2010insar煤矿(分布式矩形位错模型)
- 格式:pdf
- 大小:2.31 MB
- 文档页数:10
基于Wilson理论的条形矿柱稳定性分析汪杰;宋卫东;曹帅【摘要】为了研究条形矿柱稳定性影响因素,考虑矿岩抗压强度、采深、矿房宽度、矿柱宽度及矿柱高度五个影响因素,基于威尔逊理论,应用正交试验,确定影响矿柱安全系数的主要因素及其主次顺序.结果表明:1)矿柱安全系数主要受矿岩抗压强度、采深、矿房宽度及矿柱宽度四个因素影响,且影响因子主次顺序为:矿柱宽度>矿岩抗压强度>采深>矿房宽度;2)矿柱安全系数与矿岩抗压强度、矿柱宽度呈线性正相关,与采深、矿房宽度呈多项式负相关;3)通过回归分析,建立了矿柱安全系数与各主要因素之间的简化公式,并将某金矿采场参数代入公式进行检验,计算结果较为可靠,能为现场生产提供一定的依据.【期刊名称】《有色金属(矿山部分)》【年(卷),期】2017(069)003【总页数】6页(P5-10)【关键词】威尔逊理论;正交试验;矿柱安全系数;条形矿柱【作者】汪杰;宋卫东;曹帅【作者单位】北京科技大学土木与资源工程学院,北京100083;金属矿山高效开采与安全教育部重点实验室,北京100083;北京科技大学土木与资源工程学院,北京100083;金属矿山高效开采与安全教育部重点实验室,北京100083;北京科技大学土木与资源工程学院,北京100083;金属矿山高效开采与安全教育部重点实验室,北京100083【正文语种】中文【中图分类】TD853.3随着我国采矿技术的日益提高,高强度采矿将成为未来的发展趋势。
然而,随着开采强度的加大,遗留下来的采空区规模和数量也将越来越大,一旦采空区发生失稳垮塌,将会带来严重灾难。
因此,实现地下矿安全高效开采将成为矿山企业追求的目标。
目前针对采场稳定性研究的方向主要集中在对矿柱尺寸和规模的合理布置上,国内外专家学者针对矿柱稳定性进行了大量的研究工作,也取得了大量的成果。
杨春明[1]等通过已有的矿柱间距设计理论,导出了新的矿柱尺寸设计方法。
彭小沾[2]等提出了基于Voronoi图的不规则煤柱稳定性分析方法,建立了不规则煤柱稳定性评价方法。
创新前沿科技创新与应用Technology Innovation and Application2021年13期基于SBAS-InSAR 技术的华亭煤矿开采沉陷特征分析姚林强,褚洪义,黄兆欢,彭思佳,马金辉*(兰州大学资源环境学院,甘肃兰州730000)我国是世界上的能源消耗大国,而煤炭是我国最主要的能源。
随着国民经济的持续快速发展,煤炭资源的战略地位尤为突显。
然而,煤炭资源的大规模开采在带来巨大社会发展和充当经济建设的重要物质基础的同时,也给矿山带来了一系列严重的环境破坏。
造成地表及地下环境破坏的主要原因之一便是由于煤炭开采引起的沉降,地表沉降将直接破坏地表土地的自然形态及地表的植被,进而降低土地的使用价值,影响农作物的安全生产;其次,矿区地表的水平变形和不均匀沉降,将造成沉降区的工业和民用建筑物、交通设施、水利设施等产生裂缝、扭曲等变形现象。
黄土高原煤炭资源分布广泛,由于其本身生态环境条件较差,在各种采煤活动扰动下,使得生态环境变得更加脆弱[1]。
为了保护生态环境及人们的生命和财产,必须能够快速、准确的监测这些变形。
目前煤炭开采的地表沉降监测主要依赖于传统的水准测量、静态GPS 测量或动态GPS 测量。
这种地面沉降的监测方式,不仅存在形变监测工作量大、费时、费财和测点难于长时间保存等缺陷,通常还因监测精度等原因,导致沉降变形分析处理出现偏差。
为此,迫切需要改进目前的监测方法,采取新的监测手段[2]。
雷达干涉测量(InSAR )技术提供了一种全新的地表形变监测方法,具有全天候、全天时、低成本等优势,可以获取大范围、高精度的地表形变信息,在地震、火山、冰川运动、矿山开采、城市地面沉降等监测方面取得了丰硕的成果[3原4]。
国内外学者相继对矿区开采沉陷进行了研究。
Baek J 等[5]利用SBAS 算法,监测Gangwon-do ,Korea 矿区开采沉摘要:基于SBAS-InSAR 技术,利用Sentinel-1A 的升降轨数据,对华亭煤矿进行地表形变监测,获得研究区各轨道雷达视线向的地表形变结果,发现研究区存在4处沉陷区域,获取每个区域的沉陷影响面积,并对时序沉陷规律进行分析。
煤矿塌陷InSAR精细化监测与展望关键词:地质形变、灾害监测、煤矿塌陷引言:矿区地面沉降和塌陷的治理一直是很多学者关心的方向,也提出了很多计算沉降形变的理论和计算方法,但是这些理论和方法都是基于矿区沉降形变的实测资料来进行预估和判断的,需要大量实测数据验证其有效性。
始于20世纪90年代的InSAR技术具有全天候、全时区、覆盖范围大、精度高、分辨率好等特点,在地面沉降、滑坡、地震、火山、煤矿塌陷等灾害监测中得到了广泛的应用,可以通过对研究区历史影像进行干涉处理来获取该区域对应时间段内地表形变演化结果。
[1]摘要:位于陕西省北部神府—东胜煤田,是我国已探明最大的煤田,也是世界七大煤田之一。
由于长期开采,大柳塔地区出现大量采空塌陷区,地表形变严重。
本文以大柳塔矿区为例,设计形变监测方案,并使用D-InSAR和时序InSAR 技术对配合TerraSAR-X数据对形变进行监测。
[2]一、InSAR技术用于矿区塌陷监测InSAR技术随着SAR技术的不断成熟与发展下应运而生,并不断的产生出新的方向,所能涉及的领域已经遍布遥感、测绘和制图各个方面。
经过诸多学者的持续的研究,目前InSAR技术已经在地质灾害的各个领域广泛应用。
[3]由于InSAR技术本身成像原理的特点决定了其对于小尺度形变监测的准确性好于大尺度变形,对于改进InSAR在大尺度形变监测方面一般情况下的方法概括为四种:数据处理过程改进、多源数据的融合、倾斜距离偏移法、以及最新提出的子带干涉技术。
数据处理过程的改进主要有基于永久散射点的时序InSAR技术、目标区影像过采样处理、临时相干点时序分析法等等。
因为利用SAR影像的相位来监测煤矿开采的沉降具有局限性,对于产生的误差采用倾斜距离偏移法技术[4]消除,该技术在大量级形变引起的失相干的情况下,仍然可以进行迭代配准,科学有效地解决一部分矿区大尺度变形监测的问题。
二、InSAR技术用于陕北大柳塔矿区形变监测(一)地区历史背景。
太原理工大学材料科学基础习题及参考答案第一章原子结构与结合键习题1-1计算下列粒子的德布罗意波长:(1) 质量为10-10 kg,运动速度为0.01 m·s-1的尘埃;(2) 速度为103 m/s的氢原子;(3) 能量为300 eV的自由电子。
1-2怎样理解波函数ψ的物理意义?1-3在原子结构中,ψ2和ψ2dτ代表什么?1-4写出决定原子轨道的量子数取值规定,并说明其物理意义。
1-5试绘出s、p、d轨道的二维角度分布平面图。
1-6多电子原子中,屏蔽效应和钻穿效应是怎样影响电子的能级的?1-7写出下列原子的基态电子组态(括号内为原子序号):C (6),P (15),Cl (17),Cr (24) 。
1-8 形成离子键有哪些条件?其本质是什么?1-9 试述共价键的本质。
共价键理论包括哪些理论?各有什么缺点?1-10 何谓金属键?金属的性能与金属键关系如何?1-11 范德华键与氢键有何特点和区别?参考答案:1-1 利用公式λ = h/p = h/mv 、E = hν计算德布罗意波长λ。
1-8 离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原子相互作用时,产生电子得失而形成的离子固体的结合方式。
1-9 共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。
共价键理论包括价键理论、分子轨道理论和杂化轨道理论。
1-10 当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属建。
由于存在自由电子,金属具有高导电性和导热性;自由电子能吸收光波能量产生跃迁,表现出有金属光泽、不透明;金属正离子以球星密堆方式组成,晶体原子间可滑动,表现出有延展性。
第二章材料的结构习题2-1定义下述术语,并注意它们之间的联系和区别。
晶系,空间群,平移群,空间点阵。
2-2名词解释:晶胞与空间格子的平行六面体,并比较它们的不同点。
2-3 (1) 一晶面在x、y、z轴上的截距分别为2a、3b和6c,求出该晶面的米勒指数。
