10月高一上学期数学第一次抽考试卷
- 格式:doc
- 大小:15.00 KB
- 文档页数:3
2024-2025学年广东省珠海一中高一(上)第一次段考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M={x|1<x<2},N={x|x<3},则M∩N=( )A. {x|x<2}B. {x|x<3}C. {x|1<x<2}D. {x|1<x<3}2.若a∈{1,2,a2},则a的取值集合为( )A. {0}B. {0,1}C. {0,2}D. {0,1,2}3.已知集合A满足{0,1}∪A={0,1,2,3},则集合A的个数为( )A. 1B. 2C. 3D. 44.若命题“∃x0∈R,x20+2mx0+m+2≤0”为真命题,则m的取值范围是( )A. (−∞,−1)∪(2,+∞)B. (−∞,−1]∪[2,+∞)C. (−1,2)D. [−1,2]5.若ab>0,且a<b,则下列不等式一定成立的是( )A. a2<b2B. 1a <1bC. ba+ab>2 D. a+b2>ab6.已知函数f(x)=1ax2+bx+c的部分图象如图所示,则a+b−c=( )A. −3B. −6C. 13D. 17.已知a,b,c∈R,使a>b成立的一个充分不必要条件是( )A. a+c>b+cB. ac>bcC. a2>b2D. ac2>bc28.已知a>0,b>0,且1a +2b=1,则2a−1+1b−2的最小值为( )A. 2B. 2C. 322D. 1+324二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.命题p:∃x∈R,x2+bx+1≤0的否定是真命题,则实数b的值可能是( )A. −74B. −32C. 2D. 5210.若正实数x,y满足2x+y=1,则下列说法正确的是( )A. xy有最大值为18B. 1x+4y有最小值为6+42C. 4x2+y2有最小值为12D. x(y+1)有最大值为1211.已知b>0,若对任意的x∈(0,+∞),不等式ax3+3x2−abx−3b≤0恒成立,则( )A. a<0B. a2b=3C. a2+4b的最小值为12D. a2+ab+3a+b的最小值为6−63三、填空题:本题共3小题,每小题5分,共15分。
2024-2025学年福建省福州市高一上学期10月月考数学检测试卷注恴事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:必修第一册第一章、第二章的2.1以及2.2节.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1. 命题“,”的否定为( )0x ∀>220x x +>A. , B. .,0x ∀>220x x +≤0x ∀<220x x +≤C. , D. ,0x ∃>220x x +<0x ∃>220x x +≤2. 对于实数,下列说法正确的是( ),,a b c A. 若,则 B. 若,则a b >11a b<a b >22ac bc>C .若,则 D. 若,则0a b >>2ab a<c a b >>a bc a c b>--3. 若集合,,则(){}2A x =∈≤{}23B x x =-≤≤A B = A.B.C.D.{}03x x ≤≤{}24x x -≤≤{}0,1,2,3{}2,1,0,1,2,3,4--4. 已知集合,,若,则(){}27A x x =-≤≤{}121B x m x m =+<<-A B A = A. B. 24m -≤≤24m -<<C. D. 4m <4m ≤5. 已知集合,则( ){}{}{}1,2,3,4,5,2,3,2,U A B x x k k ====∈Z U B A ⋂=ðA.B.C.D.{}4{}2,4{}1,2{}1,3,56. 下列命题中的真命题是( )A. 若,则a b >ac bc>B. 若,则22a bcc <a b <C. 若,则a b >1>ab D. 若,则,a bcd >>a c b d->-7. 设集合,则集合的真子集个数为( )12{N |N}3A x y x =∈=∈+A A. 7B. 8C. 15D. 168. 已知,且,则的最小值为( )0,0x y >>2x y xy +=2x y +A. 8B. C. 9D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列命题为真命题的是( )A. 若集合,,则{}1,2,3A ={}1,3,2B =A B=B .,x ∀∈R 2x ≥C. ,x ∃∈R 210x +=D. 若集合,,则{}1,0,1M =-{}0,1N =M NÜ10. 已知命题,若命题是真命题,则实数的值可以是({}:13,0p x x x x a ∀∈≤≤-≥∣p a )A .B. 1C. 2D. 2-11. 以下说法正确的有()A. 实数 是成立的充要条件0x y >>11x y <B. 不等式对恒成立22a b ab +⎛⎫≤ ⎪⎝⎭,R a b ∈C. 命题“”的否定是“”2R,10x x x ∃∈++≥2R,10x x x ∀∈++<D. 若,则的最小值是4111x y +=x y +第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合,且,则的取值为______.{}4,21,A a a =+{}3,4,3B a a =--{}3A B ⋂=a 13. 集合,,则_________{}{}2210,10A x x x B x a x =-+==-=A B B ⋂=a =14. 设全集是实数集,或,,则图中阴影部分U R {|2M x x =<-x >2}{}|13N x x =<<所表示的集合是____________.四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15. 已知或.315:,:3115210x p q x m x ->⎧≥+⎨>->⎩33x m ≤-(1)若是的充分条件,求实数的取值范围;p q m (2)若是的必要不充分条件,求实数的取值范围.p q ⌝m 16.设集合,;{}16A x x =-<<{}131B x a x a =+≤≤-(1)当时,求,4a =A B ⋂A B (2)若,求的取值范围.B A ⊆a 17. 已知集合.{|51},{|125}A x x B x a x a =->=-<<+(1)当时,求;1a =R ,A A B ⋂ð(2)若,求的取值集合.A B ≠∅ a18. 某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数为二次函数的关系(如图)()*x x ∈N(1)求每辆客车营运的总利润y 关于营运年数的函数关系;()*x x ∈N (2)当每辆客车营运年数为多少时,营运的年平均利润最大?年平均利润最大是多少?19. 已知有限集,如果中的元素满足{}12,,,n A a a a = 2n ≥n ∈N A (1,2,,)i a i n = ,就称为“完美集”.1212n na a a a a a +++=⨯⨯⨯ A(1)判断:集合是否是“完美集”并说明理由;{11--+(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2.1a 2a {}12,a a 1a 2a。
重庆市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}{}432A B x x ==,,则A B =I ( )A .2163x x ⎧⎫<≤⎨⎬⎩⎭ B .{}316x x ≤<C .223x x ⎧⎫<≤⎨⎬⎩⎭D .{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是( ) A .230,1x x x ∀≥+≤ B .230,1x x x ∀<+≤ C .230,1x x x ∃<+≤D .230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1f xg x +的定义域为( )A .()4,3-B .()2,5-C .1,33⎛⎫⎪⎝⎭D .1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是( )A .2a ≥B .2a >C .6a >D .6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A .{31}mm -<<∣ B .{3m m <-∣或1}m > C .{13}mm -<<∣D .{1mm <-∣或3}m > 6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是( ) A .30,2⎛⎫⎪⎝⎭B .30,2⎡⎫⎪⎢⎣⎭C .()0,1D .[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是( )AB .34a a b ++的最小值为7+C .()()11a b ++的最大值为94D .2232a b a b +++的最小值为16 8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为( ) A .2048B .2024C .1024D .512二、多选题9.已知,,a b c ∈R ;则下列不等式一定成立的有( ) A .若0ab ≠且a b <,则11a b> B .若0a b >>,则20242024b b a a +<+ C .若,a bcd >>,则ac bd >D .()221222a b a b ++≥--10.下列说法正确的是( )A .若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B .若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C .若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D .“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有( )A .()()101320272024f f λ+=B .当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C .当0λ<时,()f x 在区间[]2024,2025上单调递减D .