2010年普通高等学校招生全国统一考试高考数学教师精校版含详解全国新课标文
- 格式:docx
- 大小:476.14 KB
- 文档页数:10
2010年高考上海理科数学试题及答案一、填空题(共13小题;共65分)1. 若复数z=1−2i,i为虚数单位,则z⋅z+z=.2. 动点P到点F2,0的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为.3. 行列式 \(\begin{vmatrix}{\sin \dfrac{\pi }{3}}&{\sin \dfrac{\pi }{6}} \\{\cos \dfrac{\pi }{3}}&{\cos \dfrac{\pi }{6}}\end{vmatrix} \)的值是.4. 圆C:x2+y2−2x−4y+4=0的圆心到直线l:3x+4y+4=0的距离d=.5. 随机变量ξ的概率分布由下表给出:x78910Pξ=x0.30.350.20.15则该随机变量ξ的均值是.6. 2010年上海世博会园区每天9:00开园,20:00停止入园.在下边的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的执行框内应填入.7. 对于不等于1的正数a,函数f x=log a x+3的反函数的图象都经过点P,则点P的坐标为.8. 从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为"抽得红桃K ",事件B为"抽得黑桃",则概率P A∪B=(结果用最简分数表示).9. 在n行n列矩阵123⋯n−2n−1n234⋯n−1n1345⋯n12⋯⋯⋯⋯⋯⋯⋯n12⋯n−3n−2n−1中,记位于第i行第j列的数为a ij i,j=1,2,⋯,n .当n=9时,a11+a22+a33+⋯+a99=.10. 将直线l1:nx+y−n=0,l2:x+ny−n=0n∈N∗,x轴,y轴围成的封闭区域的面积记为S n,则limn→∞S n=.11. 如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于点O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A B、C、D、O为顶点的四面体的体积是.12. 如图所示,直线x=2与双曲线Γ:x24−y2=1的渐近线交于E1、E2两点,记OE1=e1,OE2=e2,任取双曲线Γ上的点P,若OP=ae1+be2a,b∈R,则a、b满足的一个等式是.13. 从集合U=a,b,c,d的子集中选出4个不同的子集,需同时满足以下两个条件:(1)∅,U都要选出;(2)对选出的任意两个子集A和B,必有A⊆B或A⊇B.那么,共有种不同的选法.二、选择题(共4小题;共20分)14. " x=2kπ+π4k∈Z "是" tan x=1 "成立的 A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件15. 直线l的参数方程是x=1+2ty=2−t t∈R,则l的方向向量d可以是 A. 1,2B. 2,1C. −2,1D. 1,−216. 若x0是方程12x=x13的解,则x0属于区间 A. 23,1 B. 12,23C. 0,13D. 13,1217. 某人要作一个三角形,要求它的三条高的长度分别是113、111、15,则此人将 A. 不能作出满足要求的三角形B. 作出一个锐角三角形C. 作出一个直角三角形D. 作出一个钝角三角形三、解答题(共5小题;共65分)18. 已知0<x<π2,化简:lg cos x⋅tan x+1−2sin2x2+lg2cos x−π4−lg1+sin2x.19. 已知数列a n的前n项和为S n,且S n=n−5a n−85,n∈N∗.(1)证明:a n−1是等比数列;(2)求数列S n的通项公式,并指出n为何值时,S n取得最小值,并说明理由.20. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.骨架将圆柱底面8等分,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯.当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯A1B3、A3B5所在异面直线所成角的的余弦值.21. 若实数x、y、m满足∣x−m∣>∣y−m∣,则称x比y远离m.(1)若x2−1比1远离0,求x的取值范围;(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab;(3)已知函数f x的定义域D= x∣x≠kπ2+π4,k∈Z,x∈R .任取x∈D,f x等于sin x和cos x中远离0的那个值.写出函数f x的解析式,并指出它的基本性质(结论不要求证明).22. 已知椭圆Γ的方程为x2a2+y2b2=1a>b>0,点P的坐标为−a,b.(1)若直角坐标平面上的点M、A0,−b、B a,0满足PM=12PA+PB,求点M的坐标;(2)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E.若k1⋅k2=−b2a2,证明:E为CD的中点;(3)对于椭圆Γ上的点Q a cosθ,b sinθ0<θ<π,如果椭圆Γ上存在不同的两点P1、P2使PP1+PP2=PQ,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ满足的条件.答案第一部分1. 6−2i【解析】由z=1−2i,知z=1+2i,那么zz+z=1−2i1+2i+1−2i=5+1−2i=6−2i.2. y2=8x【解析】由定义知P的轨迹是以F2,0为焦点的抛物线,故p=4,所以其方程为y2=8x.3. 12【解析】由于 \( \begin{vmatrix}{\sin \dfrac{\pi }{3}}&{\sin \dfrac{\pi }{6}} \\{\cos \dfrac{\pi }{3}}&{\cos \dfrac{\pi }{6}}\end{vmatrix} \)=sinπ3cosπ6−cosπ3sinπ6=sinπ3−π6=sinπ6=12.4. 3【解析】配方得圆C:x−12+y−22=1,得圆心1,2,那么圆心到直线l:3x+4y+4=0的距离d=22=3.5. 8.2【解析】由随机变量ξ的概率分布列知,ξ的均值为Eξ=7×0.3+8×0.35+9×0.2+10×0.15=8.2.6. S←S+a7. 0,−28. 726【解析】从一副混合后的扑克牌中随机抽取1张的基本事件总数为52种,而事件A∪B为"抽得红桃K或抽得黑桃",其对应的事件数为14,那么相应的概率为P=1452=726.9. 45【解析】由矩阵的特点知a11=1,a22=3,a33=5,a44=7,a55=9,a66=2,a77=4,a88=6,a99=8,那么,a11+a22+a33+⋯+a99=45.10. 1【解析】l1、l2分别变形为l1:n x−1+y=0、l2:n y−1+x=0,所以直线l1、l2分别过定点A1,0、B0,1,联立nx+y−n=0,x+ny−n=0解得x=nn+1y=nn+1,即直线l1、l2的交点为C nn+1,nn+1;可知S n=S四边形OACB =nn+1,那么limn→∞S n=limn→∞nn+1=limn→∞11+1=11+0=1.11. 823【解析】由于正方形的边长为4,且AC和BD相交于点O,那么AO=CO=DO=22,且∠AOD=∠DOC=∠COB=90∘,通过折叠,可得如下图形,而且AO、CO、DO两两垂直,那么对应的四面体的体积为V=13×12×22×22×22=823.12. 4ab=1【解析】依题意可知:E12,1,E22,−1,所以OP=ae1+be2=2a+2b,a−b.因为点P在双曲线上,所以2a+2b 24−a−b2=1,化简得4ab=1.13. 36【解析】由题可知,另外两个集合均为全集U的非空真子集,不妨设,两个集合分别为A、B,且A⊆B,则选法可分为以下两类:(1)当集合A中含有一个元素时,集合A共有4种选法,此时集合B的所有选法为23−2=6种;(2)当集合A中含有两个元素时,集合A共有C42种选法,此时集合B的所有选法为22−2=2种;综上,不同的选法共有36种.第二部分14. A 【解析】由题知,当x=2kπ+π4k∈Z时,可得tan x=1;而当tan x=1时,可得x=kπ+π4k∈Z.故" x=2kπ+π4k∈Z "是" tan x=1 "成立的充分不必要条件.15. C【解析】提示:该直线方程的一般形式为x+2y−5=0.16. D 【解析】设函数f x=12x−x13,结合各选项有:f0=1>0,由幂函数的性质,得f13=121−131>0,由指数函数的性质,得f12=121−121<0,因此,根据函数零点的意义知,x0属于的区间为13,12.17. D 【解析】设三角形的对应三条边长分别为a、b、c,利用等积法有1 13a=111b=15c=k,从而a=13k,b=11k,c=5k,那么角A为最大角,从而有cos A=b2+c2−a2=−23<0,故△ABC一定是钝角三角形.第三部分18. 因为0<x<π2,所以原式=lg sin x+cos x+lg cos x+sin x−2lg sin x+cos x=0.19. (1)当n=1时,a1=−14;当n≥2时,a n=S n−S n−1=−5a n+5a n−1+1,可化为a n−1=56a n−1−1,又a1−1=−15≠0,则数列a n−1是等比数列;(2)由(1)知a n−1=−15⋅56n−1,解得a n=1−15⋅56n−1,从而S n=75⋅56n−1+n−90n∈N∗,由不等式S n<S n+1,得5 6n−1<225,即n>log562+1≈14.9,于是当n≥15时,数列S n单调递增;同理可得,当n≤15时,数列S n单调递减;故当n=15时,S n取得最小值.20. (1)设圆柱形灯笼的母线长为l,则l=1.2−2r0<r<0.6,S=−3πr−0.42+0.48π,所以当r=0.4时,S取得最大值约为1.51平方米.(2)当r=0.3时,l=0.6,建立空间直角坐标系,可得A 1B 3 = 0.3,0.3,0.6 ,A 3B 5 = −0.3,0.3,0.6 , 设向量A 1B 3 与A 3B 5 的夹角为θ,则cos θ=A 1B 3 ⋅A 3B 5∣∣A 1B 3 ∣∣⋅∣∣A 3B 5 ∣∣=23,所以A 1B 3、A 3B 5所在异面直线所成角的余弦值为23. 