This article was downloaded by: [202.101.245.184]On: 11 April 2012, At: 21:37Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UKGeomatics, Natural Hazards and RiskPublication details, including instructions for authors andsubscription information:/loi/tgnh20Characterizing 6 August 2007 CrandallCanyon mine collapse from ALOSPALSAR InSARZhong Lu a & Charles Wicks Jr ba US Geological Survey, Vancouver, WA, USAb US Geological Survey, Menlo Park, CA, USAAvailable online: 25 Mar 2010PLEASE SCROLL DOWN FOR ARTICLECharacterizing 6August 2007Crandall Canyon mine collapse fromALOS PALSAR InSARZHONG LU*{and CHARLES WICKS,Jr{US Geological Survey,Vancouver,WA,USA{US Geological Survey,Menlo Park,CA,USA(Received 10December 2009;in final form15January 2010)We used ALOS InSAR images to study deformation over the Crandall Canyon mine in Utah,which 2007and killed six miners.The collapse was registered as a M L image spanning the time of the 25–30cm over the mine.We used distributed sources to model the field,and found that source does not adequately fit the deformation field.is also required,such that the event is best characterized as a The calculated moment of the normal fault is about the same moment of the collapse source,with each larger than the seismically computed moment.Our InSAR results,including the of the event,the extent of the collapsed area,and constraints on the of the deformation source,all confirm and extend recent of the 6August 2007event.1.Introduction A portion of the Crandall Canyon mine,located in central Utah (figure 1)collapsed on 6August 2007,killing six miners (e.g.Pechmann et al .2008).A subsequent collapse 10days later killed three rescuers and injured six others.These collapses were registered as local magnitude (M L )3.9and 1.6seismic events having locations and origin coincident with the collapses.The of the 6August 2007M L ¼3.9seismic event (figure 2)was first regional seismic network.Standard location determination utilize seismic wave arrival times to source of the seismic waves while first motions of the P wave or are used to compute the style of The location errors on the accuracy of the seismic model,the accuracy of analyst picks of phase and the geometric of seismic stations.Due to the relatively large of seismic stations near the Crandall Canyon mine at the time of the 62007event,the estimated 1-standard deviation uncertainty of the epicentre is about 0.4km (/eqcenter/eqinthenews/2007/uu00007535/).The initial event location is about 1.5km WSW of the collapsed mine (figure 2).The nearest seismic station is about 19km from the event.Consequently,there is an even*Corresponding author.Email:lu@Geomatics,Natural Hazards and RiskVol.1,No.1,March 2010,85–93Geomatics,Natural Hazards and RiskISSN 1947-5705print/ISSN 1947-5713onlineThis material is declared a work of the United States Government and is not subject to copyright protection:approved for public release;distribution is unlimited/journalsDOI:10.1080/19475701003648077D o w n l o a d e d b y [202.101.245.184] a t 21:37 11 A p r i l 2012larger uncertainty in the initial depth estimate of the source.The initially reporteddepth is 1.6+1.0km.The 6August 2007event was relocated by repacking the P-wave arrival times,using stations within 100km of the epicentre only,as well as choosing a localized velocity model (figure 2).The relocation furnished on 16August 2007(/MONRESEARCH/CM/locations.htm)put the epi-centre about 1km south the collapsed mineA temporary networkof five stations wasCrandall Canyon mine starting 8August 2008in order to better associated with the collapse.The combined regional and temporary the second mine collapse on 17August 2007and determined that the M L ¼1.6seismic event occurred at 0.3km ing the 17August 2007earthquake as a master event (e.g.Wechsler and Smith 1978,Waldhauser and Ellsworth,2000),Pechmann et al.