当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题12.已知集合{}210A xx =-=∣,则集合A 有个子集. 13.已知集合[]()(){}1,4,10A B xx a ax ==+-≤∣,若A B B =U 且0a ≥,则实数a 的取值范围是.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为.四、解答题15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围. 16.已知函数()f x =A ,集合{}321B xx =->∣. (1)求A B U ;(2)集合{}321M xa x a =-≤≤-∣,若M ()R A ð,求实数a 的取值范围. 17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值; (2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >L,则有*12,2n a a a n n n+++∈≥N L ,当且仅当12n a a a ===L 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11k k ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=- ⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=; ③对任意32x >,恒有()0f x <; ④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞ ⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.。
贵州大学附属中学2024-2025学年高一上学期10月月考数学试卷一、单选题1.已知集合{}{}2|19,2,1,0,1,2A x x B =<<=--,则A B =I ( )A .{}0,1,2B .{}1,2C .{}2,2-D .{}2,1,1,2--2.已知集合{}1,1,2,3A =-,集合{}2|,B y y x x A ==∈,则集合B 的子集个数为( )A .7B .8C .16D .323.{}2{1,,},1,,2A x y B x y ==,若A B =,则实数x 的取值集合为( )A .12⎧⎫⎨⎬⎩⎭B .11,22⎧⎫-⎨⎬⎩⎭C .10,2⎧⎫-⎨⎬⎩⎭D .110,,22⎧⎫-⎨⎬⎩⎭4.设0ab >,则“a b <”是“11a b>”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既非充分也非必要条件5.如图,已知矩形U 表示全集,A 、B 是U 的两个子集,则阴影部分可表示为( )A .()U AB ⋃ð B .()U A B ⋂ðC .()U B A ⋂ðD .()U A B ⋂ð6.已知实数1x >,则函数221y x x =+-的最小值为( ) A .5B .6C .7D .87.已知不等式11m x m -<<+成立的充分条件是1132x -<<,则实数m 的取值范围是( )A .1223m m ⎧⎫-<<⎨⎬⎩⎭B .1223m m ⎧⎫-≤≤⎨⎬⎩⎭C .1223m m m ⎧⎫≤->⎨⎬⎩⎭或 D .1223m m m ⎧⎫<-≥⎨⎬⎩⎭或 8.持续的高温干燥天气导致某地突发山火,现需将物资运往灭火前线.从物资集散地到灭火前线-共40km ,其中靠近灭火前线5km 的山路崎岖,需摩托车运送,其他路段可用汽车运送.已知在可用汽车运送的路段,运送的平均速度为60km h ,设需摩托车运送的路段平均速度为km h x ,为使物资能在1小时内到达灭火前线,则x 应该满足的不等式为( ). A .40160x>+ B .40160x<+ C .355160x +> D .355160x+<二、多选题9.已知全集U R =,集合A 、B 满足A ⫋B ,则下列选项正确的有( ) A .A B B =IB .A B B =UC .()U A B??ðD .()R A B ⋂=∅ð10.下列不等式恒成立的是( )A .296a a +≥B .若0a ≠,则12a a+≥ C .若0ab >,则2b aa b+≥D .若,0a b >,则22a b ab +⎛⎫≤ ⎪⎝⎭11.下列命题正确的是( )A .命题“R x ∃∈,210x x ++≥”的否定是“R x ∀∈,210x x ++<”B .0a b +=的充要条件是1ba=- C .2R,0x x ∀∈>D .1a >,1b >是1ab >的充分不必要条件三、填空题12.已知集合{}{}13,21M x x N x x =-<<=-<<,则M N ⋃=. 13.写出“1x <”的一个充分不必要条件. 14.设a ,b ,c 为非零实数,则ab bc abc x ab bc abc=++的所有可能取值构成的集合为.四、解答题15.已知全集U 为R ,集合A={x|0<x ≤2},B={x|-2<x+1<2},求: (1)A ∩B ;(2)(∁UA )∩(∁UB ).16.(1)已知23a <<,21b -<<-,求3a b +的取值范围. (2)已知0a b >>,0c <,求证:c ca b>. 17.设R U =,已知集合{}|27A x x =-≤≤,{}|121B x m x m =+≤≤-. (1)当5∈B 时,求实数m 的范围;(2)设:p x A ∈;:q x B ∈,若p 是q 的必要不充分条件,求实数m 的范围.18.课堂上,老师让同学们制作几种几何体,张同学用了3张A4纸,7张B5纸;李同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x ,每张B5纸的面积为y ,且x y >,张同学的用纸总面积为1W ,李同学的用纸总面积为2W .回答下列问题:(1)1W =________(用x 、y 的式子表示),2W =________(用x 、y 的式子表示); (2)请你分析谁用的纸面积大.19.对于任意正实数 200a b Qa b a b ≥∴-≥∴+≥,,,,, 仅当a b = 时,等号成立. 结论: ),0a b a b +≥> . 若 ab P = 为定值,仅当 a b = 时,a b +有最小值 . 根据上述内容,回答下列问题:(1)初步探究: 若 x >0 ,仅当 x = ___时,有 1x x+ 最小值___; (2)变式探究: 对于函数 ()133y x x x =+>- ,当 x 取何值时,函数 y 的值最小? 最小值是多少?(3)拓展应用:疫情期间、为了解决疑似人员的临隔离问题. 高速公路榆测站入口处, 检测人员利用检测站的一面墙 (墙的长度不限), 用 63 米长的钢丝网围成了 9 间相同的长方形隔离房, 如图. 设每间离房的面积为 S (米2). 问: 每间隔离房的长、宽各为多少时,可使每间隔离房的面积 S 最大? 最大面积是多少?。
福建省福州高级中学2024-2025学年高一上学期10月月考数学试卷一、单选题1.已知集合{}{}1,2,3,4,0,1,2,3A B ==,则A B =U ( ) A .{}1,2,3 B .{}1,2,3,4 C .{}0,1,2,3D .{}0,1,2,3,42.对于任意实数a 、b 、c 、d ,下列命题中,真命题为( ) A .若,a b c d >>,则a c b d ->- B .若,a b c d >>,则ac bd > C .若0a b >>D .若0a b >>,则2211a b> 3.已知8N N M x x ⎧⎫=∈∈⎨⎬⎩⎭,则集合M 的真子集的个数是( )A .7B .8C .15D .164.已知集合{}{},1|2,1A B x ax =-==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( ) A .1,12⎧⎫-⎨⎬⎩⎭B .11,2⎧⎫-⎨⎬⎩⎭C .1,0,12⎧⎫-⎨⎬⎩⎭D .11,0,2⎧⎫-⎨⎬⎩⎭5.若实数a ,b 满足15,13a b a b ≤+≤-≤-≤,则32a b -的最小值为( ) A .6-B .2-C .10D .146.不等式20cx ax b ++>的解集为112x x ⎧⎫-<<⎨⎬⎩⎭,则函数2y ax bx c =+-的图象大致为( )A .B .C .D .7.关于x 的不等式2210mx mx +-<的解集为R 的一个必要不充分条件是( ) A .10m -<< B .10m -<≤ C .20m -<<D .20m -<≤8.无字证明即无需语言的证明(proof without words ),本质上是一种数学语言,形式上是隐含数学命题或定理的证明的图象或图形,可能包含数学符号、记号、方程,但不附带文字.如图,C 为线段AB 上的点,且AC a =,CB b =,O 为AB 的中点,以AB 为直径做半圆.过点C 作AB 的垂线交半圆于D .连结OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则下面可由CD DE ≥进行无字证明的不等式为( )A ()20,0aba b a b>>+ B .)0,02a ba b +≥>> C .()2220,0a b ab a b +≥>>D .()220,022a b a b a b ++≥>>二、多选题9.图中阴影部分用集合表示正确的是( )A .AB ⋂ B .()()A U AB ⋂痧C .()U A B ⋂ðD .()()U U A B ⋂痧10.下列说法正确的有( )A .命题p :2R,0x x ∀∈>,则2:R,0p x x ⌝∃∈<B .“粗缯大布裹生涯,腹有诗书气自华.”其中“腹有诗书”是“气自华”的充分条件C .“1ab >”是“1a >且1b >”的必要条件D .“x ,y 为无理数”是“x y +为无理数”的既不充分也不必要条件 11.已知0,0,22a b a b >>+=,则下列结论正确的有( )A .ab 的最大值12B .22a b +的最小值为1C .12a b+的最小值92D .1323a b a b+++的最小值85三、填空题12.已知集合{}{}20,2,0,A m B m =-=,且A B =,则实数m 的值为.13.已知命题:“41,201x x a x ∀>+->-”为真命题,则实数a 的取值范围是. 14.关于不等式组()2220330x x x k x k ⎧-->⎪⎨+--<⎪⎩的整数解的集合为{2}-,则实数k 的取值范围是.四、解答题15.