21. (1)由题意得∣x 2−1∣>1,即x 2−1>1 或 x 2−1<−1.由x 2−1>1,得x <− 2 或 x > 2;由x 2−1<−1,得x ∈∅.综上可知x 的取值范围为 −∞,− ∪ +∞ . (2)由题意,即证∣∣a 3+b 3−2ab ab ∣∣>∣∣a 2b +ab 2−2ab ab ∣∣.因为a ≠b ,且a 、b 都为正数,所以∣∣a 3+b 3−2ab ab ∣∣=∣∣∣ a 3 2+ b 3 2−2 a 3b 3∣∣∣=∣∣∣ a − b 2∣∣∣= a a −b b 2,∣∣a 2b +ab 2−2ab ab ∣∣=∣∣ab a +b −2 ab ∣∣=ab a − b 2= a b −b a 2,即证a a −b b 2− a b −b a 2>0,即证a a −b b −a b +b a a a −b b +a b −b a >0,需证a −b a +b a −b a + b >0,即证a +b a −b 2>0.因为a、b都为正数且a≠b,所以上式成立.故命题成立.(3)因为x≠kπ2+π4,k∈Z,x∈R,所以当∣sin x∣>∣cos x∣时,得sin2x>cos2x,即cos2x<0,解得kπ+π4<x<kπ+3π4,k∈Z,此时f x=sin x;当∣sin x∣<∣cos x∣时,得sin2x<cos2x,即cos2x>0,解得kπ−π4<x<kπ+π4,k∈Z,此时f x=cos x.综上可得f x=sin x,x∈ kπ+π,kπ+3πk∈Z,cos x,x∈ kπ−π4,kπ+π4k∈Z.性质如下:非奇非偶函数;值域为 −1,−22∪22,1;函数最小正周期为2π;函数的单调增区间为2kπ−π4,2kπ ,2kπ+π4,2kπ+π2,2kπ+π,2kπ+5π4和2kπ+3π2,2kπ+7π4,k∈Z;函数的单调减区间为2kπ,2kπ+π4,2kπ+π2,2kπ+3π4,2kπ+3π4,2kπ+π 和2kπ+5π4,2kπ+3π2,k∈Z.22. (1)设M x0,y0,则PM=x0+a,y0−b,PA=a,−2b,PB=2a,−b.由PM=12PA+PB得x0+a,y0−b=12a,−2b+2a,−b.所以x0=a,y0=−b,所以M a2,−b2.(2)由方程组y=k1x+p,x2 2+y22=1,消去y得方程a2k12+b2x2+2a2k1px+a2p2−b2=0,因为直线l1交椭圆Γ于C、D两点,所以Δ>0,即a2k12+b2−p2>0,设C x1,y1、D x2,y2,CD中点坐标为x0,y0,则x0=x1+x2=−a2k1p12,y0=k1x0+p=b2pa2k12+b2,由方程组y=k1x+p,y=k2x,消去y得方程k2−k1x=p,又因为k2=−b2a2k1,所以x=p21=−a2k1p12=x0,y=k2x=b2pa2k12+b2=y0,故E为CD的中点.(3)如果椭圆Γ上存在不同的两个点P1、P2满足PP1+PP2=PQ,则四边形PP1QP2是平行四边形,因而P1P2的中点应与PQ的中点重合,故只需据此求出直线P1P2的斜率即可.设P1 x P1,y P1,P2 x P2,y P2,PQ中点R−a+a cosθ2,b+b sinθ2.因为P1、P2在椭圆上,所以x P1 2 a2+y P12b2=1. ⋯⋯①①−②并整理得y P1−y P2x P1−x P2=−b2 x P1+x P2a2 y P1+y P2=−b2⋅a cosθ−1a2⋅b1+sinθ=b1−cosθa1+sinθ.求作点P1、P2的步骤如下:1)连接PQ,作出线段PQ的中点R;2)过点R−a+a cosθ2,b+b sinθ2作斜率为k=b1−cosθa1+sinθ的直线l,交椭圆Γ于P1、P2点,则点P1、P2就是所求作的点.当0<θ<π时,只需PQ的中点在椭圆内部,则由作法可知满足条件的点P1、P2就存在,所以有−a+a cosθ22 2+b+b sinθ222<1a>b>0,化简得sinθ−cosθ<1 2 ,即sin θ−π4<24且0<θ<π.。
2010年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,x +20y -=37897988()a a a a a a a ===g 10,所以132850a a =,所以133364564655()(50)a a a a a a a =====g(5)43(1)(1x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).AB C DA 1B 1C 1D 1O【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B CD 中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B )3 (C )23(D )39.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯⨯=o g ,21122ACD S AD CD a ∆==g . 所以1313ACD ACD S DD DO a S ∆∆===g ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos O O O OD OD ∠===(10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e , 3221log log 2e <<< ,32211112log log e<<<; c=12152-=<=,∴c<a<b(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •u u u v u u u v的最小值为(A) 4-+3-(C) 4-+3-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos 2PA PB PA PB α•=⋅u u u v u u u v u u u v u u u v=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y •=u u u v u u u v ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--或3y ≥-+.故min ()3PA PB •=-+u u u v u u u v此时x =【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v 2222221sin 12sin cos 22212sin 2sin sin22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--•==+-≥u u u v u u u v 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x •=-+-=-+--=+-≥u u u v u u u v(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)()()22210110111001,,2PA PB x x y x x y x x x x y •=-⋅--=-+-u u u v u u u v12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年普通高等学校招生全国统一考试(新课标全国卷)文科数学答案1.D 【解析】由题可知,集合{|22}A x x=-剟,集合B ={0,l ,2,3,4,5, 6,7,8,9,10,11,12 ,13,14,15,16},所以集合AB ={0,1,2},故选D .2.C 【解析】由题可知,设(,)x y =b ,则2(8,6)(3,18)x y +=++=a b ,解得5,12x y =-=,故(5,12)=-b ,由16cos ,||||65⋅<>==a b a b a b ,故选C .3.B 【解析】由14z i ====+,可得1||2z ==,故选B . 4.A 【解析】由题可知,点(1,0)在曲线321y x x =-+上,求导可得232y x '=-,所以在点(1,0)处的切线的斜率1k =,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线321y x x =-+的切线方程为1y x =-,故选A .5.D 【解析】设双曲线的标准方程为22221(0,0)x y a b a b-=>>,所以其渐近线方程为b y x a =±,因为点(4,2)-在渐近线上,所以12b a =,根据222c a b =+,可得22214c a a -=,解得254e =,e =,故选D .6.C 【解析】由题可知,质点P 的初始位置在0P ,所以此时点P 到x 轴的距离由题质点P 按照逆时针方向运动,所以应该是距离x 轴的距离越来越小.根据四个选项可得C 正确.7.B 【解析】由题可知,长方体的长、宽、高分别为2,,a a a ,其顶点在同一个球面上,所以球的直径等于长方体的体对角线的长度,故2R 解得R =,所以球的表面积2246S R a ππ==,故选B .8.D 【解析】根据程序框图可知,该程序框图的功能是计算1111122334(1)S k k =+++⋅⋅⋅+⨯⨯⨯⨯+, 现在输入的5N =,所以满足条件k N <的结果为11111111115(1)()()1223344556223566S =++++=-+-+⋅⋅⋅+-=⨯⨯⨯⨯⨯, 故选D .9.B 【解析】由题意可知函数()f x 是偶函数,所以当0x <时的解析式为()24(0)x f x x -=-<,所以当20x -<时,(2)(2)24x f x ---=-,要使(2)0f x ->,解得0x <;当20x -…时,2(2)24x f x --=-,要使2(2)240x f x --=->,解得4x >,综上{|(2)0}{|04}x f x x x x ->=<>或,故选B . 10.A 【解析】由题知,4cos 5α=-,α是第三项限的角,所以3sin 5α=-,由两角和的正弦公式可得sin()sin coscos sin44410πππααα+=+=-,故选A . 11.B 【解析】由题可知:平行四边形ABCD 的点D 的坐标为(0,4)-,点(,)x y 在平行四边形内部,如图,所以在(0,4)D -处目标函数25z x y =-取得最大值为20,在点(3,4)B 处目标函数25z x y =-取得最小值为-14,由题知点(,)x y 在平行四边形内部,所以端点取不到,故25z x y =-的取值范围是(-14,20),故选B .12.C 【解析】由题意可知,画出函数的图象,不妨设a b c <<,因为()()()f a f b f c ==,所以1ab =,c 的范围是( 10,12),所以abc 的范围是(10,12).13.222x y +=【解析】由题意可知,原点到直线20x y +-=的距离为圆的半径,即r ==,所以圆的方程为222x y +=. 14.1N N【解析】这种随机模拟的方法,是在[0,1]内生成了N 个点,而满足几条曲线围成的区域内的点是1N 个,所以根据比例关系1=S N S N矩形。