(2008)carefully relocated the 6August 2007seismic event.The relative relocation procedures provided a more accurate location of the initial collapse based on constraints from a more accurately located aftershock.The derived epicentre of the 6August 2007event is less than 300m from the collapsed portion of the mine.Figure 1.Map of mining-induced seismicity (with M L 41.6)over the Crandall Canyon mine area and October 2007.The red and yellow polygons represent the coverage of in figures 2and 3,respectively.The inset map showing the location of Crandall is produced using Google Earth.86Z.Lu and C.Wicks,JrD o w n l o a d e d b y [202.101.245.184] a t 21:37 11 A p r i l 2012In this paper,we present an analysis of inteferometric synthetic aperture radar (InSAR)images over the Crandall Canyon mine area.InSAR has been used to study both natural earthquakes (e.g.Massonnet et al.1993)and nuclear explosions (e.g.Vincent et al.2003),as well as(e.g.Ge et al.2007).We show that InSAR deformation data determine the location of the 6August 2007event and provide further the nature of the mine collapse.2.InSAR observation and analysisWe obtained both C-band (wavelength of 5.66cm)Envisat synthetic aperture radar (SAR)images and L-band (wavelength of 23.6cm)Advanced Land Observing Figure 2.InSAR image spanning 8June 2007to 8September 2007and epicentres August 2007seismic events that were determined by four different methods.The represents the initial epicentre from the standard relocation programme.The circle the epicentre using a localized velocity structure.The square represents the epicentre from the master-event method.The star represents the epicentre from the double-difference relocation method.The damaged area of Canyon mine estimated by the MSHA (Pechmann et al .2008)as the rectangle.InSAR phase observations are draped over a image.a range change of 11.8cm along the satellitelook of loss are not coloured.Also shown is the vertical displacement along a profile A–B,showing a peak value of about 30cm.Characterizing 6August 2007Crandall Canyon mine collapse 87D o w n l o a d e d b y [202.101.245.184] a t 21:37 11 A p r i l 2012Satellite (ALOS)Phased Array type L-band SARimages over the CrandallCanyon mine region.Due to relatively dense in the study area,C-band InSAR images did not maintain coherence over a time period.Therefore,we focused our efforts on analysing available L-band InSAR images from the Japan ALOS PALSAR sensor.Six PALSAR images were acquired over the Crandall Canyon mine in 2006and 2007,which we used to produce 4InSAR images (figures 2and 3).Topographic phase contributions in the original interferograms were removed by using the 1-arc-second Shuttle Radar Topography Mission (SRTM)digital elevation model (DEM).Figure 3.InSAR images over Crandall Canyon mine that span the following time intervals:(a )27June 2006and 27September 2006,(b )6December 2006and 8June 2007,(c )8June 2007and 8September 2007,and (d )8September 2007and 242007.InSAR phase observations are draped over a shaded relief image.