已知集合{}|14A x x =<<,集合{}|21B x m x m =-<<+. (1)当1m =时,求A B ⋂;(2)若A B =∅I ,求实数m 的取值范围.16.已知命题p :“2,40x x ax ∃∈-+=R ”为假命题,设实数a 的所有取值构成的集合为A . (1)求集合A ;(2)设集合{}121|B x m x m =+<<+,若t B ∈是t A ∈的充分不必要条件,求实数m 的取值范围.17.“金山银山不如绿水青山.”实行垃圾分类、保护生态环境人人有责.某企业新建了一座垃圾回收利用工厂,于今年年初用98万元购进一台垃圾回收分类生产设备,并立即投入生产使用.该设备使用后,每年的总收入为50万元.若该设备使用x 年,则其所需维修保养费用x 年来的总和为()2210x x +万元,设该设备产生的盈利总额(纯利润)为y 万元.(1)写出y 与x 之间的函数关系式;并求该设备使用几年后,其盈利总额开始达到30万元以上;(2)该设备使用几年后,其年平均盈利额达到最大?最大值是多少?(盈利总额年平均盈利额=使用年数)18.设()212()y ax a x a a =+-+-∈R .(1)当a =2时,解关于x 的不等式1y <; (2)当0a <时,解关于x 的不等式1y a <-;(3)若关于x 的不等式2y ≥-在1x ≥时有解,求实数a 的取值范围.19.若一个集合含有n 个元素(2,N)n n ≥∈,且这n 个元素之和等于这n 个元素之积,则称该集合为n 元“复活集”.(1)直接写出一个2元“复活集”(无需写出求解过程);(2)求证:对任意一个2元“复活集”,若其元素均为正数,则其元素之积一定大于4; (3)是否存在某个3元“复活集”,其元素均为正整数?若存在,求出所有符合条件的3元“复活集”;若不存在,说明理由.。
东北育才高中2024-2025学年度上学期高一年级数学科第一次月考试卷时间:120分钟 满分:150分一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是正确的.1.已知集合,则中元素个数为( )A.2B.3C.4D.62.设集合,则集合的真子集的个数为( )A.3B.4C.15D.163.命题“,不等式”为假命题的一个必要不充分条件是( )A.B.C. D.4.设,则下列命题正确的是( )A.若,则B.若,则C.若则D.若,则5.若集合,若,则实数的取值范围是( )A.B.C.D.6.对于实数,当且仅当时,规定,则不等式的解集是()A. B.C. D.7.已知,则的最小值为( )(){}(){}*,,,,,8A x y x y y x B x y x y =∈≥=+=N ∣∣A B ⋂{}{}{}1,2,3,4,5,,,A B M xx a b a A b B ====+∈∈∣M x ∃∈R 2210ax x -+≤0a >1a >102a <<2a >,a b ∈R ,x y a b >>a x b y ->-a b >11a b<,x y a b >>ax by >a b >22a b >{}30,101x A xB x ax x ⎧⎫-===+=⎨⎬+⎩⎭∣B A ⊆a 13⎧⎫-⎨⎬⎩⎭1,13⎧⎫-⎨⎬⎩⎭10,3⎧⎫-⎨⎬⎩⎭10,,13⎧⎫-⎨⎬⎩⎭x ()1n x n n ≤<+∈N []x n =[]24[]36450x x -+<{28}xx ≤<∣31522xx ⎧⎫<<⎨⎬⎩⎭{}27xx ≤≤∣{27}x x <≤∣0,0,23x y x y >>+=23x yxy+A. B.8.方程至少有一个负实根的充要条件是( )A. B.C.D.或二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分,9.设均为非空集合,且满足,则下列各式中正确的是( )A. B.C.D.10.下列四个命题中正确的是( )A.由所确定的实数集合为B.同时满足的整数解的集合为C.集合可以化简为D.中含有三个元素11.已知关于的不等式的解集为,则下列结论正确的是()A. B.的最大值为C.的最小值为8 D.的最小值为三、填空题:本大题共3小题,每小题5分,共15分.12.的解集是__________.13.某班举行数学、物理、化学三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中同时只参加数学、物理两科的有10人,同时只参加物理、化学两科的有7人,同时只参加数学、化学两科的有11人,而参加数学、物理、化学三科的有4人,则全班共有__________人.3-11-1+2210ax x ++=01a <≤1a <1a ≤01a <≤0a <A B U 、、A B U ⊆⊆()U A B U ⋃=ð()()U U U A B B ⋂=ððð()U A B ⋂=∅ð()()U U A B U⋃=ðð(),a b a b ab+∈R {}2,0,2-240,121x x x +>⎧⎨+≥-⎩{}1,0,1,2-(){},3216,,x y x y x y +=∈∈N N ∣()()(){}0,8,2,5,4,26,3A aa a ⎧⎫=∈∈⎨⎬-⎩⎭N Z x ()()()2323100,0a m x b m x a b +---<>>11,2⎛⎫- ⎪⎝⎭21a b +=ab 1812a b +224a b +1222150x x -->14.已知关于的不等式(其中)的解集为,若满足(其中为整数集),则使得集合中元素个数最少时的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)已知集合为全体实数集,或.(1)若,求;(2)若,求实数的取值范围.16.(本小题15分)已知全集,集合,集合.(1)若,求实数的取值集合;(2)若集合,且集合满足条件__________(从下列三个条件中任选一个作答),求实数的取值集合.条件①是的充分不必要条件:②是的必要不充分条件:③,使得.17.(本小题15分)设,且.(1介于之间;(2)求;(3)你能设计一个比的吗?并说明理由.18.(本小题17分)对于二次函数,若,使得成立,则称为二次函数的不动点.(1)求二次函数的不动点:(2)若二次函数有两个不相等的不动点,且,求的最小值.x ()()2640mx m x --+<m ∈R A A B ⋂=Z Z B m U {2M xx =<-∣{}5},121x N x a x a >=+≤≤-∣3a =()U M N ⋃ðU N M ⊆ða U =R A x y ⎧⎪==⎨⎪⎩()(){}2440B x x m x m =---<∣B =∅m B ≠∅,A B m x A ∈x B ∈x A ∈x B ∈12,x A x B ∀∈∃∈12x x =10a >1a ≈21111a a =++12,a a 12,a a 2a 3a ()20y ax bx c a =++≠0x ∃∈R 2000ax bx c x ++=0x ()20y ax bx c a =++≠222y x x =+-()2221y x a x a =-++-12,x x 12,0x x >2112x x x x +19.(本小题17分)已知是非空数集,如果对任意,都有,则称是封闭集.(1)判断集合是否为封闭集,并说明理由:(2)判断以下两个命题的真假,并说明理由:命题:若非空集合是封闭集,则也是封闭集;命题:若非空集合是封闭集,且,则也是封闭集:(3)若非空集合是封闭集合,且为实数集,求证:不是封闭集.A ,x y A ∈,x y A xy A +∈∈A {}{}0,1,0,1BC ==-p 12,A A 12A A ⋃q 12,A A 12A A ⋂≠∅12A A ⋂A ,A ≠R R A R ð东北育才高中2024-2025学年度上学期高一年级数学科第一次月考答案【解析】1.解:在集合中,观察集合的条件,当是正整数且时,有等4个元素,则中元素个数为4个.故选C.2.解:由题意可知,集合,集合中有4个元素,则集合的真子集有个,故选C.3.解:命题“,不等式”为假命题,则命题“,不等式”为真命题,所以,解得,所以使得命题“,不等式”为假命题,则实数的取值范围为1,则命题“,不等式”为假命题的一个必要不充分条件是,故选:A.4.解:A :令,则,故错误;B :令,则,故错误;C :令,则,故错误;D :因为,所以即,故正确;故选D.5.解:由题可知:.当时,显然不成立即,则满足;B 8x y +=A ,x y y x ≥()()()()1,7,2,6,3,5,4,4A B ⋂{}5,6,7,8M =M 42115-=x ∃∈R 2210ax x -+≤x ∀∈R 2210ax x -+>0Δ440a a >⎧⎨=-<⎩1a >x ∃∈R 2210ax x -+≤a a >x ∃∈R 2210ax x -+≤0a >1,3,2,0x y a b ==-==13a x b y -=<-=0,0a b ><11a b>0,1,1,0x y a b ==-==0ax by ==a a b >…22||a b >22a b >{}3031x A xx ⎧⎫-===⎨⎬+⎩⎭0a =10…B =∅B A ⊆当时,,由可得:;综上所述实数的取值范围为.故选C.6.解:由,根据的定义可知:不等式的解集是.故选A.7.解:因为,则,当且仅当时,即当,且,等号成立,故的最小值为故选B.8.当时,方程为有一个负实根,反之,时,则于是得;当时,,若,则,方程有两个不等实根,,即与一正一负,反之,方程有一正一负的两根时,则这两根之积小于,于是得,若,由,即知,方程有两个实根,0a ≠1B x x a ⎧⎫==-⎨⎬⎩⎭B A ⊆1133a a -=⇒=-a 10,3⎧⎫-⎨⎬⎩⎭[]24[]36450x x -+<[]()[]()232150x x ⇒--<[]31522x ⇒<<[]x []24[]36450x x -+<{28}xx <∣…0,0,23x y x y >>+=()22222322111x x y y x y x xy y x y xy xy xy y x +++++===+++=+…222x y =3x =-y =23x y xy+1+0a =210x +=12x =-12x =-0,a =0a =0a ≠Δ44a =-0a <Δ0>12,x x 1210x x a=<1x 2x 1a0,0a <0a <0a >Δ0≥01a <≤12,x x必有,此时与都是负数,反之,方程两根都为负,则,解得,于是得,综上,当时,方程至少有一个负实根,反之,方程至少有一个负实根,必有.所以方程至少有一个负实根的充要条件是.故选:9.解:因为,如下图所示,则,选项A 正确:,选项B 正确:,选项正确:,选项D 错误.故选ABC.10.