤=≤,则有0sin 10cos 1γγ≤≤⎧⎨≤≤⎩,则π2π2π2k k γ≤≤+,Z k ∈,有sin γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,单调递增,cos γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递减,π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递增,则当π2π2k γ=+时,即sin 1γ=、cos 0γ=时,,+-的最大值为..【点睛】本题关键在于如何将多变量求最值问题中的多变量消去,结合基本不等式与题目条件可将α、β消去,再结合三角函数的值域与单调性即可求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.函数()e 2xf x ax a =--.(1)讨论函数的极值;(2)当0a >时,求函数()f x 的零点个数.【答案】(1)答案见解析(2)答案见解析【解析】【分析】(1)求导后,分别在0a ≤和0a >的情况下得到()f x '正负,进而得到()f x 单调性,由极值定义可求得结果;(2)由(1)可知()f x 单调性,分别讨论极小值大于零、等于零和小于零的情况,结合零点存在定理可得结论.【小问1详解】由题意得:()e 2xf x a '=-;当20a ≤,即0a ≤时,()0f x ¢>恒成立,()f x \在R 上单调递增,无极值;当20a >,即0a >时,令()0f x '=,解得:ln 2x a =,∴当(),ln 2x a ∈-∞时,()0f x '<;当()ln 2,x a ∈+∞时,()0f x ¢>;()f x \在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增,()f x \的极小值为()ln 22ln 2f a a a a =-,无极大值;综上所述:当0a ≤时,()f x 无极值;当0a >时,()f x 极小值为2ln 2a a a -,无极大值.【小问2详解】由(1)知:当0a >时,()f x 在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增;当02a <<时,()ln 22ln 20f a a a a =->,()0f x ∴>恒成立,()f x 无零点;当a =时,()ln 22ln 20f a a a a =-=,()f x 有唯一零点ln 2x a =;当2a >时,()ln 22ln 20f a a a a =-<,又()010f a =->,当x 趋近于正无穷大时,()f x 也趋近于正无穷大,()f x \在()0,ln 2a 和()ln 2,a +∞上各存在一个零点,即()f x 有两个零点;综上所述:当e 02a <<时,()f x 无零点;当2a =时,()f x 有且仅有一个零点;当e 2a >时,()f x 有两个不同的零点.16.已知n 把相同的椅子围成一个圆环;两个人分别从中随机选择一把椅子坐下.(1)当12n =时,设两个人座位之间空了X 把椅子(以相隔位子少的情况计数),求X 的分布列及数学期望;(2)若另有m 把相同的椅子也围成一个圆环,两个人从上述两个圆环中等可能选择一个,并从中选择一把椅子坐下,若两人选择相邻座位的概率为114,求整数(),3,3m n m n >>的所有可能取值.【答案】(1)分布列见解析,数学期望为2511(2)9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩【解析】【分析】(1)根据题意得到随机变量X 可以取0,1,2,3,4,5,并计算出相应的概率,列出分布列,利于期望公式计算即可;(2)利于概率求得两人选择相邻座位的概率,建立方程后依据条件可求得整数解即可.【小问1详解】由题意,得随机变量X 可以取0,1,2,3,4,5,其中()()21212220,1,2,3,4A 11P X i i ⨯====,()21212115A 11P X ⨯===,所以随机变量X 的分布列为:X012345P 211211************故()2222212501234511111111111111E X =⨯+⨯+⨯+⨯+⨯+⨯=.【小问2详解】记“两人选择n 把相同的椅子围成的圆环”为事件A ,“两人选择m 把相同的椅子围成的圆环”为事件B ,“两人选择相邻座位”为事件C .因为两个人从上述两个圆环中等可能选择一个,所以()()1111,2244P A P B =⨯==,()()()()()()()P C P AC P BC P A P C A P B P C B =+=+()()12121114141211n m n n m m n m ⨯⨯⎛⎫=⨯+⨯=+ ⎪----⎝⎭.因为()114P C =,所以111117n m +=--.化简,得4988n m =+-.因为*3,3,m n n >>∈N ,所以498m ∈-Z ,且4958m >--.所以81,7,49m -=,即9,15,57m =,此时9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩所以,m n 的所有可能取值为9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩17.如图,在多面体ABCDEF 中,底面ABCD 为平行四边形,//EF 平面AB CD -,EAB 为等边三角形,22,60BC CE AB EF ABC ===∠=︒.(1)求证:平面EAB ⊥平面ABCD ;(2)求平面ECD 与平面FCD 夹角的余弦值.【答案】(1)证明见解析(2)31010【解析】【分析】(1)根据面面垂直的判定定理证明即可;(2)建立空间直角坐标系,利用向量的方法即可求得平面平面ECD 与平面FCD 的夹角的余弦值.【小问1详解】不妨设1AB =,则2BC CE ==,在平行四边形ABCD 中,2BC = ,1AB =,60ABC ∠=︒,连接AC ,由余弦定理得22212211cos 603AC =+-⨯⨯⨯︒=,即3AC =,222AC AB BC += ,AC AB ∴⊥.又 222AC AE CE +=,AC AE ∴⊥,AB AE A = ,AC ⊥平面EAB ,又 AC ⊂平面ABCD .∴平面EAB ⊥平面ABCD .【小问2详解】取AB 中点G ,连接EG ,EA EB = ,EG AB ∴⊥,由(1)易知EG ⊥平面ABCD ,且32EG =.