(e )and uncertainties of InSAR phase values in the rectangle (c )for all four in figures (a )–(d ).The InSAR phase value was converted to vertical surface displacement.One fringe represents a range change of 11.8cm along the satellite look direction,which is equivalent to 15.1cm vertical displacement.Areas of loss of InSAR coherence are not coloured.88Z.Lu and C.Wicks,JrD o w n l o a d e d b y [202.101.245.184] a t 21:37 11 A p r i l 2012Figure 2shows the June–September 2007image that brackets the 6August 2007event.No deformation can be found over the 6August 2007event epicentre determined by the standard relocation method (figure 2).Instead,we observe an ellipse-shaped region that encloses the damaged area estimated by Department of Labor’s Mine Safety and Health Administration (MSHA)and the epicentres derived from the master-event method and the double difference relocation technique by Pechmann et al.(2008).The major axis of the ellipse is about 1.5km and the minor axis about 1km.The surface displacement filed is not symmetric,with most displacement occurring over the southern one-third portion of the ellipse.The interferogram shown in figure 2is an ascending InSAR image,with a look angle of about 38.78from the vertical.This means that the interferogram is slightly more sensitive to vertical motion than horizontal motion.The phase changes in the interferogram suggest range increases over the centre of the deformed area.Assuming the displacement is vertical,a range increase of 11.8cm (i.e.1fringe)corresponds to about 15.1cm subsidence.We plot the subsidence along a profile A-B (figure 2).The peak subsidence is *30cm.However,subsidence is notinstead,it is concentrateddominantly in the southern end,with a in phase gradient along the southern edge of the ellipse.of the deformation detected by InSAR (figure 2)suggests that the collapse area is likely to extend farther west of the MSHA’s 600m by 80m collapse-area estimate (Pechmann et al.InSAR observation is also consistent with the improved epicentre and the that the collapse started near the western end.The seismic moment estimate et al.(2008)suggested the area of the collapse should be about twice as large as the collapse area estimated by the MSHA,which is consistent with our result.In figure 3we show a few InSAR images to illustrate the deformation before,during,and after the 6August 2007collapse.We also plot histograms of these interferograms over a small area that possesses a similar coherence property to the area of collapsed mine,to illustrate the uncertainties of the observed deformation in all four interferograms.The inteferograms spanning 27June 2006to 27September 2006(figure 3(a ))and 6December 2006to 8June 2007(figure 3(b ))are noisier than the other two interferograms (figures 3(a )and (d ))due either to relatively larger baselines or longer time separations.Based on standard deviations of deformation measurements in the two interferograms (figure 3(e )),we may not be able to detect any deformation of less than 7cm at the 95%confidence level.In other words,the deformation,if any,would likely be less than about 7cm over 3-to 6-month time periods between June 2006to June 2007(figure 3(a )and (b )).The 8September 2007to 24October 2007InSAR image (figures 3(d ))had the best coherence,with a standard deviation of 1.7cm in vertical deformation (figure 3(e )).During that time interval,no deformation of larger than 3cm (at 95%confidence level)can be observed over the Crandall Canyon mine.Therefore,we conclude that most of the subsidence observed in the 8June 2007–8September 2007InSAR image (figure 2)was likely due to the mine collapse on 6August 2007.3.Deformation modelling and discussion The sharp break in phase gradient on the south edge of the deformation