解:分别取同正、同负和一正一负时,可以得到的值分别为,故A 正确;由得,12122010x x a x x a ⎧+=-<⎪⎪⎨⎪=>⎪⎩1x 2x 2210ax x ++=12,x x 1212Δ4402010a x x a x x a ⎧⎪=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩01a <≤01a <≤1a ≤2210ax x ++=2210ax x ++=1a ≤2210ax x ++=1a ≤CA B U ⊆⊆()U U U ,B A A B U ⊆⋃=ððð()()UUUA B B ⋂=ððð()U A B ⋂=∅ðð()()UUUA B A U ⋃=≠ððð,a b (),a b a b ab+∈R 2,2,0-240,121,x x x +>⎧⎨+≥-⎩22x -<≤所以符合条件的整数解的集合为,故B 正确;由,可以得到符合条件的数对有,故C 正确;当时,;当时,,当时,;当时,;当时,;当时,,所以集合含有四个元素,故D 错误,故选ABC.11.解:由题意,,且方程的两根为和,所以,所以,所以A 正确;因为,所以,可得,当且仅当时取等号,所以的最大值为B 正确;,当且仅当,即时取等号,所以的最小值为C 错误;,当且仅当时取等号,所以的最小值为,所以D 正确.故选ABD.12.解:由,,{}1,0,1,2-3216,,x y x y +=∈∈N N ()()()0,8,2,5,4,22a =666332a ==∈--N 1a =663331a ==∈--N 0a =662330a ==∈--N 1a =-66331a =∉-+N 2a =-6635a =∉-N 3a =-66136a ==∈-N A 2,1,0,3-30a m +>()()232310a m x b m x +---=1-12123111,12323b m a m a m--+=-⨯=-++32,231a m b m +=-=-21,a b +=0,0a b >>21a b +=≥18ab ≤122a b ==ab 1,8()121222255549b a a b a b a b a b ⎛⎫+=++=++≥+=+= ⎪⎝⎭22b a a b =13a b ==12a b+9,22222114(2)(2)22a b a b a b +=+≥+=122a b ==224a b +1222150x x -->2||2150x x ∴-->()()530x x ∴-+>解得:或(舍去),或,即所求的解集为,故答案为.13.解:设参加数学、物理、化学三科竞赛的人分别组成集合,各集合中元素的个数如图所示,则全班人数为.故答案为43.14.解:分情况讨论:当时,,解得;当时,,当且仅当解得或;当时,,当且仅当由,解得.因为,集合中元素个数最少,所以不符合题意;所以要使集合中元素个数最少,需要,解得.故答案为:.15.(本小题13分)5x >3x <-5x ∴<-5x >()(),55,∞∞--⋃+()(),55,∞∞--⋃+,,A B C 24510711443++++++=0m =()640x -+<{}4A xx =>-∣0m <()2266640,4m m x x m m m m ⎛⎫++-+>=+-<- ⎪⎝⎭…m =26{|m A x x m +=<4}x >-0m >2664m m m m+=+≥>m =()2640m x x m ⎛⎫+-+< ⎪⎝⎭264m A x x m ⎧⎫+⎪⎪=-<<⎨⎬⎪⎪⎩⎭A B ⋂=Z B 0m ≤B 265m m +≤23m ≤≤{}23mm ∣……【答案】解:(1)当时,,所以或,又或,所以或;(2)由题可得,①当时,则,即时,此时满足;②当时,则,所以,综上,实数的取值范围为.16.(本小题15分)【答案】解:(1)若,则,解得,所以实数的取值集合为(2)集合,集合,则此时,则集合,当选择条件①时,是的充分不必要条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件②时,是的必要不充分条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件③时,,使得,有,则,解得,所以实数的取值集合为3a ={}45N xx =≤≤∣U {4N x x =<∣ð5}x >{2M xx =<-∣5}x >()U {4M N x x ⋃=<∣ð5}x >{}U 25M xx =-≤≤∣ðN =∅121a a +>-2a <U N C M ⊆N ≠∅12112215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩23a ≤≤a {}3aa ∣…B =∅244m m =+2m =m {}2{}2200{45}A xx x x x =-++>=-<<∣∣B ≠∅2,m ≠2244(2)0m m m +-=->{}244B xm x m =<<+∣x A ∈x B ∈A B 24445m m ≤-⎧⎨+≥⎩1m <-m (),1∞--x A ∈x B ∈B A 24445m m ≥-⎧⎨+≤⎩11m -<≤m (]1,1-12,x A x B ∀∈∃∈12x x =A B ⊆24445m m ≤-⎧⎨+≥⎩1m ≤-m (],1∞--17.(本小题15分)【答案】解:(1)证明:.之间.(2比.(3)令,则比.证明如下:由(2.故比18.(本小题17分)【答案】解:(1)由题意知:,,解得,所以,二次函数的不动点为和1.(2)依题意,有两个不相等的正实数根,即方程有两个不相等的正实数根,所以,解得,所以,所以))12111101a a a a ⎫=-⋅--=<⎪+⎭12a a 、11a --1a -2a ∴1a 32111a a =++3a 2a 32a a -=--3a 2a 222x x x +-=()()120x x ∴-+=122,1x x =-=222y x x =+-2-()2221x a x a x -++-=()22310x a x a -++-=()2Δ(3)810a a =+-->12302a x x ++=>1a >12102a x x -⎛⎫=> ⎪⎝⎭121231,22a a x x x x +-+==()222121221121212122x x x x x x x x x x x x x x +-++==,当且仅当,即时等号成立,所以的最小值为6.19.(本小题17分)【答案】(1)解:对于集合,因为,所以是封闭集;对于集合,因为,所以集合不是封闭集;(2)解:对命题:令,则集合是封闭集,但不是封闭集,故错误;对于命题:设,则有,又因为集合是封闭集,所以,同理可得,所以,所以是封闭集,故正确;(3)证明:假设结论成立,设,若,矛盾,所以,所以有,设且,否则,所以有,矛盾,故假设不成立,原结论成立,证毕.()()()22231(1)41162132121212a a a a a a a a a +⎛⎫-+ ⎪-+-+++⎝⎭===---1822621a a -=++≥=-1821a a -=-5a =1221x x x x +{}0B =000,000B B +=∈⨯=∈{}0B ={}1,0,1C =-()112,112,C C -+-=-∉+=∉{}1,0,1C =-p {}{}122,,3,A xx k k A x x k k ==∈==∈Z Z ∣∣12,A A 12A A ⋃q ()12,a b A A ∈⋂1,a b A ∈1A 11,a b A ab A +∈∈22,a b A ab A +∈∈()()1212,a b A A ab A A +∈⋂∈⋂12A A ⋂2a A a A ∈⇒∈2R ()a A a A -∈⇒-∈R ðða A -∈0a a A -+=∈2R R b A b A ∈⇒∈ððR b A -∈ð2()b A b A -∈⇒-∈R 0b b A -+=∈ð。
高一数学试卷时间:120分钟 满分150分一.填空题(本大题共有12题,满分54分)考生必须在答题纸的相应编号的空格内直接填写结果,1-6填对每题得4分,7-12填对每题得5分.1.已知集合,,则______.2.不等式的解集是______.3.集合可以用列举法表示为______.4.设方程的两根为、,则______.5.已知不等式的解集为,则______.6.若要用反证法证明“对于三个实数a 、b 、c ,若,则或”,第一步应假设______.7.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为______.8.已知集合是单元素集,则实数的取值集合为______.9.已知集合,,若,则实数的取值范围是______.10.不等式的解集是______.11.已知、,关于的不等式组解集为,则的值为______.12.已知集合,集合,且,则实数的取值范围是______.二.选择题(本大题满分18分)本大题共有4小题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,13-14选对每题得4分,15-16选对每题得5分,否则一律得零分.13.给出下列关系式,错误的是( )A. B. C. D.14.“”是“或”的( ){}1,2,3,4A ={}πB x x =>A B = 101x x -<+()10,30x y P x y x y ⎧⎫+-=⎧⎪⎪=⎨⎨⎬--=⎩⎪⎪⎩⎭21830x x -+=1x 2x 1211x x +=210ax bx ++>{}12x x -<<a b +=a c ≠a b ≠b c ≠(){}21320A x a x x =-+-=a {}29180A x xx =-+<{}22560B x x ax a =-+=A B ≠∅ a ()2210x x x ++-≠m n R ∈x 23140x x m nx n⎧-+<⎪⎨<⎪⎩()9,13mn ()()(){}22,220,,A x y ax x a ay y a x R y R =++++>∈∈()()(){}22,1220,,B x y x x y y x R y R =++++>∈∈A B A B = a {}10,1,2∈{}1,2,3∅⊆{}{}11,2,3∈{}{}0,1,21,2,0=2024x y +<2012x <2012y <A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件15.已知关于x 的不等式,下列结论正确的是( )A.不等式的解集不可以是;B.不等式的解集可以是;C.不等式的解集可以是;D.不等式的解集可以是.16.已知a 、b 都是正数,集合,,若任意的,都有或.则下列结论中正确的是( )A. B. C. D.三.