如图,以A 为原点,分别以射线,AB AC 所在直线为,x y 轴,竖直向上为z 轴,建立空间直角坐标系A xyz -,则1,0,22E ⎛⎫ ⎪ ⎪⎝⎭,0,,22F ⎛⎫ ⎪ ⎪⎝⎭,()C,()D -,()12,B -,(11,C -,()1,0,0CD =- ,330,,22FC ⎛⎫=- ⎪ ⎪⎝⎭,1322EC ⎛⎫=-- ⎪ ⎪⎝⎭ ,设平面FCD 的法向量为(),,n x y z = ,则00n CD n FC ⎧⋅=⎪⎨⋅=⎪⎩ ,得0022x y z -=⎧-=⎩,令1y =,得()0,1,1n = ,设平面ECD 的法向量为()111,,m x y z = ,则00m CD m EC ⎧⋅=⎪⎨⋅=⎪⎩ ,得1111013022x x z -=⎧⎪⎨-+-=⎪⎩,令11y =,得()0,1,2m =,310cos ,10m n m n m n ⋅===⋅ ,所以平面ECD 与平面FCD 夹角的余弦值31010.18.已知抛物线C :22y px =(05p <<)上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程;(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若12344S S S S =,求直线AB 的方程.【答案】(1)22y x=(2)10x -=【解析】【分析】(1)结合抛物线定义即可.(2)设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程联立得12y y +,12y y .将每条直线表达出来,1S 、2S 、3S 、4S 表达出来,再由12344S S S S =得出m 即可.【小问1详解】设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.【小问2详解】如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y==,∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==.又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,∴12342242S S S S m =+=,得m =,∴直线AB的方程为1x =+即10x ±-=.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.【答案】(1)(5){478}A =,,,(5)=3s .(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到(5)A 及(5)s ;(2)先得到11()i s a ≤,故12111()()()n n s a s a s a +++≤ ,再由12111()()()n n s a s a s a +++= 得到()1i s a =,从而证明出结论;(3)由题意得i j i a a +=或i j j a a +=,令1j =,得到32a a =或31a a =,当a b =时得到12n a a a na +++= ,当a b ¹时,考虑3a a =或3a b =两种情况,求出答案.【小问1详解】因为4785a a a ===,所以{}(5)4,7,8A =,则(5)=3s ;【小问2详解】依题意()1,12i s a i n ≥=,,, ,则有11()i s a ≤,因此12111()()()n n s a s a s a +++≤ ,又因为12111()()()n n s a s a s a +++= ,所以()1i s a =所以12,,,n a a a 互不相同.【小问3详解】依题意12,.a a ab ==由()i i j A a +∈或()j i j A a +∈,知i j i a a +=或i j j a a +=.令1j =,可得1i i a a +=或11i a a +=,对于2,3,...1i n =-成立,故32a a =或31a a =.①当a b =时,34n a a a a ==== ,所以12n a a a na +++= .②当a b ¹时,3a a =或3a b =.当3a a =时,由43a a =或41a a =,有4a a =,同理56n a a a a ==== ,所以12(1)n a a a n a b +++=-+ .当3a b =时,此时有23a a b ==,令13i j ==,,可得4()A a ∈或4()A b ∈,即4a a =或4a b =.令14i j ==,,可得5()A a ∈或5()A b ∈.令23i j ==,,可得5()A b ∈.所以5a b =.若4a a =,则令14i j ==,,可得5a a =,与5a b =矛盾.所以有4a b =.不妨设23(5)k a a a b k ====≥ ,令1(2,3,,1)i t j k t t k ==+-=-, ,可得1()k A b +∈,因此1k a b +=.令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=.所以12(1)n a a a n b a +++=-+ .综上,a b =时,12n a a a na +++= .3a a b =≠时,12(1)n a a a n a b +++=-+ .3a b a =≠时,12(1)n a a a n b a +++=-+ .【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)一、单选题1.已知集合{}24xA x =<,{}1B =≤,则A B =( )A .()0,2B .[)1,2C .[]1,2D .()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为( ) A .1B .1-C .15D .15-3.()()51223x x -+的展开式中,x 的系数为( ) A .154B .162C .176D .1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-( ) A .83-B .83C .38-D .385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)( )A .312750cmB .312800cmC .312850cmD .312900cm6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =( ) A .2B .1C .1-D .07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为( )A .4πB .8πC .136π9D .68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为( )A B C D二、多选题9.