signal in the interferogram (figure 2)is an important observation that indicates the source is more complicated than a simple collapse source.To model the interferograms,we first Characterizing 6August 2007Crandall Canyon mine collapse 89D o w n l o a d e d b y [202.101.245.184] a t 21:37 11 A p r i l 2012used thealgorithm to resamplethe InSAR data by reducing thelargenumber ofcorrelated data points in the InSARimage(e.g.Jonsson et al.2002,Simonset al.2002).We then investigatedthe data with amodel ofa distributedset of dislocations(Okada1985)within a half-space.The or‘slip’,distribution is described a two-dimensional distribution(e.g.Myrhaug and Rue1998).Note that we use theterm slip to movement or surface perpendicular movement.The Weibullis versatile in that it can take the shape of an exponential distribution,adistribution,an approximate Gaussian distribution or other types ofdepending on the shape parameter.We use it here as a smoothing function that allows the slip to zero edges of the model.Weadd more versatility by allowing in the and lateral extent of theslip distribution.This allows,an area slip within the slipdistribution and a sharp discontinuity in slip in one direction.The use of a Weibulldistribution assumes that the slip is continuous within the slip distribution.Theof slip distribution enables us to systematically explore model space with least-squares techniques.model the deformation source a distributed collapse source and find an adequatefit only where the depth of a is less than*100m.Wedefine an adequatefit as a model for which the the residual(observed dataminus calculated)is reduced to the same variance noise in thearea of the interferogram.We know that the depth of drill holes used to locateminers ranged from430m to620m(Pechmann et al.2008,and referenceswhich is consistent with the depth of longwall mining at Utah and the well-locatedaftershocks following the6August2007mine collapse.Therefore,our simple collapsemodel with spatially varying collapse volume is inconsistent with observational andconstraints.The depth from our model source is chiefly constrained by the interferograms,which requires a component to thesource than the known depth of the mine collapse.To better model source we constrain the depth of aflat lyingcollapse source to be500m and add a shallow uniform-slip normal fault that dips tothe north.We constrain the dip of the normal fault to fall between08and908and thedepth to the top of the fault to be between0and500m.The best-fit model includes anormal fault that dips408to the ing an F-test we note that the dip of thenormal fault is not well constrained;at an estimated95%confidence level,the dip isbetween208and858.For all dips the top of the fault is shallow,shallower than70mand deeper than20m.The shearing component of our model is supported by theseismological analysis of Ford et al.(2008)and Dreger et al.(2008).These authorsnoted that purely vertical closing of aflat crack could not explain the large Lovewaves observed at some seismic stations and argued that an additional shearmechanism is needed to fully explain the observed waveforms.The normal fault inour model is not meant to represent a earthquake.More likely itrepresents responsive slip of the the mine’s longwall orother which resulted in a for the collapse.The the normal fault and the decreases fromabout8dip to*0.3at a dip of858.In the seismic source characterization ofFord et al.