解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.已知集合,集合.(1)求集合;(2)若全集,求.18.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.已知命题:实数满足,命题:实数满足(其中).(1)若,且命题和中至少有一个为真命题,求实数的取值范围;(2)若是的充分条件,求实数的取值范围.19.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.如图所示,有一块矩形空地,要在这块空地上开辟一个内接四边形绿地(图中四边形).使其四个顶点分别落在矩形的四条边上,已知米,米,且.(1)设米(),求出四边形的面积关于的表达式;(2)为使绿地面积不小于空地面积的一半,求长的最大值.220240mx nx ++>220240mx nx ++>R 220240mx nx ++>∅220240mx nx ++>{}2024x x <220240mx nx ++>()1,20240x a A x x a ⎧-⎫=≥⎨⎬+⎩⎭()(){}0B x b x b x =+-≥m R ∈m A ∈m B ∈a b <a b ≤a b >a b≥{}2280A x x x =+-≤2716x B xx ⎧-⎫=≤⎨⎬-⎩⎭B U R =B A p x 210160x x -+≤q x 22430x mx m -+≤0m >1m =p q x q p m ABCD EFGH 200AB =100BC =AE AH CF CG ===AE x =0100x <≤EFGH S x AE20.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.解决下列问题:(1)已知、,设,.比较与的大小;(2)已知命题P :如果实数a 、b 为正数,且满足,则和中至少有一个成立.判断命题P 是否正确,并说明理由;(3______.(其中a ,b ,c ,d 都为正数)并给出它的代数证明.21.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数和,定义集合.(1)设,,求;(2)设,,,若任意,都有,求实数的取值范围;(3)设,,,若存在,使得且,求实数的取值范围.m n R ∈()()2214a m n =++()22b mn =+a b 2a b +=123b a +≥123a b+≥+≥()m x ()n x ()()()()(){},T m x n x x m x n x =<()3p x x =-()45q x x =--()()(),T p x q x ()1u x x =-()()22v x x a a =-+()()216w x a x =-+0x R ∈()()()][()()()0,,x T u x v x T v x w x ⎡⎤∈⎣⎦ a ()2f x x b =-()41x b g x x +=-()2h x =0x R ∈()()()0,x T f x h x ∈()()()0,x T g x h x ∈b2024学年第一学期单元考试高一数学试卷答案一.填空题(本大题共有12题,满分54分)考生必须在答题纸的相应编号的空格内直接填写结果,1-6填对每题得4分,7-12填对每题得5分.12345660且78910111212二.选择题(本大题满分18分)本大题共有4小题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,13-14选对每题得4分,15-16选对每题得5分,否则一律得零分.CACB三.解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.【解】(1)由得:,即,解得:,∴.(2)由(1)知:;由得:,解得:,即,∴.18.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.【解】(1):实数满足,解得,当时,:,解得,∵和至少有一个为真,∴或,∴,{}4()1,1-(){}2,1-a b =b c =1,18⎧⎫-⎨⎬⎩⎭()1,3()(),11,-∞--+∞ 39-()(),11,-∞-+∞ 2716x x -≤-106x x -≤-()()16060x x x ⎧--≤⎨-≠⎩16x ≤<[)1,6B =()[),16,B =-∞+∞ 2280x x +-≤()()420x x +-≤42x -≤≤[]4,2A =-(][),26,B A =-∞+∞ p x 210160x x -+≤28x ≤≤1m =q 2430x x -+≤13x ≤≤p q 28x ≤≤13x ≤≤18x ≤≤∴实数的取值范围为;(2)∵,由,解得,即:,∵是的充分条件,∴∴,实数的取值范围是19.略20.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.【解】(1)解:∵,∴,即;(2)命题正确用反证法证明如下:假设和都不成立,则且,由已知,实数、为正数实数,∴且,故,可得,与已知矛盾,故假设不成立,∴和中至少有一个成立. (3证明:x []1,80m >22430x mx m -+≤3m x m ≤≤q 3m x m ≤≤q p 238mm ≥⎧⎨≤⎩823m ≤≤m82,3⎡⎤⎢⎥⎣⎦()()()222142a b m n mn -=++-+()22222222244444420m n m n m n mn m n mn m n =+++---=+-=-≥0a b -…a b …P 123b a +≥123a b+≥123b a +<123a b+<a b 123b a +<123a b +<22233a b a b ++<+2a b +>2a b +=123b a +≥123a b+≥≥22-()2222222222a c b d a c b d ab cd =++++-+++++又因为所以因为a ,b ,c ,d所以21.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.【解】(1)已知,由,即当时,不等式化为,得,此时,不等式的解为.当时,不等式化为,即,恒成立,此时,不等式的解为.当时,不等式化为,得.此时,不等式的解为.综上所述,的解集为,即.(2)由题意知,不等式①恒成立,且不等式②恒成立;由(1)得,,,解得;由②得,,时,不等式化为恒成立,时,应满足,解得;综上知,的取值范围是.()()22ab cd ab cd ⎤=-+=-+⎥⎦()()()()222222222220a c b d ab cd a d b c abcd ad bc ++-+=+-=-≥()()()22222a c b d ab cd ++≥+()ab cd ≥+22+≥≥()3p x x =-()45q x x =--()()p x q x <354x x -+-<5x ≥354x x -+-<6x <56x ≤<35x ≤<354x x -+-<24<35x ≤<3x <354x x -+-<2x >23x <<()()p x q x <()2,6()()()(),2,6T p x q x =()212x x a a -<-+()()22216x a a a x -+<-+()()2221210x a x a a -++++>()()22214210a a a ∆=+-++<34a >-()22160a x a a ---+>1a =1160--+>1a ≠21060a a a ->⎧⎨--+>⎩12a <<a [)1,2(3)已知,,,由题意得,不等式组有解, 由,又, (1)当,即时,上式为,对任意桓成立.此时不等式组有解,满足题意; ②当,即时,,或,要使不等式组有解,则,或,解得,则有;③当,即时,,或.要使不等式组有解,则,或,解得,则有;综上所述,的取值范围是()2f x x b =-()41x b g x x +=-()2h x =()()22f x g x <⎧⎪⎨<⎪⎩()22221122b b f x x b x <⇔-<-<⇔-<<+()()()4214242200111x b x x b x b g x x x x +---++<⇔<⇔<⇔>---421b +=14b =-10>()(),11,x ∈-∞+∞ ()()22f xg x <⎧⎪⎨<⎪⎩421b +<14b <-()242g x x b <⇔<+1x >()()22f xg x <⎧⎪⎨<⎪⎩1422b b -<+112b +>67b >-6174b -<<-421b +>14b >-()21g x x <⇔<42x b >+()()22f x g x <⎧⎪⎨<⎪⎩112b -<1422b b +>+4b <144b -<<b 6,47⎛⎫- ⎪⎝⎭。
福建师大附中2024-2025学年第一学期高一第一次月考数学试卷一、单选题(每小题5分,共40分)1. 已知集合{}0,1A =,{}1,2B =,则A B 中元素的个数为A. 1B. 2C. 3D. 42. 设集合2{|0}M x x x =−≥,{|2}N x x =<,则M N = ( ) A. {|0}x x ≤ B. {|12}x x ≤< C {|01}x x ≤≤ D. {|0x x ≤或12}x ≤<3. 函数()f x =的定义域为( )A. [)3,∞−+B. [)2,−+∞C. [)2,+∞D. [)4,+∞4. 已知函数2()ln f x x ax ax =−+恰有两个零点,则实数a 的取值范围为( ) A. (,0)−∞ B. (0,)+∞C. (0,1)(1,)∪+∞D. (,0){1}−∞5. 偶函数在区间[0,a](a>0)上是单调函数,且f (0)·f (a )<0,则函数在区间[-a,a]内零点的个数是 A 1B. 2C. 3D. 06. 已知函数()32log ,041,0x x f x x x x >=++≤ ,函数()() F x f x b =−有四个不同零点1x 、2x 、3x 、4x ,且满足:1234x x x x <<<,则221323432x x x x x x +−的取值范围是A. )+∞B. 833,9C. [)3,+∞D. 8397. 定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =−,若[4,2]x ∈−−时,13()()18≥−f x t t恒成立,则实数t 的取值范围是( ) A. (](],10,3−∞−B.((,−∞C [)[)1,03,−+∞D.))+∞..的.8. 