已知函数()()1cos 02f x x x ωωω=>的图像关于直线6x π=对称,则ω的取值可以为( ) A .2B .4C .6D .810.在菱形ABCD 中,2AB =,60DAB ∠=,点E 为线段CD 的中点,AC 和BD 交于点O ,则( ) A .0AC BD ⋅= B .2AB AD ⋅= C .14OE BA ⋅=-D .52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是( )A .事件A 发生的概率为15B .事件B 发生的概率为310C .事件C 发生的概率为335D .1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是( )A .若0d =,则函数()f x 为奇函数B .函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D .若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______. 14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x >的实数x 的取值范围是______.四、解答题17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-. (1)判断ABC 的形状; (2)若3ab ,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C 中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1A CD ;(2)若1BC =,求四棱锥1C A DBE -的体积; (3)求直线1BC 与平面1ACE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x ya b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=. (1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a x ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.参考答案:1.B【分析】化简集合A 和B ,即可得出A B ⋂的取值范围. 【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤ ∴{}12A B x x ⋂=≤< 故选:B. 2.D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-, 故实部与虚部的和为431555-+=-,故选:D. 3.C【分析】根据二项式定理可求得()523x +展开式通项,由此可确定12,T T ,结合多项式乘法运算进行整理即可确定x 的系数. 【详解】()523x +展开式的通项公式为:()55155C 2323C rr r r r r rr T x x --+=⋅⋅=⋅; 当1r =时,412523C 240T x x =⨯=;当0r =时,51232T ==;x ∴的系数为24023224064176-⨯=-=.故选:C. 4.A【分析】利用二倍角公式化简为正、余弦的齐次分式,分式上下同除2cos α,代入1tan 5α=可得答案.【详解】2222cos 2cos sin sin sin 2sin 2sin cos αααααααα-=--22111tan 825123tan 2tan 255ααα--===---, 故选:A. 5.C【分析】根据圆柱和圆台的体积公式计算可得结果. 【详解】下端圆柱的体积为:224π91944π⋅=6107≈3cm ,上端圆台的体积为:()22116π1414993⨯+⨯+16π4033=⨯1612663≈⨯6752=3cm , 所以该何尊的体积估计为61076752+=128593cm . 因为12850最接近12859,所以估计该何尊可以装酒128503cm . 故选:C 6.D【分析】根据函数()f x 是定义域为R 的奇函数,且()()2f x f x =-得出函数()f x 是周期为4的周期函数,进而求解.【详解】因为函数()f x 是定义域为R 的奇函数,且()()2f x f x =-, 所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=, 即函数()f x 是周期为4的周期函数,因为函数()f x 是定义域为R 的奇函数,所以(0)0f =, 因为()()2f x f x =-,所以(2)(0)0f f ==, 又因为202245052=⨯+,所以(2022)(2)0f f ==, 故选:D . 7.C【分析】将该四棱锥的外接球放在一个长方体内,画出图形,利用已知条件找出球心,建立相应的关系式,求出外接球的半径,利用球体表面积公式计算即可. 【详解】由题意将该四棱锥放在一个长方体的中, 如图∴所示:取AD 的中点H ,连接PH ,连接,AC BD 交于1O ,由AP PD =则在等腰PAD 中有:PH AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD=AD , 则PH ⊥平面ABCD , 又112AH AD ==, 所以在Rt PAH △中,3PH ===,由底面为正方形ABCD ,所以它的外接圆的圆心为对角线的交点1O , 连接1O H ,则1PH O H ⊥,PAD 外接圆的圆心为2O ,且在PH 上,过点1O ,2O 分别作平面ABCD 与平面PAD 的垂线,则两垂线必交于点O ,点O 即为四棱锥P ABCD -外接球的球心, 且1OO ⊥平面ABCD ,又PH ⊥平面ABCD ,即2O H ⊥平面ABCD , 所以1OO ∥PH ,所以四边形12OO HO 为矩形. 如图∴连接2AO ,则22AO PO =,在2Rt AO H 中,22223O H PH PO PH AO AO =-=-=-,所以()2222222213AO AH HO AO =+=+-,解得253AO =,所以254333O H =-=,所以1243OO O H ==, 在图∴中连接OB ,由112O B BD =所以在1Rt OO B 中,OB ==即四棱锥P ABCD -外接球的半径为R OB ==, 所以四棱锥P ABCD -外接球的表面积为: 221364πR 4ππ9S ==⨯=⎝⎭,故选:C. 8.D【分析】设出A 、B 的坐标,由1212k k =-解得12y y 的值,再分别求出点M 、点N 的坐标,求得||MN 的式子,研究AB l 恒过x 轴上的定点可得点P 的坐标,进而用方法1基本不等式或方法2函数思想求得三角形面积的最小值.