(2008)the authors estimated the collapse mechanism for two differentsource decompositions to be78and79%of the total moment.This requires the dipto be near85degrees if the moment ratio is the same for the geodetic source as it is for90Z.Lu and C.Wicks,JrDownloadedby[22.11.245.184]at21:3711April212the seismic source.The moment magnitude of the geodetic source with a dip for the normal fault component of 858is 4.49,whereas Ford et al.(2008)found a moment magnitude of 4.12.The calculated geodetic moment increases with decreasing dip angle to about 4.58at 208dip.We prefer a steep dip for the normal fault component to minimize differences with the seismic source determined by Ford et al.(2008).We expect additional collapse and slip on the normal fault could lead to the larger geodetic moment,but these processes might also lead to a different moment ratio between the collapse and normal fault components.In figure 4,we show an example of the calculated best-fit model for a normal fault component dip of 658.This model has a geodetic moment magnitude 4.5and a low moment ratio (*0.57),but the faultalsoFigure 4.(a )Observed,(b )modelled and (c )residual deformation interferograms.The modelled InSAR image is based on the best-fit model parameter from distributed dislocations that includes a normal fault dipping at 658.(d )Model geometry and slip distribution.Characterizing 6August 2007Crandall Canyon mine collapse 91D o w n l o a d e d b y [202.101.245.184] a t 21:37 11 A p r i l 2012intersects the modelled collapse area,whereas a model with a dip of 858for a normal fault is too steep to intersect the modelled collapse area.The amount of collapse and the areal extent of the collapse in the model are variable.The peak collapse varies from about 0.3m to 0.7m while the areal extent of the modelled collapse varies from about 0.4to 0.6km 2.Ford et al.(2008)estimated a collapse range of 0.06to 0.55m for the seismic source and a collapse area of 0.11to 1km 2.They favoured the larger collapse values that would correspond with smaller areas of collapse.Pechmann et al.(2008)inferred a collapse area of *0.2km 2and an average collapse value of 0.3m.There is good agreement between our study and the two seismic studies at least for the collapse component.Based on the evidence above,we suggest the extent of damaged area during the August 2007mine collapse might be much larger than the MSHA estimate of 0.05km 2(Pechmann et al.2008).4.ConclusionInSAR deformation analysis clearly reveals the location of the 6August 2007event,which could not be precisely determined before the addition of a local seismic network and the assistance of a large aftershock event.The combination of InSAR observation as well asanalysis fromfirst motion directions (Pechmann et al.2008)and moment(Ford et al.2008)provides insights into the collapse of Crandall The observed subsidence of about 30cm is directly over the Crandall Canyon mine,suggesting that the 6August 2007seismic event occurred within or immediately above the mine.The pattern of the observed deformation (away-from-satellite range lengthening)also suggests the deformation is not by a natural occurring earthquake,which is consistent with the observations and modelling of the event (Pechmann et al.2008,Ford et al.Dreger et al.2008).A collapse source alone could not adequately fit the deformation field;a normal fault was also required.The dip of the normal fault is not well falling somewhere between 208and 858;however,the location of the surface robustly stable.The calculated moment of the normal fault is about the same of the collapse source with each larger than the seismic moment of the event.We conclude that InSAR