设函数()f x 的定义域为R ,且()()113f x f x =+,当(]1,0x ∈−时,()()1f x x x =+,若对任意(],x m ∈−∞,都有()8116f x ≥−,则实数m 的取值范围是( ) A. 7,3−∞B. 11,4−∞C. 9,4−∞D. (],3−∞二、多选题(每小题6分,共18分)9. 已知0a >,0b >,且1a b +=,则( ) A. 14ab ≥B. 2212a b +≥C. 22a b +≥D. ln 0a b +>10. 某数学课外兴趣小组对函数()()21lg 0,R +=≠∈x f x x x x的性质进行了探究,得到下列四个命题,其中正确的命题有( ) A. 函数()f x 的图象关于y 轴对称B. 当0x >时,()f x 是增函数,当0x <时,()f x 是减函数C. 函数()f x 的最小值是lg2D. 函数()f x 与2x =有四个交点11. 已知定义在R 上的函数()f x 满足()()()22024f x f x f ++=,且()21f x +是奇函数,则( ) A. ()f x 的图象关于点()1,0对称 B. ()()04f f = C. ()21f =D. 若1122f = ,则1001102i ifi =−=∑ 三、填空题(每小题5分,共15分)12. 已知集合{}A x x k =<,{}12B x x =<<,且A B B = ,则实数k 的取值范围是______.13. 已知函数()1log 1ayax −在[]0,2上单调递减,则实数a 取值范围是______.14. 设正数a ,b 满足, 11316a b a b +++=,则a bb a +的最大值是________.四、解答题(共77分)的15. 已知f (x )=x 2+2x -5,x ∈[t ,t +1],若f (x )的最小值为h (t ),写出h (t )的表达式.16. 已知集合26112x x A x −−=<∣,{22}B x x a =||+−<∣,若A B =∅ . (1)求实数a 的取值范围;(2)求2()23163a a y f a ==⋅−⋅的最值.17. 已知函数()x f x b a =⋅(,a b 为常数且0,1a a >≠)的图象经过点(1,8)A ,(3,32)B (1)试求,a b 的值;(2)若不等式11()()0xxm a b+−≥在(,1]x ∈−∞时恒成立,求实数m 的取值范围.18. 已知函数()()log 0,1a f x x a a =>≠. (1)若()()43f a f a +≤,求实数a 的取值范围;(2)设2a =,函数()()()()()232201g x f x m f x m m =−+−++<≤.(i )若1,2mx ∈ ,证明:()103g x ≤; (ii )若1,22x ∈,求()g x 的最大值()h m .19. 已知函数()()ln 1eaxf x bx =+−是偶函数,e 是自然对数的底数,e 2.71828≈(1; (2)当1b =时, (i )令()()()11g x f x f x =−++,[]11x ∈−,,求()g x 的值域;(ii )记121...nin i aa a a ==+++∑,已知12i x −≤≤,()1,2,...,1000i =,且100011000i i x ==∑,当()10001i i f x =∑取最大值时,求222121000...x x x +++的值.。
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C.D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 3. 使 “”成立的必要不充分条件是()2101x x +≥-A .B. 112x -≤≤112x -≤<C.或 D.或12x ≤-1x ≥12x ≤-1x >4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a 最小值85. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B. ac bc>c c a b <C.D. a c ab c b +>+a b b c a c<--6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612xx a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC .D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A. B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.14.对于任意正实数x 、y成立,则k 的范围为______.≤四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 16. 已知正数满足.,a b 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}【正确答案】A【分析】根据集合的含义以及交集的概念即可得到答案.B 【详解】集合,其表示所有的奇数,{21,Z}B xx n n ==+∈∣则.{1,5}A B = 故选:A.2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C. D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 【正确答案】A【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.本小题主要考查全称命题与特称命题的否定,属于基础题.3. 使 “”成立的必要不充分条件是()2101x x +≥-A. B. 112x -≤≤112x -≤<C. 或 D.或12x ≤-1x ≥12x ≤-1x >【正确答案】A【分析】解不等式,求得,根据必要不充分条件的定义即可得出结果.2101x x +≥-112x -≤<【详解】不等式可化为解得2101x x +≥-(1)(21)0,10,x x x -+≤⎧⎨-≠⎩11.2x -≤<则成立,反之不可以.112x -≤<⇒112x -≤≤所以是成立的必要不充分条件.112x -≤≤2101x x +≥-故选:A4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a最小值8【正确答案】C【分析】利用基本不等式及其对勾函数的性质分别判断即可.【详解】对于选项,只有当时,才满足基本不等式的使用条件,则不正确;A 0x >A 对于选项,,By ===+(t t =≥即在上单调递增,则最小值为,(22y t t t =+≥)+∞min y ==则不正确;B 对于选项,,则正确;C ()()22(2)211111x x x x x -=--++=--+≤C 对于选项,当时,,当且仅当D 3a >44333733a a a a +=-++≥=--时,即,等号成立,则不正确.433a a -=-5a =D 故选.C 5. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B.ac bc>c c a b <C.D. a c ab c b +>+a bb c a c<--【正确答案】C【分析】对于AB :根据不等式性质分析判断;对于CD :利用作差法分析判断.【详解】对于选项A :因为,则,所以,故A 错()0,,a b c a b c >>->∈R 0c <ac bc <误;对于选项B :因为,且,()0,,a b c a b c >>->∈R 0c <可得,所以,故B 错误;11a b <c c a b >对于选项C :因为,()()()b a ca c a ab bc ab ac b c b b c b b c b-++---==+++且,,则,()0,,a b c a b c >>->∈R 0c <0,0b a b c -<+>可得,所以,故C 正确;()()0b a ca c abc b b c b-+-=>++a c ab c b +>+对于选项D :因为,()()()()()()22a b a b c a b a ac b bc b c a c b c a c b c a c -+---+-==------且,,则,()0,,a b c a b c >>->∈R 0c <0,0,0,0a b a b c b c a c ->+->->->可得,即,故D 错误;()()()()0a b a b c a bb c a c b c a c -+--=>----a bb c a c >--故选:C.6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>【正确答案】D【分析】根据题意,将所给等式变形,得到,推导出,然后利用作差法2(2)0p n m -=->p n >比较大小,结合二次函数的性质证出,从而得出正确结论.n m >【详解】由,得,210m n ++=211m n =--≤-因为,244m n m p ++=+移项得,244m m p n -+=-所以,2(2)0p n m -=->可得,p n >由,得,210m n ++=21m n =--可得,()2221311024n m n n n n n ⎛⎫-=---=++=++> ⎪⎝⎭可得.n m >综上所述,不等式成立,p n m >>故选:D.7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【正确答案】C【分析】利用集合相等的定义得到关于的方程组,推得充分性成立;再简单证得必要性,a b 也成立即可得解.