2010年安徽理一、选择题(共10小题;共50分)1. i是虚数单位,3+3i= A. 14−312B. 14+312i C. 12+36i D. 12−36i2. 若集合A= x log12x≥12,则∁R A= A. −∞,0∪22,+∞ B. 22,+∞C. −∞,0∪22,+∞ D. 22,+∞3. 设向量a=1,0,b=12,12,则下列结论中正确的是 A. a=bB. a⋅b=22C. a∥bD. a−b与b垂直4. 若f x是R上周期为5的奇函数,且满足f1=1,f2=2,则f3−f4= A. −1B. 1C. −2D. 25. 双曲线方程为x2−2y2=1,则它的右焦点坐标为 A. 22,0 B. 52,0 C. 62,0 D. 3,06. 设abc>0,二次函数f x=ax2+bx+c的图象可能是 A. B.C. D.7. 设曲线C的参数方程为x=2+3cosθ,y=−1+3sinθ(θ为参数),直线l的方程为x−3y+2=0,则曲线C上到直线l的距离为71010的点的个数为 A. 1B. 2C. 3D. 48. 一个几何体的三视图如图,该几何体的表面积为 A. 280B. 292C. 360D. 3729. 动点A x,y在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是12,32,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是 A. 0,1B. 1,7C. 7,12D. 0,1和7,1210. 设a n是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是 A. X+Z=2YB. Y Y−X=Z Z−XC. Y2=XZD. Y Y−X=X Z−X二、填空题(共5小题;共25分)11. 命题"对任何x∈R,x−2+x−4>3 "的否定是.12.y −x6的展开式中,x3的系数等于.13. 设x,y满足约束条件2x−y+2≥0,8x−y−4≤0,x≥0,y≥0,若目标函数z=abx+y a>0,b>0的最大值为8,则a+b的最小值为.14. 如图所示,程序框图(算法流程图)的输出值x=.15. 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是(写出所有正确结论的编号).;①P B=25②P B A1=5;11③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P B的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.三、解答题(共6小题;共78分)+16. 设△ABC是锐角三角形,a,b,c分别是内角A、B、C所对边长,并且sin2A=sinπ3−B +sin2B.B sinπ3(1)求角A的值;(2)若AB⋅AC=12,a=27,求b,c(其中b<c).17. 设a为实数,函数f x=e x−2x+2a,x∈R.(1)求f x的单调区间与极值;(2)求证:当a>ln2−1且x>0时,e x>x2−2ax+1.18. 如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90∘,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求二面角B−DE−C的大小.19. 如图,已知椭圆E经过点A2,3,对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=12.(1)求椭圆E的方程;(2)求∠F1AF2的角平分线所在直线l的方程;(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.20. 设数列a1,a2,⋯,a n,⋯中的每一项都不为0.证明:a n为等差数列的充分必要条件是:对任何n∈N+,都有1a1a2+1a2a3+⋯+1a n a n+1=na1a n+1.21. 品酒师需定期接受酒味鉴别功能测试,一般通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=1−a1+2−a2+3−a3+4−a4,则X是对两次排序的偏离程度的一种描述.(1)写出X的可能值集合;(2)假设a1,a2,a3,a4等可能的为1,2,3,4的各种排列,求X的分布列;(3)某品酒师在相继进行的三轮测试中,都有X≤2,(i)试按(2)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);(ii)你认为该品酒师的酒味鉴别功能如何?说明理由.答案第一部分1. B2. A3. D4. A 【解析】因为f3=f3−5=f−2=−f2=−2,f4=f4−5=f−1=−f1=−1,所以f3−f4=−2−−1=−1.5. C6. D 【解析】由A、C、D知,f0=c<0,因为abc>0,那么ab<0,从而对称轴x=−b2a>0,由此A、C错误,D符合要求;由B知,f0=c>0,因为abc>0,那么ab>0,从而对称轴x=−b2a<0,由此B错误.7. B 【解析】曲线C是圆心坐标为C2,−1、半径为3的圆,那么圆心C到直线x−3y+2=0的距离为d=2−3×−1+2=71010.因为32<71010<3,所以曲线C上到直线l距离为71010的点有2个.8. C 【解析】该几何体是由两个长方体组成的简单组合体,下面是一个长、宽、高分别为10、8、2的长方体,上面竖着是一个长、宽、高分别为6、2、8的长方体,则其表面积等于下面长方体的表面积与上面长方体的侧面积之和,即S=28×10+8×2+10×2+26×8+2×8=360.9. D 【解析】由于A点12秒旋转一周,则点A每秒转过2π12=π6弧度,从而经过t秒转了π6t弧度.而t=0时,点A12,32,则∠xOA=π3.经过t秒后点A的纵坐标为y=sinπt+πt∈0,12,当−π+2kπ≤πt+π≤π+2kπ,k∈Z时,函数y为关于t的增函数,此时−5+12k≤t≤1+12k,k∈Z,结合0≤t≤12得k=0 时,0≤t≤1;k=1 时,7≤t≤12.其他解法一:依题意,函数y t是周期为12的函数,其单调递增区间长度与单调递减区间长度相等.因此排除A、B、C;选D.其他解法二:画出示意图后容易知道函数y t在t=0的右侧和t=12的左侧小邻域内都是单调递增的;因此排除A、B、C;选D.10. D【解析】由于等比数列a n中,S n=X,S2n=Y,S3n=Z,根据等比数列的相关性质,对应的S n,S2n−S n,S3n−S2n也成等比数列,即X,Y−X,Z−Y成等比数列,则有Y−X2=X Z−Y,即Y Y−X=X Z−X.第二部分11. 存在x0∈R,有x0−2+x0−4 ≤312. 1513. 4【解析】作出可行域图中虚线的斜率是负数,所以当z取最大值时,它必经过点1,4,将1,4代入8=abx+y得ab=4,所以a+b≥2ab=4,当且仅当a=b=2时,等号成立.14. 12【解析】x=1⇒x=2⇒x=4⇒x=5⇒x=6⇒x=8⇒x=9⇒x=10⇒x=12,不满足继续循环的条件,退出循环,最后输出12.15. ②④【解析】根据题意可得④是正确的;所以P A1=510,P A2=210,P A3=310,而P B=510×511+2 10×411+310×411=922,则①和⑤是错误的;由于P B A1=P A1BP A1=510×511510=511,则②是正确的;同时可以判断出③是错误的.第三部分16. (1)因为sin2A=3cos B+1sin B3cos B−1sin B +sin2B=34cos2B−14sin2B+sin2B=34,所以sin A=±3 ,又A为锐角,所以A=π3 .(2)由AB⋅AC=12,可得cb cos A=12. ⋯⋯①由(1)知A=π3,所以cb=24, ⋯⋯②由余弦定理知a2=c2+b2−2cb cos A,将a=27及②代入,得c2+b2=52, ⋯⋯③③+②×2,得c+b2=100,即c+b=10.因此,c,b是一元二次方程t2−10t+24=0的两个根.解此方程并由c>b知c=6,b=4.17. (1)由f x=e x−2x+2a,x∈R,知fʹx=e x−2,x∈R.令fʹx=0,得x=ln2.于是当x变化时,fʹx,f x的变化情况如下表:x−∞,ln2ln2ln2,+∞fʹx−0+f x单调递减21−ln2+a单调递增故f x的单调递减区间是−∞,ln2,单调递增区间是ln2,+∞,f x在x=ln2处取得极小值,极小值为f ln2=e ln2−2ln2+2a=21−ln2+a.无极大值.(2)设g x=e x−x2+2ax−1,x∈R,于是gʹx=e x−2x+2a,x∈R.由(1)知当a>ln2−1时,gʹx最小值为gʹln2=21−ln2+a>0.于是对任意x∈R,都有gʹx>0,所以g x在R内单调递增.于是当a>ln2−1时,对任意x∈0,+∞,都有g x>g0,而g0=0,从而对任意x∈0,+∞,g x>0.即e x−x2+2ax−1>0,故e x>x2−2ax+1.18. (1)设AC与BD交于点G,则G为AC的中点,连EG,GH,AB,又H为BC的中点,∴GH∥AB,GH=12AB.∴EF∥GH,EF=GH,又EF∥AB,EF=12∴四边形EFHG为平行四边形,∴GE∥FH,而EG⊂平面EDB,FH⊄平面EDB,∴FH∥平面EDB.(2)由四边形ABCD为正方形,有AB⊥BC,又EF∥AB,∴EF⊥BC.而EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH.又∵BC∩FB=B又∵BF=FC,H为BC的中点,∴FH⊥BC.∴FH⊥平面ABCD,∴FH⊥AC,又FH∥EG,∴AC⊥EG.