【详解】设211(,)4y A y ,222(,)4y B y ,则114k y =,224k y =, ∴12121612k k y y ==- ∴1232y y =-, ∴设OA l :14y x y =,令=1x -得:14y y =-,∴14(1,)M y --,同理:24(1,)N y -- ∴12121212||44||||4||8y y y y MN y y y y --=-+==, 设AB l :x my t =+,221044x my t y my t y x=+⎧⇒--=⎨=⎩ 20m t ∆=+>,124y y m +=,124y y t ,又∴1232y y =-,∴432t -=-,解得:8t =, ∴AB l :8x my =+恒过点(8,0),∴AB l 与x 轴交点P 的坐标为(8,0),即:(8,0)P , ∴点P 到准线=1x -的距离为8+1=9. 方法1:1211||1321||||888y y MN y y -==+≥⨯=1||y =.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN的面积的最小值为2. 方法2:12||||8y y MN -==∴20m ≥∴||MN ≥m =0时取得最小值.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN故选:D. 9.AD【分析】首先将函数()f x 化成一个三角函数,然后根据对称轴公式求得ω的表达式,对整数k 赋值求得结果.【详解】()()1cos sin 26f x x x x ωωωπ=+=+,因为函数()f x 的图象关于直线6x π=对称,所以662k ωπππ+=+π,k ∈Z ,解得26k ω=+,因为0ω>,所以当0k =时,2ω=;所以当1k =时,8ω=. 故选:AD. 10.ABD【分析】以O 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算依次验证各个选项即可.【详解】四边形ABCD 为菱形,AC BD ∴⊥,则以O 为坐标原点,,OC OD 正方向为,x y 轴,可建立如图所示平面直角坐标系,2AB AD ==,60DAB ∠=,2BD ∴=,OA OC ===()0,0O ∴,()A ,()0,1B -,()0,1D ,12E ⎫⎪⎪⎝⎭,对于A ,ACBD ,0AC BD ∴⋅=,A 正确;对于B ,()3,1AB =-,()3,1AD =,312AB AD ∴⋅=-=,B 正确;对于C ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,()BA =-,31122OE BA ∴⋅=-+=-,C 错误; 对于D ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,3122AE ⎛⎫= ⎪ ⎪⎝⎭,915442OE AE ∴⋅=+=,D 正确. 故选:ABD. 11.ABC【分析】根据题意求出基本事件总数、满足条件的基本事件数,利用古典概型概率公式及条件概率公式求解即可.【详解】由题意7个球中任取3个球的基本事件总数为:37C 35=这3个球都是红球的基本事件数为:33C 1=,所以事件A 发生的概率为:1()35P A =,故A 错误, 这3个球中至少有1个红球的基本事件数为:1221334343C C C C +C 1812131⋅+⋅=++=,所以事件B 发生的概率为:31()35P B =,故B 错误, 这3个球中至多有1个红球的基本事件数为:123344C C C 18422⋅+=+=,事件C 发生的概率为22()35P C =,故C 错误, 因为1()()35P AB P A ==, 所以由条件概率公式得:1()135(|)31()3135P AB P A B P B ===, 故D 正确, 故选:ABC. 12.BCD【分析】对于A :利用奇偶性的定义直接判断;对于B :利用极值的计算方法直接求解;对于C :先求出13c <,表示出244122161692781c x x c +=-+,即可求出;对于D :设切点()00,x y ,由导数的几何意义得到3200025460x x x --+=.设()322546g x x x x =--+,利用导数判断出函数()g x 有三个零点,即可求解.【详解】对于A :当0d =时,()32f x x x cx =++定义域为R .因为()()()()()3232f x x x c x x x cx f x -=-+-+-=-+-≠-, 所以函数()f x 不是奇函数.故A 错误;对于B :函数()f x 有极值⇔ ()f x 在R 上不单调.由()32f x x x cx d =+++求导得:()232f x x x c =++'.()f x 在R 上不单调⇔()f x '在R 上有正有负⇔4430c ∆=-⨯>⇔13c <.故B 正确.对于C :若函数f (x )有两个极值点1x ,2x ,必满足0∆>,即13c <.此时1x ,2x 为2320x x c ++=的两根,所以1212233x x c x x ⎧+=-⎪⎪⎨⎪=⎪⎩. 所以()22212121242293c x x x x x x +=+-=-.所以()()222244222212121242216162293992781cc c x x x xx x c +=+-=--=-+ 对称轴164272329c -=-=⨯,所以当13c <时,()224412216162116116292781932738181c x x c +=-+>⨯-⨯+=. 即4412281x x +>.故C 正确;对于D :若2c d ==-时,()3222f x x x x =+--.所以()2322f x x x '=+-.设切点()00,x y ,则有:()3200002000002203222y x x x y f x x x x ⎧=+--⎪-⎨=+-=⎪-⎩', 消去0y ,整理得:3200025460x x x --+=不妨设()322546g x x x x =--+,则()26104g x x x '=--.令()0g x '>,解得:2x >或13x <-;令()0g x '<,解得: 123x -<<.所以()g x 在1,3⎛⎫-∞- ⎪⎝⎭,()2,+∞上单调递增,在1,23⎛⎫- ⎪⎝⎭上单调递减.