【详解】因为,{}{}22,1,,1A a a B b b =+=+当时,则有,或,A B =2211a ba b =⎧⎨+=+⎩2211a b a b ⎧=+⎨+=⎩若,显然解得;2211a ba b =⎧⎨+=+⎩a b =若,则,整理得,2211a b a b⎧=+⎨+=⎩()2211b b ++=()()22012b b b b -+++=因为,,22131024b b b ⎛⎫+=-+ ⎝⎭->⎪22172024b b b ⎛⎫+=++ ⎝⎭+>⎪所以无解;()()22012bb b b -+++=综上,,即充分性成立;a b =当时,显然,即必要性成立;a b =A B =所以“”是“”的充分必要条件.A B =a b =故选:C.8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612x x a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232【正确答案】B【分析】先利用基本不等式证得(此公式也可背诵下来),从而由题()()2222m n m n +≥+设条件证得,结合题意得到,利用二次不等式的解法解之即可得2211612a b +≥21212xx ≥+-到正数的最小值.x 【详解】因为()()()22222222222m n m n m n m n mn +-+=+-++,当且仅当时,等号成立,()22220m n mn m n =+-=-≥m n =所以,()()2222m n m n +≥+因为为正实数,所以由得,即,,a b ()410a b a +-=4a b ab +=411b a +=所以,222221161441221a b a b b a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+≥+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦当且仅当,且,即时,等号成立,41b a =4a b ab +=2,8a b ==所以,即,2211621a b ⎛⎫+≥ ⎪⎝⎭2211612a b +≥因为对满足的所有正实数a ,b 都成立,22211612x x a b +≥+-()410a b a +-=所以,即,整理得,2n 2mi 211612x x a b ⎛⎫ ⎪⎝⎭+≥+-21212x x ≥+-2021x x --≥解得或,由为正数得,1x ≥12x ≤-x 1x ≥所以正数的最小值为.x 1故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U ,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC.D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð【正确答案】AC【分析】由已知韦恩图分析出了阴影部分所表示的集合的元素满足的条件,进而根据集合运算的定义可得答案.【详解】根据图中阴影可知,符合题意,()()U A B A B ð又,∴也符合题意.()()()U U U A B A B ⋃=⋂ððð()A B ()()U U A B ⎡⎤⎣⎦ ðð故选:AC10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A .B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >【正确答案】ACD【分析】根据二次方程根的大小分类讨论,即可求解二次不等式的解集.【详解】对于一元二次不等式,则;()()10a x a x -+>0a ≠当时,函数开口向上,与轴的交点为,0a >()()1y a x a x =-+x ,1a -故不等式的解集为,故D 正确;()(),1,x a ∈-∞-+∞ 当时,函数开口向下,若,不等式解集为,故A 正确;0a <()()1y a x a x =-+1a =-∅若,不等式的解集为,10a -<<()1,a -若,不等式的解集为,故C 正确.1a <-(),1a -故选:ACD11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232【正确答案】BC【分析】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出的取值范围,最后都表示成的形式即可.a 32a b c ++a 【详解】因为不等式的解集为,()2020ax bx c a ≤++≤>{x |−1≤x ≤3}所以二次函数的对称轴为直线,()2f x ax bx c=++1x =且需满足,即,解得,()()()123210f f f ⎧-=⎪=⎨⎪≥⎩29320a b c a b c a b c -+=⎧⎪++=⎨⎪++≥⎩232b ac a =-⎧⎨=-+⎩所以,所以,123202a b c a a a a ++=--+≥⇒≤10,2a ⎛⎤∈ ⎥⎝⎦所以,故的值可以是和,332326445,42a b c a a a a ⎡⎫++=--+=-∈⎪⎢⎣⎭32a b c ++322故选:BC关键点睛:一元二次不等式的解决关键是转化为二次函数问题,求出对称轴和端点的值,继而用同一个变量来表示求解.第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.【正确答案】[)1,+∞【分析】由为的真子集,列出关于的不等式,求出不等式的解集即可.B A a 【详解】因为B A ,所以.1a ≥故[)1,+∞13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.【正确答案】1,2⎛⎤-∞⎥⎝⎦【分析】对和分类讨论求解,结合一元二次方程的根与系数的关系即可求解.0m =0m ≠【详解】当时,方程为,有一个负根,0m =220x +=当时,为一元二次方程,0m ≠2220mx x ++=关于的方程至少有一个负根,设根为,,x 2220mx x ++=1x 2x 当时,即时,方程为,解得,满足题意,480m ∆=-=12m =212202x x ++=2x =-当,即时,且时,480m ∆=->12m <0m ≠若有一个负根,则,解得,1220=<x x m 0m <若有两个负根,则,解得,12122020x x m x x m ⎧+=-<⎪⎪⎨⎪=>⎪⎩102m <<综上所述,则实数的取值范围是,,m (-∞1]2故,.(-∞1214.对于任意正实数x 、y 成立,则k 的范围为______.≤【正确答案】⎫+∞⎪⎪⎭≤2k ≥最大值即可.【详解】易知,,k>k≤.2k ∴≥令,分式上下同除y ,0t =>则,则即可,222221141121221t t t k t t +++⎛⎫≥=+ ⎪++⎝⎭22max 1411221t k t +⎛⎫≥+ ⎪+⎝⎭令,则.411u t =+>14u t -=可转化为:,24121t t ++()28829292u s u u u u u ==≤-++-于是,.()21411311222122t t +⎛⎫+≤+= ⎪+⎝⎭∴,即时,不等式恒成立(当时等号成立).232k ≥k ≥40x y =>故⎫+∞⎪⎪⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 【正确答案】(1)[)1,-+∞(2)(],2-∞-【分析】(1)分和两种情况讨论求解即可;A =∅A ≠∅(2)由题意得,从而可求出的取值范围.351a a -+≥⎧⎨≤-⎩a 【小问1详解】①当时,,∴,∴.A =∅AB =∅ 3a a >-+32a >②当时,要使,必须满足,解得.A ≠∅A B =∅ 32351a a a ⎧≤⎪⎪-+≤⎨⎪≥-⎪⎩312a -≤≤综上所述,的取值范围是.a [)1,-+∞【小问2详解】∵,,或,A B =R {}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >∴,解得,351a a -+≥⎧⎨≤-⎩2a ≤-故所求的取值范围为.a (],2-∞-16. 已知正数满足.,ab 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--【正确答案】(1)8 (2)3+(3)18【分析】(1)根据题意直接利用基本不等式即可得最值;(2)由题意可得,利用乘“1”法结合基本不等式运算求解;211a b +=(3)由题意可得,化简整理结合基本不等式运算求解.()()212a b --=【小问1详解】因为,且,0,0a b >>2a b ab +=则.2ab a b =+≥8ab ≥≥当且仅当,即时等号成立,24a b ==4,2a b ==所以的最小值为8.ab 【小问2详解】因为,且,则,0,0a b >>2a bab +=211a b +=可得,()2122133b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当,即,即时等号成立,2b aa b =a=21a b =+=+所以的最小值为.a b +3+【小问3详解】因为,且,所以,0,0a b >>2a b ab +=()()212a b --=可得,()()2248182848101018212121a b a b a b a b a b -+-++=+=++≥+=------当且仅当,即时等号成立,4821a b =--3a b ==所以的最小值为18.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m 【正确答案】(1)[]4,0-(2)4≥m 【分析】(1)依题意可得是真命题,分和两种情况讨论;()R,0x f x ∀∈≤0m =0m ≠(2)依题意参变分离可得存在使得成立,则只需,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭,利用基本不等式求出即可得解.()4,0x ∈-min 4x x ⎛⎫-- ⎪⎝⎭【小问1详解】若命题:是假命题,则是真命题,()R,0x f x ∃∈>()R,0x f x ∀∈≤即在上恒成立,210mxmx -≤-R 当时,,符合题意;0m =10-<当时,需满足,解得;0m ≠20Δ40m m m <⎧⎨=+≤⎩40m -≤<综上所述,的取值范围为.m []4,0-【小问2详解】若存在成立,()()()24,0,13x f x m x ∈-≥++即存在使得成立,故只需,,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭()4,0x ∈-因为,所以,则,()4,0x ∈-()0,4x -∈()444x x x x--=-+≥=-当且仅当,即时取等号,4x x -=-2x =-所以,所以.min44x x ⎛⎫- ⎪⎝⎭=-4≥m 18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =【正确答案】(1)采用方案二;理由见解析 (2)24【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到,利用换元法和基本不等式,即可214((4S S x a a -=-⋅+-求解.