又AC⊥BD,EG∩BD=G,∴AG⊥平面EDB.(3)如图,以H为坐标原点,HB为x轴正方向,如图所示建立空间直角坐标系O−xyz.设AB=2,则B1,0,0,C−1,0,0,E0,−1,1,D−1,−2,0.所以BE=−1,−1,1,BD=−2,−2,0.设平面BDE的法向量为n1=1,y1,z1,则BE⋅n1=−1−y1+z1=0,BD⋅n1=−2−2y1=0,所以y1=−1,z1=0,即n1=1,−1,0.又CD=0,−2,0,CE=1,−1,1.设平面CDE的法向量为n2=1,y2,z2,则n2⋅CD=0,y2=0,n2⋅CE=0,1−y2+z2=0,z2=−1,故n2=1,0,−1,所以cos n1,n2=n1⋅n212=12⋅2=1,所以n1,n2=60∘,即二面角B−DE−C为60∘.19. (1)设椭圆E的方程为x2a +y2b=1.由e=12,得c =1,b2=a2−c2=3c2,所以x2 4c2+y23c2=1,将A2,3代入,有1 c2+3c2=1,解得c=2,所以椭圆E的方程为x 216+y212=1.(2)解法一:由(1)知F1−2,0,F22,0,所以直线AF1的方程为y=34x+2,即3x−4y+6=0.直线AF2的方程为x=2.由点A在椭圆E上的位置知,∠F1AF2的角平分线所在直线的斜率为正数.设P x,y为∠F1AF2的角平分线所在直线上任一点,则有3x−4y+65=x−2.若3x−4y+6=5x−10,得x+2y−8=0,其斜率为负,不合题意,舍去.于是3x−4y+6=−5x+10,即2x−y−1=0.所以∠F1AF2的角平分线所在直线的方程为2x−y−1=0.解法二:因为A2,3,F1−2,0,F22,0,所以AF1=−4,−3,AF2=0,−3,所以AF1 AF1+AF2AF2=1−4,−3+10,−3=−41,2.所以k l=2,所以l:y−3=2x−2,即2x−y−1=0.(3)解法一:假设存在这样的两个不同的点B x1,y1和C x2,y2.因为BC⊥l,所以k BC=y2−y1x2−x1=−12.设BC的中点为M x0,y0,则x0=x1+x22,y0=y1+y22,由于M在l上,故2x0−y0−1=0. ⋯⋯①又B,C在椭圆上,所以有x12 16+y1212=1 与 x2216+y2212=1.两式相减,得x22−x12 16+y22−y1212=0,即x1+x2x2−x116+y1+y2y2−y112=0.将该式整理为1⋅x1+x2+y2−y121⋅1⋅y1+y2=0,并将直线BC的斜率k BC和线段BC的中点表示代入该表达式中,得1x0−1y0=0,即3x0−2y0=0. ⋯⋯②①×2−②得x0=2,y0=3,即BC的中点为点A,而这是不可能的.所以不存在满足题设条件的相异两点.解法二:假设存在B x1,y1,C x2,y2两点关于直线l对称,则l⊥BC,所以k BC=−12,设直线BC的方程为y=−1x+m,将其代入椭圆方程x2 16+y212=1,得一元二次方程3x2+4 −12x+m2=48,即x2−mx+m2−12=0,则x1与x2是该方程的两个根,由韦达定理得x1+x2=m,于是y1+y2=−1x1+x2+2m=3m,所以BC的中点坐标为m2,3m 4.又线段BC的中点在直线y=2x−1上,所以3m4=m−1,得m=4.即BC的中点坐标为2,3,与点A重合,矛盾.所以不存在满足题设条件的相异两点.20. (先证必要性)设数列a n的公差为d,若d=0,则所述等式显然成立,若d≠0,则1 12+123+⋯+1n n+1=1a2−a112+a3−a223+⋯+a n+1−a nn n+1=1d1a1−1a2+1a2−1a3+⋯+1a n−1a n+1=111−1n+1=1⋅a n+1−a11n+1=na1a n+1.(再证充分性)证法一:(数学归纳法)设所述的等式对一切n∈N+都成立,首先,在等式1 a1a2+1a2a3=2a1a3 ⋯⋯①两端同乘a1a2a3,即得a1+a3=2a2,所以a1,a2,a3成等差数列,记公差为d,则a2=a1+d.假设a k=a1+k−1d,当n=k+1时,观察如下两等式:1 12+123+⋯+1k−1k=k−11k, ⋯⋯②1 12+123+⋯+1k−1k+1k k+1=k1k+1, ⋯⋯③将②代入③,得k−1 a1a k +1a k a k+1=ka1a k+1,在该式两端同乘a1a k a k+1,得k−1a k+1+a1=ka k.将a k=a1+k−1d代入其中,整理后,得a k +1=a 1+kd .由数学归纳法原理知,对一切n ∈N +都有a n =a 1+ n −1 d ,所以 a n 是公差为d 的等差数列.证法二:(直接证法)依题意有1a 1a 2+1a 2a 3+⋯+1a n a n +1=n a 1a n +1, ⋯⋯①112+123+⋯+1n n +1+1n +1n +2=n +11n +2. ⋯⋯② ②−①得1n +1n +2=n +11n +2−n 1n +1, 在上式两端同乘a 1a n +1a n +2,得a 1= n +1 a n +1−na n +2, ⋯⋯③同理可得a 1=na n − n −1 a n +1, ⋯⋯④③−④得2na n +1=n a n +2+a n .即a n +2−a n +1=a n +1−a n ,所以 a n 是等差数列.21. (1)X 的可能值集合为 0,2,4,6,8 .在1,2,3,4中奇数与偶数各有两个,所以a 2,a 4中的奇数个数等于a 1,a 3中的偶数个数, 因此 1−a 1 + 3−a 3 与 2−a 2 + 4−a 4 的奇偶性相同,从而X = 1−a 1 + 3−a 3 + 2−a 2 + 4−a 4 必为偶数.X 的值非负,且易知其值不大于8.容易举出使得X 的值等于0,2,4,6,8各值的排列的例子.(2)可用列表或树状图列出1,2,3,4的一共24种排列,计算每种排列下的X 值,在等可能的假定下,得到X02468P124187243816(3)(i )首先P X ≤2 =P X =0 +P X =2 =424=16, 将三轮测试都有X ≤2的概率记作p ,由上述结果和独立性假设,得p =163=1216. (ii )由于p =1216<51000是一个很小的概率,这表明如果仅凭随机猜测得到三轮测试都有X ≤2的结果的可能性很小,所以我们认为该品酒师确实有良好的味觉鉴别功能,不是靠随机猜测.。
2010年普通高等学校招生全国统一考试文科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
【教师简评】本试卷整体上明显比去年加大了难度,整套题对程度中等的学生来说有比较有难度,估计最后的考试分数不会特别理想。
试题不仅注意对基础知识的考查,更注重了对能力的考查。
体现了“稳中求变,深化能力”的主导思想。
知识分布还是比较广的,题的形式稳定,延续以前试题格式。
本套试卷基础与能力并重,前6题都是常见题,在考场上能够稳定学生情绪,第10、11、12三题是较为综合性的试题,这是近几年来全国1套试卷难度最大的,填空题难度不算大。
主观题试题类型都是常规题,难度和运算量仍然不小。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 【答案】C【命题意图】本试题主要考查三角函数的诱导公式及特殊角求值。
2010年陕西文一、选择题(共10小题;共50分)1. 集合A=x−1≤x≤2,B=x x<1,则A∩B= A. x x<1B. x−1≤x≤2C. x−1≤x≤1D. x−1≤x<12. 复数z=i在复平面上对应的点位于 1+iA. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 函数f x=2sin x cos x是 A. 最小正周期为2π的奇函数B. 最小正周期为2π的偶函数C. 最小正周期为π的奇函数D. 最小正周期为π的偶函数4. 如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则 A. x A>x B,s A>s BB. x A<x B,s A>s BC. x A>x B,s A<s BD. x A<x B,s A<s B5. 如图是求x1,x2,⋯,x10的乘积S的程序框图,图中空白框中应填入的内容为 A. S=S⋅n+1B. S=S⋅x n+1C. S=S⋅nD. S=S⋅x n6. " a>0 "是" a >0 "的 A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 下列四类函数中,具有性质“对任意的x>0,y>0,函数f x满足f x+y=f x f y”的是A. 幂函数B. 对数函数C. 指数函数D. 余弦函数8. 若某空间几何体的三视图如图所示,则该几何体的体积是 A. 13B. 23C. 1D. 29. 已知抛物线y2=2px p>0的准线与圆x−32+y2=16相切,则p的值为 A. 12B. 1C. 2D. 410. 某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=x (x表示不大于x的最大整数)可以表示为 A. y=x10B. y=x+310C. y=x+410D. y=x+510二、填空题(共7小题;共35分)11. 观察下列等式:13+23=1+22,13+23+33=1+2+32,13+23+33+43=1+2+3+42,⋯,根据上述规律,第四个等式为.12. 已知向量a=2,−1,b=−1,m,c=−1,2,若 a+b∥c,则m=.13. 已知函数f x=3x+2,x<1,x2+ax,x≥1,若f f0=4a,则实数a=.14. 设x,y满足约束条件x+2y≤4,x−y≤1,x+2≥0,则目标函数z=3x−y的最大值为.15. 不等式2x−1<3的解集为.16. 如图,已知Rt△ABC的两条直角边AC,BC的长分别为3 cm,4 cm,以AC为直径的圆与AB交于点D,则BDDA=.17. 参数方程x=cosα,y=1+sinα, α为参数化成普通方程为.三、解答题(共6小题;共78分)18. 已知a n是公差不为零的等差数列,a1=1且a1,a3,a9成等比数列.(1)求数列a n的通项公式;(2)求数列2a n的前n项和S n.19. 如图,在△ABC中,已知∠B=45∘,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.20. 