所以()()()()()32111119254660333327g x g =-=-----+=>极大值, ()()322225242660g x g ==⨯-⨯-⨯+=-<极小值.所以作出的图像如图所示:因为函数()g x 有三个零点,所以方程3200025460x x x --+=有三个根,所以过点()20,作曲线()y f x =的切线有且仅有3条.故D 正确. 故选:BCD. 13.710##0.7 【分析】根据极差的定义可得()314t =--=,先求出平均数,再从方差,从而可求2s t.【详解】极差()314t =--=,平均数为()()1122315-+-+++=,故方差()()()()()222222114111*********s ⎡⎤=--+--+-+-+-=⎣⎦. 所以21475410s t ==.故答案为:710. 14.()2221x y +-=(答案不唯一)【分析】根据圆的圆心和半径,结合直线和圆的位置关系及两个圆的位置关系计算即可. 【详解】设圆心C 为()00,x y ,由已知圆C 与直线l :=1x -相切, 圆C 与圆O :221x y +=相切,可得0112x ⎧--=,即得0002x y =⎧⎨=⎩或0002x y =⎧⎨=-⎩或0020x y =-⎧⎨=⎩, 且已知半径为1,所以圆的方程可以为: ()2221x y +-=或()2221x y ++=或2221x y故答案为: ()2221x y +-=(答案不唯一) 15.12##0.5【分析】由题意设(),0A a -,2,b B c a ⎛⎫- ⎪⎝⎭,再由232AB b a k c a -==-+结合222a b c =+,即可得出答案.【详解】由题意可得,(),0A a -,(),0F c -,令椭圆()222210x y a b a b +=>>中x c =-,解得:2b y a=±,所以2,b B c a ⎛⎫- ⎪⎝⎭,而2032AB b a k c a -==-+,则2232a c a c a c a a -+==-+, 解得:12e =. 故答案为:12. 16.()(),01,-∞⋃+∞【分析】利用奇偶性和函数的单调性解不等式.【详解】当0x ≥时,()()2log 1f x x +,函数在[)0,∞+上单调递增,∴()(0)0f x f ≥=,又()f x 是偶函数,所以()f x 的值域为[)0,∞+.当0x ≥时,()()2log 1f x x +,不等式()2f x x >()22log 1x x +>,即()22log 10x x+->,设()22()log 1g x x x =+-,由函数y =()2log 1y x =+,2y x=-在()0,∞+上都是增函数, 得()g x 在()0,∞+上是增函数,由(1)0g =,则()0(1)g x g >=解得1x >; 当0x <时,由函数值域可知()0f x >,此时20x<,所以()2f x x >恒成立;综上可知,满足()2f x x>的实数x 的取值范围是()(),01,-∞⋃+∞.故答案为:()(),01,-∞⋃+∞ 17.(1)1n a n =+ (2)证明见解析【分析】(1)根据等比数列定义和等差数列通项公式可构造方程组求得1,a d ,进而确定n a ; (2)利用裂项相消法可求得n S ,整理即可证得结论. 【详解】(1)设等差数列{}n a 的公差为d ,1324,,a a a a +成等比数列,()23124a a a a ∴=+,即()()2111224a d a a d +=+,又5146a a d =+=,则由()()2111122446a d a a d a d ⎧+=+⎪⎨+=⎪⎩得:121a d =⎧⎨=⎩或163a d =-⎧⎨=⎩, 当16a =-,3d =时,30a =,不满足1324,,a a a a +成等比数列,舍去; 12a ∴=,1d =,()211n a n n ∴=+-=+.(2)由(1)得:()()111111212n n a a n n n n +==-++++, 1111111111233445112n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()112222n n n =-=++, ()221n n S n n ∴+=<+.18.(1)直角三角形 (2)0【分析】(1)根据正弦定理的边角互化,即可得到结果;(2)由(1)中结论即可得到cos B ∠,从而得到AD 的值,然后在ABD △中结合余弦定理即可得到结果.【详解】(1)因为cos sin cos c B a A b C =-,由正弦定理可得, 2sin cos sin cos sin C B B C A +=即()2sin sin B C A +=所以()2sin sin ,0,πsin 1A A A A =∈⇒=且()0,πA ∈,所以π2A =即ABC 是直角三角形.(2)在直角ABC 中,有22223b c a b +==,即222c b =,所以c =, 又因为2BD CD =,所以23BD BC ==且cos c B a === 在ABD △中,由余弦定理可得,22222242cos 2b b AD AB BD AD B AB BD +-+-∠===⋅解得AD =, 在ABD △中由余弦定理可得,222222242cos 02b b b AD BD AB ADB AD BD +-+-∠===⋅19.(1)证明见解析 (2)23【分析】(1)连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点,利用中位线的性质可得出1DF //BC ,再利用线面平行的判定定理可证得结论成立;(2)过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,证明出CM ⊥平面11AA B B ,计算出CM 的长以及四边形1A DBE 的面积,利用锥体的体积公式可求得四棱锥1C A DBE -的体积; (3)设1BC =,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面1A CE 所成角的正弦值. 