observation of the ground surface over the Crandall Canyon mine provides unique information about the mine collapse,whichcompliments seismic first-motion analysis and moment tensor inversion of waveforms.InSAR results in this study (1)the location of the 6August 2007seismic event that was the signature of collapse,(2)suggest location errors of the seismic event from the standard epicentre relocation method,(3)determine an estimate of the extent of the collapsed area,and (4)provide new constraints on a shearing component of the mine collapse.Routine monitoring of land surface subsidence from satellite InSAR will provide constraining information about future mine collapses,especially over poorly instrumented areas.AcknowledgementsPALSAR data are copyrighted JAXA/METI and were provided by Alaska Satellite Facility.We thank S.Moran,H.Benz,and D.Dzurisin for thorough reviews and detailed comments.We appreciate the useful discussions by J.Pechmann and M.Gauna.92Z.Lu and C.Wicks,JrD o w n l o a d e d b y [202.101.245.184] a t 21:37 11 A p r i l 2012References D REGER ,D.,F ORD ,S.and W ALTER ,W.,2008,Source analysis of the Crandall Canyon,Utah,mine collapse.Science ,321,p.217.F ORD ,S.R.,D REGER ,D.S.and W ALTER ,W.R.,2008,Source characterization of the 6August 2007Crandall Canyon Mine seismic event in central Utah.Seismological Research Letters ,79,637–644.J O NSSON ,S.,Z EBKER ,H.,S EGALL ,P.and A MELUNG ,F.,2002,Fault slip distribution of the 1999Mw 7.1Hector Mine,California,earthquake,estimated from satellite radar and GPS measurements.Bulletin of the Seismological Society of America ,92,pp.1377–1389.G E ,L.,C HANG ,H.C.and R IZOS ,C.,2007,Mine subsidence monitoring using multi-source satellite SAR images.Photogrammetric Engineering &Remote Sensing ,73,pp.259–266.M ASSONNET ,D.,R OSSI ,M.,C ARMONA ,C.,A DRAGNA ,F.,P ELTZER ,G.,F EIGL ,K.and R ABAUTE ,T.,1993,The displacement field of the Landers earthquake mapped by radar interferometry.Nature ,364,pp.138–142.M YRHAUG ,D.and R UE ,H.,1998,Joint distribution of successive wave periods revisited.Journal of Ship Research ,42,pp.199–206.O KADA ,Y.,1985,Surface deformation due to shear andin a half-space.Bulletin of the Seismological Society of America ,75,pp.P ECHMANN ,J.,A RABASZ ,W.,P ANKOW ,K.,B URLACU ,R.and M C C ARTER ,M.,2008,Seismological Report on the 6August 2007Crandall Canyon Mine Collapse in Utah.Seismological Research Letters ,79,pp.620–636.S IMONS ,M.,F IALKO ,Y.and R IVERA ,L.,2002,Coseismic deformation from the 1999Mw7:1Hector Mine,California,earthquake,as inferred from InSAR and GPS observations.Bulletin of the Seismological Society of America ,92,pp.1390–1402.V INCENT ,P.,L ARSEN ,S.,G ALLAWAY ,G.,L ACZNIAK ,R.,F OXALL ,B.,W ALTER ,W.and Z UCCA ,J.,2003,New signatures of underground nuclear tests revealed by satellite radar interferometry.Geophysical Research Letters ,30,p.2141.W ALDHAUSER , F.and E LLSWORTH ,W.L.,2000,A double-difference earthquake location algorithm:method and application to the Northern Hayward Fault,California.Bulletin of the Seismological Society of America ,90,pp.1353–1368.W ECHSLER ,D.and S MITH ,B.,1978,An evaluation of hypocenter relocation techniques with applications to southern Utah:regional earthquake distributions and seismicity of the geothermal areas.Department of Energy publication DOE/ET/28392-32,DOI:10.2172/6579471.Available online at:/energycitations (accessed 16February 2010).Characterizing 6August 2007Crandall Canyon mine collapse 93D o w n l o a d e d b y [202.101.245.184] a t 21:37 11 A p r i l 2012。