为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170∼185cm之间的概率;(3)从样本中身高在180∼190cm之间的男生中任选2人,求至少有1人身高在185∼190cm之间的概率.21. 如图,椭圆C:x2a2+y2b2=1a>b>0的顶点为A1,A2,B1,B2,焦点为F1,F2,A1B1=7,S平行四边形A1B1A2B2=2S平行四边形B1F1B2F2.(1)求椭圆C的方程;(2)设n为过原点的直线,l是与n垂直相交于P点,与椭圆相交于A,B两点的直线,OP= 1.是否存在上述直线l使OA⋅OB=0成立?若存在,求出直线l的方程;若不存在,请说明理由.22. 已知函数f x=x,g x=a ln x,a∈R.(1)若曲线y=f x与曲线y=g x相交,且在交点处有相同的切线,求a的值及该切线的方程;(2)设函数 x=f x−g x,当 x存在最小值时,求其最小值φa的解析式;(3)对2中的φa,证明:当a∈0,+∞时,φa≤1.23. 如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E、F分别是PB、PC的中点.(1)证明:EF∥平面PAD;(2)求三棱锥E−ABC的体积V.答案第一部分1. D2. A 【解析】提示:i1+i =i1−i1+i1−i=12+12i.3. C4. B 【解析】平均数反映一组数据的平均水平,由图可知x A<x B.标准差反映一组数据的波动性大小,波动越大,标准差越大,由图可知s A>s B.5. D6. A7. C8. C 【解析】该空间几何体为直三棱柱,其中高为2,底面是直角边长分别为1、2的直角三角形.9. C 【解析】因为抛物线的准线为x=−p2,圆的标准方程为x−32+y2=16,所以3− −p2=4,解得p=2.10. B【解析】法一:特殊取值法,若x=56,y=5,排除C、D,若x=57,y=6,排除A,所以选B法二:设x=10m+α0≤α≤9,0≤α≤6时,x+310= m+α+310=m=x10,当6<α≤9时,x+310= m+α+310=m+1=x10+1,所以选B第二部分11. 13+23+33+43+53=152【解析】观察可知,第n−1个等式的左边是从1开始的连续n个自然数的立方和,而右边是这连续n个自然数和的平方,即13+23+33+⋯+n3=1+2+3+⋯+n2,所以,第4个等式为13+23+ 33+43+53=152.12. −1【解析】因为a=2,−1,b=−1,m,所以a+b=1,m−1,由 a+b c得1−1=m−12,所以m=−1.13. 2【解析】由已知得f0=2,即f f0=f2=22+2a,又f f0=4a,所以22+2a=4a,即a=2.14. 515. x−1<x<216. 16917. x2+y−12=1第三部分18. (1)由题设知公差d≠0,由a1=1,且a1,a3,a9成等比数列,得1+2d1=1+8d1+2d,解得d=1,d=0舍去,故a n的通项a n=1+n−1×1=n.(2)由1知2a n=2n,由等比数列前n项和公式,得S n=2+22+23+⋯+2n=21−2n=2n+1−2.19. 在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC=AD2+DC2−AC22AD⋅DC=100+36−1962×10×6=−12,所以∠ADC=120∘,∠ADB=60∘,在△ABD中,AD=10,∠B=45∘,∠ADB=60∘,由正弦定理得AB=AD,所以AB=AD⋅sin∠ADB=10sin60∘=10×3222=5 6.20. (1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400人.(2)由统计图知,样本中身高在170∼185 cm之间的学生有14+13+4+3+1=35人,样本容量为70,所以样本中学生身高在170∼180 cm之间的概率P1=3570=0.5.(3)样本中身高在180∼185cm之间的男生有4人,设其编号为①,②,③,④,样本中身高在185∼190cm之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:故从样本中身高在180∼190cm之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185∼190cm之间的可能结果数为9,因此所求概率P2=915=35.21. (1)由A1B1=7,知a2+b2=7, ⋯⋯①由S平行四边形A1B1A2B2=2S平行四边形B1F1B2F2,知a=2c, ⋯⋯②又b2=a2−c2, ⋯⋯③由①②③解得a2=4,b2=3,故椭圆C的方程为x2+y2=1.(2)设A,B两点的坐标分别为x1,y1,x2,y2,假设使OA⋅OB=0成立的直线l存在,(ⅰ)当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点且OP=1,得1+k2=1,即m2=k2+1.因为OA⋅OB=x1x2+y1y2=0,将y=kx+m代入椭圆方程,得3+4k2x2+8kmx+4m2−12=0,由根与系数的关系可得x1+x2=−8km2, ⋯⋯④且0=x1x2+y1y2=x1x2+kx1+m kx2+m=x1x2+k2x1x2+km x1+x2+m2=1+k2x1x2+km x1+x2+m2,将④⑤代入上式并化简得1+k24m2−12−8k2m2+m23+4k2=0, ⋯⋯⑥将m2=1+k2代入⑥并化简得−5k2+1=0,无解.即此时直线l不存在.(ii)当l垂直于x轴时,满足OP=1的直线l的方程为x=1 或x=−1,则A,B两点的坐标为1,32,1,−32,或 −1,32, −1,−32,当x=1时,OA⋅OB=1,32⋅1,−32=−54≠0;当x=−1时,OA⋅OB= −1,32⋅ −1,−32=−54≠0;所以此时直线l也不存在.综上可知,使OA⋅OB=0成立的直线l不存在.22. (1)由题得fʹx=2x gʹx=ax>0,由已知得x=a ln x,2x =a,解得a=e2,x=e2,所以两条直线交点的坐标为e2,e,切线的斜率为k=fʹe2=12e,所以切线的方程为y−e=12ex−e2,即x−2e y+e2=0.(2)由条件知x=x−a ln x x>0,所以ʹx=2x −a=x−2a.(i)当a>0时,令 ʹx=0,解得x=4a2,所以当0<x<4a2时, ʹx<0, x在0,4a2上递减;当x>4a2时, ʹx>0, x在4a2,+∞上递增,所以x=4a2是 x在0,+∞上的唯一极值点,从而也是 x的最小值点.所以最小值φa= 4a2=2a−a ln4a2=2a1−ln2a;(ii)当a≤0时, ʹx=x−2a2x>0, x在0,+∞上递增,无最小值.故 x的最小值φa的解析式为φa=2a1−ln2a a>0.(3)由2知φa=2a1−ln2a,则φʹa=−2ln2a,令φʹa=0,解得a=12.当0<a<12时,φʹa>0,所以φa在0,12上单调递增;当a>12时,φʹa<0,所以φa在12,+∞ 上单调递减.所以φa在0,+∞上能取得极大值φ12=1.因为φa在0,+∞上有且只有一个极值点,所以φ12=1也是φa的最大值,所当a属于0,+∞时,总有φa≤1.23. (1)在△PBC中,E、F分别是PB、PC的中点,所以EF∥BC.因为四边形ABCD为矩形,所以BC∥AD,所以EF∥AD,又因为AD⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.(2)连接AE,AC,EC,过E作EG∥PA交AB于点G,则EG⊥平面ABCD,且EG=12PA.在△PAB中,AP=AB,∠PAB=90∘,BP=2,所以AP=AB=2,EG=2 2 .所以S△ABC=1AB⋅BC=1×2×2=2,所以V E−ABC=13S△ABC⋅EG=13×2×22=13.。
2010年山东文一、选择题(共12小题;共60分)1. 已知全集U=R,集合M=x x2−4≤0,则∁U M= A. x −2<x<2B. x −2≤x≤2C. x x<−2 或x>2D. x x≤−2 或x≥2=b+i,其中i为虚数单位,则a+b= 2. 已知a+2iiA. −1B. 1C. 2D. 33. 函数f x=log23x+1的值域为 A. 0,+∞B. 0,+∞C. 1,+∞D. 1,+∞4. 在空间,下列命题正确的是 A. 平行直线的平行投影重合B. 平行于同一直线的两个平面平行C. 垂直于同一平面的两个平面平行D. 垂直于同一平面的两条直线平行5. 设f x为定义在R上的奇函数.当x≥0时,f x=2x+2x+b(b为常数),则f−1= A. −3B. −1C. 1D. 36. 在某项体育比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93去掉一个最高分和一个最低分后,所剩数据的平均分值为和方差分别为 A. 92,2B. 92,2.8C. 93,2D. 93,2.87. 设a n是首项大于零的等比数列,则" a1<a2 "是"数列a n是递增数列"的 A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=x3+81x−234,则使该生产厂家获取最大年利润的年产量为 −13A. 13万件B. 11万件C. 9万件D. 7万件9. 已知抛物线y2=2px p>0,过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为 A. x=1B. x=−1C. x=2D. x=−210. 观察x2ʹ=2x,x4ʹ=4x3,cos xʹ=−sin x,由归纳推理可得:若定义在R上的函数f x满足f−x=f x,记g x为f x的导函数,则g−x= A. f xB. −f xC. g xD. −g x11. 函数y=2x−x2的图象大致是 A. B.C. D.12. 定义平面向量之间的一种运算" ⊙ "如下:对任意的a=m,n,b=p,q,令a⊙b=mq−np.下面说法错误的是 A. 若a与b共线,则a⊙b=0B. a⊙b=b⊙aC. 对任意的λ∈R,有λa⊙b=λ a⊙bD. a⊙b 2+ a⋅b2=a2b2二、填空题(共4小题;共20分)13. 执行如图所示的程序框图,若输入x=10,则输出y的值为.14. 已知x,y∈R+,且满足x3+y4=1,则xy的最大值为.15. 在△ABC中,A,B,C所对的边分别为a,b,c,若a=b=2,sin B+cos B=,则角A的大小为.16. 