【详解】(1)证明:连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点, 因为D 、F 分别为AB 、1AC 的中点,则1DF //BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,1//BC ∴平面1A CD . (2)解:因为1BC =,则122AA AC CB ===,AB == 222AC BC AB ∴+=,即AC BC ⊥,过点C 在平面ABC 内作CM AB ⊥,垂足为点M , 因为1AA ⊥平面ABC ,CM ⊂平面ABC ,1CM AA ∴⊥,又因为CM AB ⊥,1AB AA A ⋂=,AB 、1AA ⊂平面11AA B B ,CM ∴⊥平面11AA B B ,由等面积法可得AC BC CM AB ⋅==因为1AA ⊥平面ABC ,AB ⊂平面ABC ,1AA AB ∴⊥,又因为11//AA BB 且11AA BB =,故四边形11AA B B 为矩形,所以,1111111212AA D A B E AA B B A DBE S S S S ⎫=--==⎪⎪⎝⎭△△矩形四边形11112333C A DBE A DBE V S CM -∴=⋅==四边形.(3)解:不妨设1BC =,因为AC BC ⊥,1CC ⊥平面ABC ,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,1,0B 、()0,0,0C 、()10,0,2C 、()12,0,2A 、()0,1,1E , 设平面1A CE 的法向量为(),,n x y z =,()12,0,2CA =,()0,1,1CE =, 则1220n CA x z n CE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,可得()1,1,1n =-, 因为()10,1,2BC =-,则111cos ,BC n BC n BC n⋅<>==-=⋅因此,直线1BC 与平面1A CE20.(1)73.5(2)分布列见解析;期望()910E X =【分析】(1)根据频率分布直方图估计平均数的方法直接计算即可;(2)根据频率分布直方图可确定优秀与非优秀学生对应的频率,根据分层抽样原则可确定10名学生中优秀学员的人数,由此可得X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;由数学期望计算公式可求得期望. 【详解】(1)80名学生的平均成绩为()550.01650.03750.03850.025950.00510⨯+⨯+⨯+⨯+⨯⨯=73.5.(2)根据频率分布直方图知:优秀学员对应的频率为()0.0250.005100.3+⨯=,则非优秀学员对应的频率为10.30.7-=,∴抽取的10名学生中,有优秀学生100.33⨯=人,非优秀学生100.77⨯=人;则X 所有可能的取值为0,1,2,3,()37310C 3570C 12024P X ====;()1237310C C 63211C 12040P X ====;()2137310C C 2172C 12040P X ====;()33310C 13C 120P X ===;X ∴的分布列为:∴数学期望()721719012324404012010E X =⨯+⨯+⨯+⨯=. 21.(1)22145x y -=(2)y x =+y =【分析】(1)根据平面向量数量积坐标运算和点在双曲线上,可构造方程组求得22,a b 的值,由此可得双曲线方程;(2)由2,,A B B 三点共线可设:AB y kx =+用向量垂直的坐标表示,代入韦达定理结论可解方程求得k 的值,由此可得直线AB 方程. 【详解】(1)设()1,0F c -,()()2,00F c c >,则(1PF c =--,(2PF c =-,212854PF PF c ∴⋅=-+=,解得:3c =,229a b ∴+=;又P 在双曲线上,则22851a b-=,24a ∴=,25b =, ∴双曲线的方程为:22145x y -=.(2)由(1)得:(10,B,(2B ,()22B A B B μμ=∈R ,2,,A B B ∴三点共线,直线AB斜率显然存在,可设:AB y kx =+()11,A x y ,()22,B x y ,由22145y kx x y ⎧=⎪⎨-=⎪⎩得:()2254400k x ---=,()22540Δ801040k k ⎧-≠⎪∴⎨=->⎪⎩,即252k <且254k ≠,12x x ∴+=1224054x x k =--, 11B A B B ⊥,110B A B B ∴⋅=,又(111,B A x y =,(122,B B x y =,()1112121212125B A B B x x y y x x y y y y ∴⋅=+=+++(()1212125x x kx kx k x x =++++()()()222121222401801202005454k k kx xx x k k+=++++=-++=--,解得:k =252k <且254k ≠,∴直线AB方程为:y x =y = 【点睛】关键点点睛:本题考查直线与椭圆的综合应用问题,解题关键是能够利用平面向量垂直关系的坐标表示来构造等量关系,结合韦达定理的结论得到关于所求变量的方程的形式,从而解方程求得变量的值.22.(1)函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1). (2)证明过程见详解【分析】(1) 因为1a =,所以函数()()212e 22x f x x x x =--++,对函数求导,利用导函数的正负来判断函数的单调性即可求解;(2)对函数进行求导,求出导函数的零点,根据条件可得:函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,然后利用零点存在性定理即可证明.【详解】(1)因为1a =,所以函数()()212e 22x f x x x x =--++,所以()e (2)e 1(1)(e 1)x x x f x x x x '=+--+=--,当1x >或0x <时,()0f x '>,此时函数()f x 单调递增; 当01x <<时,()0f x '<,此时函数()f x 单调递减; 综上:函数()f x 的单调递增区间为(,0)-∞和(1,)+∞, 单调递减区间为(0,1).