【小问1详解】解:方案一的总费用为(元);1S ax by =+方案二的总费用为(元),2S bx ay =+由,21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--因为,可得,所以,4,4y x b a >>>>0,0y x a b ->-<()()0y x a b --<即,所以,所以采用方案二,花费更少.210S S -<21S S <【小问2详解】解:由(1)可知,()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+ ⎪-⎝⎭令,t =24x t =+所以,当时,即时,等号成立,2224(1)33x t t t -=-+=-+≥1t =5x =又因为,可得,4a >40a ->所以,44(4)44844a a a a +=-++≥=--当且仅当时,即时,等号成立,444a a -=-6,14a b ==所以差的最小值为,当且仅当时,等号成立,S 2483=⨯5,8,6,14x y a b ====所以两种方案花费的差值最小为24元.S 19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈【正确答案】(1)集合不具有“包容”性,集合具有“包容”性{}1,1,2,3-{}1,0,1,2-(2)1(3),,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭【分析】(1)根据“包容”性的定义,逐一判断即可;(2)根据“包容”性的定义,能得到,分类讨论,得出a 和b 的值,即可得出结{}01,,a b ∈果;(3)由集合C 的子集有64个,推出集合C 中共有6个元素,且,再由条件,推0C ∈1C ∈出集合中有正数也有负数,将这几个元素设出来,再通过对正数负数个数的讨论,即可求出结果.【小问1详解】(Ⅰ)集合中的,,{}1,1,2,3-{}3361,1,2,3+=∉-{}3301,1,2,3-=∉-所以集合不具有“包容”性.{}1,1,2,3-集合中的任何两个相同或不同的元素,相加或相减,得到的两数中至少有一个属{}1,0,1,2-于集合,所以集合具有“包容”性.{}1,0,1,2-{}1,0,1,2-【小问2详解】(Ⅱ)已知集合具有“包容”性,记,则,{}1,,B a b ={}max 1,,m a b =1m ≥易得,从而必有,{}21,,m a b ∉{}01,,a b ∈不妨令,则,且,0a ={}1,0,B b =0b ≠1b ≠则,{}{}1,11,0,b b b +-⋂≠∅且,{}{}1,11,0,b b b +-⋂≠∅①当时,若,得,此时具有包容性;{}11,0,b b +∈10b +=1b =-{}1,0,1B =-若,得,舍去;若,无解;11b +=0b =1b b +=②当时,则,由且,可知b 无解,{}11,0,b b +∉{}{}1,11,0,b b b --⊆0b ≠1b ≠故.{}1,0,1B =-综上,.221a b +=【小问3详解】(Ⅲ)因为集合C 的子集有64个,所以集合C 中共有6个元素,且,又,且C 0C ∈1C ∈中既有正数也有负数,不妨设,{}1112,,,,0,,,,k k l C b b b a a a ---- 其中,,,5k l +=10l a a <<< 10k b b <<<L 根据题意,1111{,,}{,,,}l l l k k a a a a b b b ----⊆---L L且,1112112{,,,}{,,,}k k l b b b b b b a a a ----⊆L L 从而或.()(),2,3k l =()3,2①当时,,()(),3,2k l ={}{}313212,,b b b b a a --=并且由,得,由,得,313212{,}{,}b b b b b b -+-+=--312b b b =+2112{,}a a a a -∈212a a =由上可得,并且,2131322111(,)(,)(,)(2,)b b b b b b a a a a =--==31213b b b a =+=综上可知;{}111113,2,,0,,2C a a a a a =---②当时,同理可得.()(),2,3k l =11111{2,,0,,2,3}C a a a a a =--综上,C 中有6个元素,且时,符合条件的集合C 有5个,1C ∈分别是,,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭关键点点睛:本题是新定义题型,对于此类问题,要先弄清楚新定义的性质,按照其要求,严格“照章办事”,逐条分析验证。
上海市上海中学东校2024-2025学年高一上学期10月月考数学试卷一、填空题1.已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=.2.若a ,b R +∈,则不等式1b a x-<<的解集是.3.若正数x ,y 满足35x y xy +=,则34x y +的最小值是.4.设集合{}{}25,log (3),,A a B a b =+=,若{2}A B = ,则A B = .5.化简=.6.已知3log 2a =,3log 5b =,则log a ,b 表示的值为.7.对任意实数x ,等式()()432223ax bx cx dx e x x x ++++=-+恒成立,则关于x 的不等式420ax cx d e b +++-≤的解是.8.已知全集U =R ,实数,a b 满足0a b >>,集合2a b M x b x ⎧⎫+=<<⎨⎬⎩⎭,{}N x a =<<,则U M N =ð.9.关于x 的不等式|2||3|x x k ++-≥的解集为R ,则实数k 的取值范围是10.若实数,m n 为方程2260x kx k -++=的两根,则22(1)(1)m n -+-的最小值为.11.已知集合{}1,2,3,4,5A =,直角坐标系xOy 中的点集(){},,,B x y x A y A x y A =∈∈-∈.若用一张完整无破损的纸片去覆盖点集B 中的所有点,则这张纸片的面积至少是.12.关于x 的不等式组()226027270x x x a x a ⎧-->⎪⎨+++<⎪⎩的整数解只有3-,求a 的取值范围.二、单选题13.“221x y +<”是“1xy x y +>+”成立的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.已知a b c >>,且0a b c ++=,则下列不等式一定成立的是()A .22ab bc >B .22ab b c >C .()()0ab ac b c -->D .()()0ac bc a c -->15.若代数式2143mx mx mx -++对任意的实数x 有意义,则实数m 的取值范围是()A .30,4⎛⎤ ⎥⎝⎦B .30,4⎛⎫ ⎪⎝⎭C .30,4⎡⎤⎢⎥⎣⎦D .30,4⎡⎫⎪⎢⎣⎭16.设R a ∈,若不等式221148x x ax x x x++-+≥-恒成立,则实数a 的取值范围是A .[2,12]-B .[2,10]-C .[4,4]-D .[4,12]-三、解答题17.解关于x 的不等式:(1)122x x x -+-<+(2)()22101x x x x--≥-18.求下列函数的取值范围.(1)125,(2)2y x x x =++<-(2)()21,15x y x x +=>-+19.已知全集R U =,{}2|320A x x x =-+≤,{}2|20B x x ax a =-+≤,且A B B = ,求a的取值范围.20.市场上有一种新型的强力洗衣液,特点是去污速度快.已知每投放a (14a ≤≤,且a R ∈)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为()y a f x =⋅,其中()161,04815,4102x xf x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(1)当一次投放4a =个单位的洗衣液时,求在2分钟时,洗衣液在水中释放的浓度.(2)在(1)的情况下,即一次投放4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,6分钟后再投放2个单位的洗衣液,请你写出第二次投放之后洗衣液在水中释放的浓度y (克/升)与时间x (分钟)的函数关系式,求出最低浓度,并判断接下来的四分钟是否能够持续有效去污.21.对正整数n ,记{}1,2,3,,,,n n n n I n P m I k I ⎫==∈∈⎬⎭.(1)用列举法表示集合3P ;(2)求集合7P 中元素的个数;。
10月高一上学期数学第一次抽考试卷高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了10月高一上学期数学First次月考试卷,希望对大家有帮助。
一.选择题(每小题5分,共40分)
1.若直角坐标平面内不同的两点满足条件:① 都在函数的图像上;② 关于原点对称,则称点对是函数的一对友好点对(注:点对与看作同一对友好点对).若函数,则此函数的友好点对有 ( )对.
A. B. C. D.
2.若函数且在上既是奇函数又是增函数,则的图象是( )
3.函数在区间上是增函数, 则的取值范围是( )
A. B.
C. D.
4.函数的零点所在的一个区间是( )
A.(-2,-1)
B.(-1,0)
C.(0,1)
D.(1,2)
5.已知集合 ,则 =( )
A. B.
C. D.
6.设函数,,则 ( )
A.0
B.38
C.56
D.112
7.已知集合,,则 =( )
A. B. C. D.
8.已知函数 , ,设函数,且函数的零点均在区间内,则的最小值为( )
A、11
B、10
C、9
D、8
二.填空题(每小题5分,共30分)
9.已知函数则 ______.
10.若函数在上的最大值为,最小值为,则的值是_.
11.设函数是定义在上的偶函数,当时, .若,则实数的值为 .
12.若在区间上是增函数,则实数的取值范围是
____________.
13.已知函数,则 .
14.若函数的图象过点(2,-1),且函数的图像与函数的图像关于直线对称,则 = .
三.解答题
15(14分).数的定义域为集合A,函数的值域为集合B.
(1)求集合A,B;
(2)若集合A,B满足 ,求实数a的取值范围.
16(21分). 已知函数,其中e为自然对数的底数,且当x0时恒成立.
(Ⅰ)求的单调区间;
(Ⅱ)求实数a的所有可能取值的集合;
(Ⅲ)求证: .
17(15分).函数
(1) 时,求函数的单调区间;
(2) 时,求函数在上的最大值.
查字典数学网小编为大家整理了10月高一上学期数学First 次月考试卷,希望对大家有所帮助。