已知圆C过点1,0,且圆心在x轴的正半轴上,直线l:y=x−1被该圆所截得的弦长为22,则圆C的标准方程为.三、解答题(共6小题;共78分)17. 已知函数f x=sinπ−ωx cosωx+cos2ωxω>0的最小正周期为π.(1)求ω的值;(2)将函数y=f x的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y=g x的图象,求函数y=g x在区间0,π16上的最小值.18. 已知等差数列a n满足:a3=7,a5+a7=26.数列a n的前n项和为S n.(1)求a n及S n;(2)令b n=1a n2−1n∈N∗,求数列b n的前n项和T n.19. 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.(1)(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.20. 在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E,G,F分别为MB,PB,PC的中点,且AD=PD=2MA.(1)求证:平面EFG⊥平面PDC;(2)求三棱锥P−MAB与四棱锥P−ABCD的体积之比.21. 已知函数f x=ln x−ax+1−ax−1a∈R.(1)当a=−1时,求曲线y=f x在点2,f2处的切线方程;(2)当a≤12时,讨论f x的单调性.22. 如图,已知椭圆x2a +y2b=1a>b>0过点1,22,离心率为22,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A,B和C,D,O为坐标原点.(1)求椭圆的标准方程;(2)设直线PF1、PF2的斜线分别为k1、k2.(i)证明:1k1−3k2=2;(ii)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率k OA、k OB、k OC、k OD满足k OA+k OB+k OC+k OD=0 ?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.答案第一部分 1. C 【解析】因为集合M = x −2≤x ≤2 ,全集U =R ,所以∁U M = x x <−2 或 x >2 . 2. B 3. A 【解析】因为3x +1>1,所以f x =log 2 3x +1 >log 21=0. 4. D5. A【解析】因为f x 为定义在R 上的奇函数,所以有f 0 =20+2×0+b =0,解得b =−1. 所以,当x ≥0时,f x =2x +2x −1,故f −1 =−f 1 =− 21+2×1−1 =−3. 6. B7. C【解析】设数列 a n 的公比为q ,因为a 1<a 2且a 1>0,所以有a 1<a 1q ,解得q >1,所以数列 a n 是递增数列;反之,若数列 a n 是递增数列,因为a 1>0,所以公比q >1,所以a 1<a 1q ,即a 1<a 2.故a 1<a 2是数列 a n 是递增数列的充分必要条件. 8. C9. B【解析】设A x 1,y 1 ,B x 1,y 1 .过焦点 p2,0 且斜率为1的直线方程为y =x −p,将其代入y 2=2px ,消去x 得y 2−2py −p 2=0,则y 1+y 2=p =2, 所以抛物线标准方程为y 2=4x ,其准线方程为x =−1. 10. D【解析】由观察可知,偶函数f x 的导函数g x 都是奇函数,所以有g −x =−g x .11. A 【解析】当x 非常大时,显然y 为正数;当x 非常小时,显然y 为负数;再结合f 3 =−1可得答案.12. B 【解析】对于A :根据向量共线条件,a 与b 共线,即为mq −np =0,故正确; 对于B :a ⊙b =mq −np ,而b ⊙a =np −mq ,故不正确;对于C :λa = λm ,λn ,因此 λa ⊙b =λ mq −np =λ a ⊙b,故正确; 对于D :左边计算得m 2q 2+n 2p 2+m 2p 2+n 2q 2,右边计算得m 2p 2+m 2q 2+n 2p 2+n 2q 2,两边相等,故正确. 第二部分 13. −5414. 3【解析】因为1=x3+y4≥2 x 3.y4=2 xy12= xy3,所以xy ≤3,当且仅当x3=y4,即x =32,y =2时取等号,所以xy 的最大值为3. 15. π6【解析】由sin B +cos B = 2,得sin B +π4 =1.∵B为三角形的内角,∴0<B<π,从而有π4<B+π4<5π4.∴B+π4=π2,∴B=π4.结合正弦定理,有sin A=a sin Bb=12.∵a<b,∴A<B,∴A=π6.16. x−32+y2=4【解析】设圆心为a,0,则圆心到直线x−y−1=0的距离为d=2.因为圆截直线所得的弦长22,根据半弦、半径、弦心距之间的关系有22+2=a−12,即a−12=4,所以a=3或a=−1(舍去),半径r=3−1=2.所以圆C的标准方程为x−32+y2=4.第三部分17. (1)因为f x=sinπ−ωx cosωx+cos2ωx,所以f x=sinωx cosωx+1+cos2ωx2=12sin2ωx+12cos2ωx+12=2sin2ωx+π+1,由于ω>0,依题意,得2π2ω=π,所以ω=1.(2)由(1)知f x=22sin2x+π4+12,所以g x=f2x=2sin4x+π+1.当x∈0,π16时,π≤4x+π≤π,所以2≤sin4x+π≤1,因此1≤g x≤1+22,故g x在区间0,π16上的最小值为1.18. (1)设等差数列a n的首项为a1,公差为d,由于a3=7,a5+a7=26,所以a1+2d=7,2a1+10d=26,解得a1=3,d=2.由于a n=a1+n−1d,S n=n a1+a n,所以a n=2n+1,S n=n n+2.(2)因为a n=2n+1,所以a n2−1=4n n+1,因此b n=14n n+1=141n−1n+1.故T n=b1+b2+⋯+b n=11−1+1−1+⋯+1−1=141−1n+1=n,所以数列b n的前n项和T n=n4n+1.19. (1)所有可能的摸出结果是:A1,a1,A1,a2,A1,b1,A1,b2,A2,a1,A2,a2,A2,b1,A2,b2,B,a1,B,a2,B,b1,B,b2 .(2)(2)不正确,理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为A1,a1,A1,a2,A2,a1,A2,a2,共4种,所以中奖的概率为412=13,不中奖的概率为1−13=23>13,故这种说法不正确.20. (1)因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,因此BC⊥平面PDC.在△PBC中,因为G,F分别为PB,PC的中点,所以GF∥BC,因此GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.(2)设MA=1,则PD=AD=2,因为PD⊥平面ABCD,四边形ABCD为正方形,所以V P−ABCD=13S正方形ABCD⋅PD=13×2×2×2=83.由题意知DA⊥平面MAB,且PD∥MA,所以DA即为点P到平面MAB的距离,所以V P−MAB=13S△MAB⋅DA=13×12×1×2×2=23.所以V P−MAB:V P−ABCD=23:83=1:4.21. (1)当a=−1时,f x=ln x+x+2x−1a∈R,则fʹx=x2+x−22,x∈0,+∞,从而fʹ2=1,即曲线y=f x在点2,f2处的切线斜率为1.又f2=ln2+2,所以曲线y=f x在点2,f2处的切线方程为y−ln2+2=x−2,故所求的切线方程为x−y+ln2=0.(2)由已知得fʹx=1−a+a−12=−ax2−x+1−a,x∈0,+∞,令g x=ax2−x+1−a,x∈0,+∞,(i)当a=0时,g x=−x+1,x∈0,+∞,所以当x∈0,1时,g x>0,此时fʹx<0,从而函数f x单调递减;当x∈1,+∞时,g x<0,此时fʹx>0,从而函数f x单调递增.(ii)当a≠0时,由fʹx=0,即ax2−x+1−a=0,解得x1=1,x2=1−1,①当a=12时,g x≥0恒成立,此时fʹx≤0,函数f x在0,+∞上单调递减;②当0<a<12时,1a−1>1>0,x∈0,1时,g x>0,此时fʹx<0,函数f x单调递减;x∈1,1a−1时,g x<0,此时fʹx>0,函数f x单调递增;x∈1a−1,+∞ 时,g x>0,此时fʹx<0,函数f x单调递减.③当a<0时,1a−1<0,x∈0,1时,g x>0,此时fʹx<0,函数f x单调递减;x∈1,+∞时,g x<0,此时函数fʹx>0,函数f x单调递增.综上所述:当a≤0时,函数f x在0,1上单调递减,函数f x在1,+∞上单调递增;当a=12时,函数f x在0,+∞上单调递减;当0<a<12时,函数f x在0,1上单调递减,在1,1a−1上单调递增,在1a−1,+∞ 上单调递减.22. (1)因为椭圆过点1,22,e=22,所以1+1=1,c=2.又a2=b2+c2,所以a=2,b=1,c=1.故所求椭圆方程为x22+y2=1.(2)(i)方法一:因为F1−1,0,F21,0,PF1,PF2的斜率分别为k1,k2,且点P不在x轴上,所以k1≠k2,k1≠0,k2≠0.又直线PF1,PF2的方程分别为y=k1x+1,y=k2x−1,联立两方程解得x=k1+k2 k2−k1,y=2k1k2 21,所以P k1+k2k2−k1,2k1k2k2−k1,由于点P在直线x+y=2上,所以k1+k2+2k1k2k2−k1=2,因此2k1k2+3k1−k2=0,即1 1−32=2,结论成立.方法二:设P x0,y0,则k1=y0x0+1,k2=y0x0−1,因为点P不在x轴上,所以y0≠0.又x0+y0=2,所以11−32=x 0+10−3 x 0−1=4−2x 0y 0=2y 0y 0=2.因此结论成立.(ii )设A x A ,y A ,B x B ,y B ,C x C ,y C ,D x D ,y D . 联立直线PF 1与椭圆的方程得y =k 1 x +1 ,x 2+y 2=1, 化简得2k 12+1 x 2+4k 12x +2k 12−2=0,因此x A +x B =−4k 122k 12+1,x A x B =2k 12−22k 12+1.由于OA ,OB 的斜率存在,所以x A ≠0,x B ≠0,因此k 12≠0且k 12≠1.因此k OA +k OB=y A A +y B B =k 1 x A +1 A +k 1 x B +1B=2k 1+k 1⋅x A +x B A B =k 1 2−4k 1212 =−4k 12k 12−2=−2k 1k 12−1.类似地可以得到x C ≠0,x D ≠0,k 22≠0且k 22≠1.所以k OC +k OD =−2k 2k 22−1,故k OA +k OB +k OC +k OD= k 112+k 222=−2k 1k 22−k 1+k 12k 2−k 2k 12−1 k 22−1=−2 k 1k 2−1 k 1+k 2 1222. 若k OA +k OB +k OC +k OD =0,须有k 1+k 2=0 或 k 1k 2=1.①当k 1+k 2=0时,结合(ⅰ)的结论,可得k 2=−2,所以解得点P 的坐标为 0,2 ;②当k 1k 2=1时,结合(ⅰ)的结论,可得k 2=3 或 k 2=−1(此时k 1=−1,不满足k 1≠k 2,舍去), 此时直线CD 的方程为y =3 x −1 ,联立方程x +y =2得x =54,y =34,因此P 54,34 . 综上所述,满足条件的点P 的坐标分别为 0,2 , 54,34 .。