(2)因为函数()()211e 12x f x a x a x ax a =---+++,所以()e (1)e ()e ()()(e 1)x x x x f x a a x a x a a x a x a x a a '=+---+=---=--,令()0f x '=可得:x a =或ln x a =-,因为310,e a ⎛⎫∈ ⎪⎝⎭,所以ln 3a ->,当x a <或ln x a >-时,()0f x '>,此时函数()f x 单调递增; 当ln a x a <<-时,()0f x '<,此时函数()f x 单调递减;所以函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,故当x a =时,函数取极大值()()22e 10102aaf a a a f a =-+++>=->,因为当2x =-时,221(2)(3)10ef a a a -=-+--<;所以0(2,)x a ∃∈-,使得0()0f x =; 当ln x a =-时,函数取极小值,ln 2211(ln )(ln 1)e (ln )ln 1ln ln (ln )22a f a a a a a a a a a a a a --=-----++=---1ln (1ln )02a a a =-++<,(因为ln 3a ->,所以13ln 22a <-,因为3110e 2a <<<,所以312a +<,也即11ln 02a a ++<)所以0(,ln )x a a '∃∈-,使得0()0f x '=;又当x →+∞时,()f x →+∞,所以0(ln ,)x a ''∃∈-+∞,使得0()0f x ''=;故当310,e a ⎛⎫∈ ⎪⎝⎭时,函数()f x 有3个零点.【点睛】函数零点的求解与判断方法:答案第17页,共17页 (1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用导数求出函数的极值点,再利用零点存在性定理进行判断零点的个数.。
试卷类型:A高考数学仿真试题(一)C本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B)用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一、选择题(本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的)1.A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线P B 的方程为A.2x -y -1=0B.x +y -5=0C.2x +y -7=0D.2y -x -4=02.已知函数y =f (x ),x ∈{1,2,3},y ∈{-1,0,1},满足条件f (3)=f (1)+f (2)的映射的个数是 A.2 B.4 C.6 D.73.若直线a ⊥b ,且a ∥平面α,则直线b 与平面α的位置关系是 A.b ⊂α B.b ∥αC.b ⊂α或b ∥αD.b 与α相交或b ∥α或b ⊂α都有可能4.函数y =|tan x |²cos x (0≤x <23π,且x ≠2π)的图象是5.在5张卡片上分别写着数字1、2、3、4、5,然后把它们混合,再任意排成一行,则得到的数能被5或2整除的概率是A.0.8B.0.6C.0.4D.0.26.已知奇函数f (x )、g (x ),f (x )>0的解集为(a 2,b ),g (x )>0的解集为(22a ,2b ),2b>a 2,则f (x )g (x )>0的解集是A.(22a ,2b ) B.(-b 2,-a 2)C.(a 2,2b )∪(-2b ,-a 2) D.(22a ,2b )∪(-b 2,-a 2)7.若O 为坐标原点,抛物线y 2=2x 与过其焦点的直线交于A 、B 两点,则²等于 A.43 B.-43C.3D.-48.已知双曲线252x -92y =1的左支上有一点M 到右焦点F 1的距离为18,N 是MF 1的中点,O 为坐标原点,则|ON |等于A.4B.2C.1D.32 9.函数f 1(x )=x -1,f 2(x )=x -1,f 3(x )=x +1,f 4(x )=x +1的图象分别是点集C 1,C 2,C 3,C 4,这些图象关于直线x =0的对称曲线分别是点集D 1,D 2,D 3,D 4,现给出下列四个命题,其中,正确命题的序号是①D 1⊆D 2; ②D 1∪D 3=D 2∪D 4; ③D 4⊆D 3; ④D 1∩D 3=D 2∩D 4A.①③B.①②C.③④D.②④10.某科技小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选时的不同选法有16种,则小组中的女生数目为A.2B.3C.4D.511.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为A.90°B.60°C.45°D.0°12.设n 为满足0C n +1C n +22C n +…+n nn C <450的最大自然数,则n 等于A.4B.5C.7D.6第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷,用钢笔或圆珠笔直接答在试题卷中.2.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) x +y ≤4,13.平面内满足不等式组 x +2y ≤6, 的所有点中,使目标函数Z =5x +4y 取得最大值的x ≥0, y ≥0点的坐标是___________.14.某邮局现只有邮票0.6元,0.8元,1.1元的三种面值邮票,现有邮资为7.50元的邮件一件,为使粘贴的邮票张数最少;且资费恰为7.50元,则至少要购买___________张邮票.15.抛物线的准线为y 轴,焦点运动的轨迹为y 2-4x 2+8y =0(y ≠0),则其顶点运动的轨迹方程为___________________________.16.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察17.(本小题满分12分)已知函数f (x )=2a cos 2x +b sin x cos x ,且f (0)=2,f (3π)=21+23. (1)求f (x )的最大值与最小值;(2)若α-β≠k π,k ∈Z ,且f (α)=f (β),求tan(α+β)的值. 18.(本小题满分12分)已知数列{a n }为等差数列,公差为d ,{b n }为等比数列,公比为q ,且d =q =2,b 3+1=a 10=5,设c n =a n b n .(1)求数列{c n }的通项公式;(2)设数列{c n }的前n 项和为S n ,求nnS nb 的值. 19.(本小题满分12分)如图,正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4.E 、F 分别为棱AB 、BC 的中点,EF ∩BD =G .(1)求证:平面B 1EF ⊥平面BDD 1B 1; (2)求点D 1到平面B 1EF 的距离d ; (3)求三棱锥B 1-EFD 1的体积V . 20.(本小题满分12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费200元.(1)当每辆车的月租金为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少元? 21.