2010年普通高等学校招生全国统一考试文科数学(必修+选修)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n kn n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12 (D) 21.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos 602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a === 10,所以132850a a =,所以133364564655()(50)a a a a a a a =====(5)43(1)(1x -的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +y20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a a=+1由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则 12||||PF PF =(A)2 (B)4 (C) 6 (D) 8AB C DA 1B 1C 1D 1 O8.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +- ()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF = 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆===== 12||||PF PF = 4(9)正方体ABCD -1111A B C D中,1BB 与平面1ACD 所成角的余弦值为(A )(B(C )23 (D 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯= ,21122ACD SAD CD a ∆== . 所以131A C D A C D S D D D O a S ∆∆= ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos O O O OD OD ∠=== (10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e, 3221log log 2e <<< ,32211112log log e <<<; c=12152-=<=,∴c<a<b(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为(A) 4-+3-(C) 4-+3-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--3y ≥-+.故min ()3PA PB ∙=-+此时x =【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫∙== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--∙==+-≥ 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x ∙=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2) B.[0,2]C.{0,2}D.{0,1,2}2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)已知复数Z=,则|z|=()A.B.C.1 D.24.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+25.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x <﹣2或x>2}10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6) C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S 的近似值为.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2) B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选D2.(5分)(2010•新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选C.3.(5分)(2010•新课标)已知复数Z=,则|z|=()A.B.C.1 D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选B4.(5分)(2010•新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选A.5.(5分)(2010•新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故答案选D.6.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.7.(5分)(2010•新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,=4πR2=6πa2.所以S球故选B8.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.9.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x ﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x <﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.10.(5分)(2010•新课标)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选A11.(5分)(2010•新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.12.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6) C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=214.(5分)(2010•新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i ﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.15.(5分)(2010•新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤16.(5分)(2010•新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.18.(10分)(2010•新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)19.(10分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助, ∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(10分)(2010•新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.21.(2010•新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).。