(本小题满分12分)如图,A 、B 是两个定点,且|AB |=2,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,直线k 垂直于直线AB ,且B 点到直线k 的距离为3.(1)求证:点P 到点B 的距离与点P 到直线k 的距离之比为定值; (2)若P 点到A ,B 两点的距离之积为m ,当m 取最大值时,求P 点的坐标;(3)若|PA |-|PB |=1,求cos APB 的值. 22.(本小题满分14分)定义在(-1,1)上的函数f (x )满足:①对任意x ,y ∈(-1,1),都有f (x )+f (y )=f (xyyx ++1); ②当x ∈(-1,0)时,有f (x )>0.(1)判定f (x )在(-1,1)上的奇偶性,并说明理由; (2)判定f (x )在(-1,0)上的单调性,并给出证明;(3)求证:f (1312++n n )=f (11+n )-f (21+n )(n ∈N ).数学仿真试题(一)答案一、选择题1.B2.D3.D4.C5.B6.C7.B8.A9.D 10.A 11.B 12.C 二、填空题13.(4,0) 14.8 15.y 2-16x 2+8y =0(y ≠0) 16.(140)、(85) 三、解答题 17.解:(1)f (0)=2a =2,∴a =1 f (3π)=2a+43b =21+23,∴b =2 ∴f (x )=2cos 2x +sin2x =sin2x +cos2x +1 =1+2sin(2x +4π)∴f (x )max =1+2,f (x )min =1-2 (2)由f (α)=f (β)得sin(2α+4π)=sin(2β+4π)∵α-β≠k π,(k ∈Z) ∴2α+4π=(2k +1)π-(2β+4π)即α+β=k π+4π∴tan(α+β)=1.18.解:(1)∵a 10=5,d =2,∴a n =2n -15又∵b 3=4,q =2,∴b n =2n -1∴c n =(2n -15)²2n -1 (2)S n =c 1+c 2+c 3+…+c n , 2S n =2c 1+2c 2+2c 3+…+2c n错位相减,得-S n =c 1+(c 2-2c 1)+(c 3-2c 2)+…+(c n -2c n -1)-2c n ∵c 1=-13,c n -2c n -1=2n∴-S n =-13+22+23+…+2n -(2n -15)²2n =-13+4(2n -1-1)-(2n -15)²2n =-17+2n +1-(2n -15)²2n ∴S n =17+(2n -17)²2n ∴nnS nb =nn n n 2)172(1721⋅-+⋅-=412)172(2171=⋅-+-n nn . 19.(1)证明:证法一: 连结AC.∵正四棱柱ABCD -A 1B 1C 1D 1的底面是正方形, ∴AC ⊥BD ,又AC ⊥D 1D ,故AC ⊥平面BDD 1B 1. ∵E 、F 分别为AB 、BC 的中点,故EF ∥AC , ∴EF ⊥平面BDD 1B 1,∴平面B 1EF ⊥平面BDD 1B 1. 证法二:∵BE =BF ,∠EBD =∠FBD =45°, ∴EF ⊥BD . 又EF ⊥D 1D∴EF ⊥平面BDD 1B 1,∴平面B 1EF ⊥平面BDD 1B 1. (2)解:在对角面BDD 1B 1中, 作D 1H ⊥B 1G ,垂足为H .∵平面B 1EF ⊥平面BDD 1B 1, 且平面B 1EF ∩平面BDD 1B 1=B 1G ∴D 1H ⊥平面B 1EF ,且垂足为H , ∴点D 1到平面B 1EF 的距离d =D 1H . 解法一:在Rt △D 1HB 1中,D 1H =D 1B 1²sin D 1B 1H . ∵D 1B 1=2A 1B 1=2²22=4, sin D 1B 1H =sin B 1GB =11GB BB =22141+=174,∴d =D 1H =4²174=171716. 解法二:∵△D 1HB 1∽△B 1BG ,∴B B H D 11=GB B D 111, ∴d =D 1H =G B B B 121=222144+=171716.解法三:连结D 1G ,则三角形D 1GB 1的面积等于正方形DBB 1D 1的面积即21²B 1G ²D 1H =21B 1B 2, ∴d =D 1H =GB B B 121=171716.(3)解:V =11EFD B V - =EF B D V 11- =31²d ²EF B S 1∆=316 20.解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为5030003600-=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=(100-503000-x )(x -200), 整理得f (x )=501(8000-x )(x -200)=-501x 2+164x -32000=-501(x -4100)2+304200.所以,当x =4100时,f (x )最大,最大值为f (4100)=304200,即当每辆车的月租金定为4100元时,租赁公司的月收益最大,最大月收益为304200元. 21.(1)证明:∵PA +PB =AM =4,∴由椭圆定义可知,P 点位于以A 、B 为焦点、长轴长为4的椭圆上,且直线k 为该椭圆的准线∴点P 到点B 的距离与点P 到直线k 的距离之比即为e =a c =21. (2)解:如图,建立平面直角坐标系,则椭圆的方程为3422y x +=1,易知,|PA |=|PB |=2时, |PA |²|PB |=m =4为最大,此时,点P 的坐标为(0,±3).(3)解:∵|PA |+|PB |=4,|PA |-|PB |=1, ∴|PA |=25,|PB |=23,又∵|AB |=2=24 ∴△P AB 是以B 为直角的直角三角形 ∴cos APB =53. 22.(1)解:当x =y =0时,则f (0)+f (0)=f (0),∴f (0)=0,f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),∴f (x )在(-1,1)上是奇函数. (2)解:任取-1<x 1<x 2<0,∵当x ∈(-1,0)时,有f (x )>0. ∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (21211x x x x --)>0即f (x 1)>f (x 2),∴f (x )在(-1,0)上是减函数.(3)证明:f (11+n )-f (21+n ) =f (11+n )+f (-21+n )=f (211112111+⋅+-+-+n n n n )=f (1312++n n ).。