2010年全国新课标文一、选择题(共12小题;共60分)1. 已知集合A=x x ≤2,x∈R,B= x x≤4,x∈Z ,则A∩B= A. 0,2B. 0,2C. 0,2D. 0,1,22. 已知a,b为平面向量,若a=4,3,2a+b=3,18,则a,b夹角的余弦值等于 A. 865B. −865C. 1665D. −16653. 已知复数z=3+i1−3i2,则 z = A. 14B. 12C. 1D. 24. 曲线y=x3−2x+1在点1,0处的切线方程为 A. y=x−1B. y=−x+1C. y=2x−2D. y=−2x+25. 中心在原点,焦点在x轴上的双曲线的一条渐近线经过点4,2,则它的离心率为 A. 6B. 5C. 62D. 526. 如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P02,−2,角速度为1,那么点P到x轴的距离d关于时间t的函数图象大致为 A. B.C. D.7. 设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为 A. 3πa2B. 6πa2C. 12πa2D. 24πa28. 如果执行如图所示的框图,输入N=5,则输出的数等于 A. 54B. 45C. 65D. 569. 设偶函数f x满足f x=2 x −4x≥0,则x f x−2>0= A. x x<−2 或x>4B. x x<0 或x>4C. x x<0 或x>6D. x x<−2 或x>210. 若cosα=−45,α是第三象限的角,则sin α+π4= A. −7210B. 7210C. −210D. 21011. 已知平行四边形ABCD的三个顶点为A−1,2、B3,4、C4,−2,点x,y在平行四边形ABCD的内部,则z=2x−5y的取值范围是 A. −14,16B. −14,20C. −12,18D. −12,2012. 已知函数f x=lg x,0<x≤10,−12x+6,x>10,若a,b,c均不相等,且f a=f b=f c,则abc的取值范围是 A. 1,10B.5,6C. 10,12D. 20,24二、填空题(共4小题;共20分)13. 圆心位于原点且与直线x+y−2=0相切的圆的方程为.14. 设函数y=f x在区间0,1上的图象是连续不断的一条曲线,且恒有0≤f x≤1,可以用随机模拟方法近似计算由曲线y=f x及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个)区间0,1上的均匀随机数x1,x2,⋯,x N和y1,y2,⋯,y N,由此得到N个点x i,y i i= 1,2,⋯,N .再数出其中满足y i≤f x i i=1,2,⋯,N的点数N1,那么由随机模拟方法可得S的近似值为.15. 一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号).①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱16. 在△ABC中,D为BC边上一点,BC=3BD,AD=2,∠ADB=135∘.若AC=2AB,则BD=.三、解答题(共8小题;共104分)17. 设等差数列a n满足a3=5,a10=−9.(1)求a n的通项公式;(2)求a n的前n项和S n及使得S n最大的序号n的值.18. 如图,已知四棱锥P−ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(1)证明:平面PAC⊥平面PBD;(2)若AB=6,∠APB=∠ADB=60∘,求四棱锥P−ABCD的体积.19. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:附:P K2≥k0.0500.0100.001k 3.841 6.63510.828n ad−bc2K2=(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿者帮助的老年人的比例?说明理由.=10<b<1的左、右焦点,过F1的直线l与E相交于A、B两点,20. 设F1,F2分别是椭圆E:x2+y2b2且AF2, AB ,BF2成等差数列.(1)求 AB ;(2)若直线l的斜率为1,求b的值.21. 设函数f x=x e x−1−ax2.(1)若a=1,求f x的单调区间;2(2)若当x≥0时,f x≥0,求a的取值范围.22. 如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE×CD.23. 已知直线C1:x=1+t cosα,y=t sinα t为参数,圆C2:x=cosθ,y=sinθ θ为参数.(1)当α=π3时,求C1与C2的交点坐标;(2)过坐标原点O作C1的垂线,垂足为A,P为OA的中点,当α变化时,求点P轨迹的参数方程,并指出它是什么曲线.24. 设函数f x=2x−4+1.(1)画出函数y=f x的图象;(2)若不等式f x≤ax的解集非空,求a的取值范围.答案第一部分1. D2. C 【解析】由a=4,3,2a+b=3,18,解得b=−5,12,所以cos<a,b>=−20+36=16.3. B4. A5. D【解析】焦点在x轴上的双曲线x 2a2−y2b2=1a>0,b>0的渐近线方程为y=±bx,由渐近线过点4,2,得b =1 ,所以e2=c2a2=a2+b2a2=1+ba2=1+122=54.因此e=52.6. C 【解析】因为初始位置为P02,−2,所以∠xOP0=π4.经过时间t,点P运动了t rad,从而∠xOP=t−π4,于是点P的坐标为2cos t−π4,2sin t−π4,所以d=2sin t−π4.7. B 【解析】由于球内接长方体的体对角线即为球的直径,所以2R=4a2+a2+a2=6a2,故球的表面积为4πR2=6πa2.8. D 【解析】根据题意满足条件的S=11×2+12×3+13×4+11×5+15×6=56.9. B 【解析】函数y=f x的图象如图所示:函数y=f x−2的图象由y=f x的图象向右平移2个单位得到,因此所求集合为 x x<0 或x> 4.10. A【解析】因为cosα=−45,α为第三象限角,所以sinα=−35,于是sin α+π4=sinαcosπ4+cosαsinπ4=−7102.11. B 【解析】设D a,b,则AD=a+1,b−2,BC=1,−6.由ABCD为平行四边形,得AD=BC,即a+1=1, b−2=−6,解得a=0,b=−4,从而D0,−4.当直线y=25x−z5过点B3,4时,z=2×3−5×4=−14;当直线y=25x−z5过点D0,−4时,z=2×0−5×−4=20,故z的取值范围为−14,20.12. C 【解析】由a,b,c不相等,不妨设a<b<c,f a=f b=f c=t.考查函数y=t与y=f x图象的三个交点,如图所示.因为a,b是y=lg x与y=t图象的两个交点的横坐标,所以lg a=lg b,即a=1b,亦即ab=1.又因为c的取值范围为10,12,故abc的取值范围为10,12.第二部分13. x2+y2=214. N1N【解析】设直线x=0,x=1,y=0,y=1所围成的图形面积为S1,则S1=1,则SS1=N1N,S1=1,S=N1N.15. ①②③⑤16. 2+5【解析】在三角形ABD中,有余弦定理AB2=BD2+2−22BD cos135∘=BD2+2+2BD;在三角形ACD中,有余弦定理AC2=2+DC2−22DC cos45∘.因为BC=3BD,所以AC2=2+4BD2−4BD,又因为AC=2AB,故2BD2+4+4BD=2+4BD2−4BD,即BD2−4BD−1=0,解得BD=2+5.第三部分17. (1)由a n=a1+n−1d,a3=5,a10=−9,得a1+9d=−9,a1+2d=5,解得d=−2,a1=9,数列a n的通项公式为a n=11−2n.(2)由(1)知S n=na1+n n−1d=10n−n2.因为S n=−n−52+25.所以n=5时,S n取得最大值.18. (1)因为PH是四棱锥P−ABCD的高,所以AC⊥PH.又AC⊥BD,PH,BD都在平面PBD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD.(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=6.所以HA=HB= 3.因为∠APB=∠ADB=60∘,所以PA=PB=6,HD=HC=1.可得PH= 3.等腰梯形ABCD的面积为S=12AC×BD=2+ 3.所以四棱锥的体积为V=13×2+3×3=3+233.19. (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中需要帮助的老年人的比例的估计值为70500=14%.(2)K2=500×40×270−30×1602200×300×70×430≈9.967,由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由于(2)的结论知,该地区的老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男,女的比例,再把老年人分成男,女两层并采用分层抽样方法比采用简单反随即抽样方法更好.20. (1)由椭圆定义知AF2+AB+BF2=4.又2AB=AF2+BF2,得AB=4 .(2)l的方程式为y=x+c,其中c=1−b2.设A x1,y1,B x2,y2,则A,B两点坐标满足方程组x2+y22=1,y=x+c,化简得1+b2x2+2cx+1−2b2=0.则x1+x2=−2c1+b2,x1x2=1−2b21+b2.因为直线AB的斜率为1,所以AB=2x2−x1,即43=2x2−x1.则8=x1+x22−4x1x2=41−b21+b22−41−2b21+b2=8b422,因为0<b<1解得b=22.21. (1)a=12时,f x=x e x−1−12x2,fʹx=e x−1+x e x−x=e x−1x+1.当x∈−∞,−1时,fʹx>0;当x∈−1,0时,fʹx<0;当x∈0,+∞时,fʹx>0.故f x在−∞,−1,0,+∞单调递增,在−1,0单调递减.(2)由题f x=x e x−1−ax.令g x=e x−1−ax,则gʹx=e x−a.若a≤1,则当x∈0,+∞时,gʹx>0,g x为增函数,而g0=0,从而当x≥0时,g x≥0,即f x≥0.若a>1,则当x∈0,ln a时,gʹx<0,g x为减函数,而g0=0,从而当x∈0,ln a时,g x<0,即f x<0.综上,得a的取值范围为−∞,1.22. (1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故BCBE =CDBC.即BC2=BE×CD.23. (1)当α=π3时,C1的普通方程为y=3x−1, C2的普通方程为x2+y2=1.联立方程组x2+y2=1,y=3x−1,解得C1与C2的交点为1,0 和 1,−3.(2)C1的普通方程为x sinα−y cosα−sinα=0,A点坐标为sin2α,−cosαsinα,故当α变化时,P点轨迹的参数方程为x=1sin2α,y=−1sinαcosα,α为参数.P点轨迹的普通方程为x−12+y2=1.故P点轨迹是圆心为14,0,半径为14的圆.24. (1)由于f x=−2x+5,x<2, 2x−3,x≥2,则函数y=f x的图象如图所示.(2)由函数y=f x与函数y=ax的图象可知,当且仅当a<−2 或a≥12时,函数y=f x与函数y=ax的图象有交点.故不等式f x≤ax的解集非空时,a的取值范围为−∞,−2∪12,+∞ .。