高一数学经典例题及解法
- 格式:docx
- 大小:1.64 MB
- 文档页数:14
高一数学试题答案及解析一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为()A. 0B. 1C. 2D. 3答案:B解析:将x=1代入函数f(x)=x^2-4x+m中,得到f(1)=1^2-4*1+m=-3,解得m=1。
2. 已知等差数列{an}的前n项和为Sn,若a1=1,公差d=2,则S5的值为()A. 15B. 25C. 35D. 45答案:A解析:根据等差数列前n项和公式Sn=n/2*(2a1+(n-1)d),代入n=5,a1=1,d=2,得到S5=5/2*(2*1+(5-1)*2)=15。
3. 若cosα=-1/2,则α的值为()A. π/3B. 2π/3C. π/6D. 5π/6答案:B解析:根据特殊角的三角函数值,cos(2π/3)=-1/2,所以α=2π/3。
4. 已知函数f(x)=x^3-3x,求f'(x)的值为()A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+3答案:A解析:对函数f(x)=x^3-3x求导,得到f'(x)=3x^2-3。
5. 若直线l的方程为y=2x+1,则直线l的斜率为()A. 1B. 2C. -1D. -2答案:B解析:直线方程y=2x+1中,斜率k=2。
6. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 的值为()A. {1, 2}B. {2}C. {1}D. {1, 3}答案:B解析:解方程x^2-5x+6=0得到A={2, 3},解方程x^2-3x+2=0得到B={1, 2},所以A∩B={2}。
7. 若复数z=1+i,则|z|的值为()A. √2B. 2C. 1D. 0答案:A解析:根据复数模的计算公式,|z|=√(1^2+1^2)=√2。
8. 已知函数f(x)=x^2-4x+3,求f(-1)的值为()A. 8B. 6C. 4D. 2答案:A解析:将x=-1代入函数f(x)=x^2-4x+3中,得到f(-1)=(-1)^2-4*(-1)+3=8。
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
高一数学试题答案及解析1.(3分)设函数f(x)在区间[a,b]上满足f′(x)<0,则函数f(x)在区间[a,b]上的最小值为,最大值为.【答案】f(b) f(a)【解析】先利用导数的符号判断函数f(x)在区间[a,b]上的单调性,再求出f(x)在区间[a,b]上的最大值和最小值即可.解析:由f′(x)<0,可知f(x)在区间[a,b]上为单调减函数,则最小值为f(b),最大值为f (a).故答案为:f(b) f(a)点评:本题考查了利用导数求闭区间上函数的最值,利用函数的单调性求函数的最值,属于基础题.2.(3分)函数f(x)=x3﹣3x+1在[﹣3,0]上的最大值和最小值之和为.【答案】﹣14【解析】利用求导公式先求出函数导数,求出导数等于0时x的值,吧x值代入原函数求出极值,再求出端点值,极值与端点值比较,求出最大值和最小值,做差.(1)解:f′(x)=3x2_3令f′(x)="0" 则x=±1,极值:f(1)=﹣1,f(﹣1)=3,端点值:f(﹣3)=﹣17,f(0)=1.所以:最大值为3 最小值为﹣17,最大值和最小值之和为﹣14故答案为:﹣14点评:该题考查函数求导公式,以及可能取到最值的点,属于基本题,较容易.3.(3分)已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,则m的值为.【答案】3【解析】本题是典型的利用函数的导数求最值的问题,只需要利用已知函数的最大值为3,进而求出常熟m的值.解析:f′(x)=6x2﹣12x,6x2﹣12x=0⇒x=0或x=2.当x>2,或x<0时,f′(x)>0;当0<x<2时,f′(x)<0,∴当x=0时,f(x)取得极大值,当x=2时,f(x)取得极小值.又f(0)=m,f(2)=m﹣8,f(﹣2)=m﹣40,∴f(x)的最大值为f(0)=3.∴m=3.故答案:3.点评:本题考查利用函数的导数求最值的问题,解一元二次不等式的方法.属于中档题.4.设函数f(x)=﹣x3+2ax2﹣3a2x+b,0<a<1.(1)求函数f(x)的单调区间、极值;(2)若x∈[0,3a],试求函数f(x)的最值.【答案】(1)函数f(x)的单调减区间为(﹣∞,a),(3a,+∞),单调增区间为(a,3a).当x=a时,f(x)的极小值为﹣a3+b;当x=3a时,f(x)的极大值为b.(2)当x=a时,f(x)的最小值为﹣a3+b;当x=0或x=3a时,f(x)的最大值为b.【解析】(1)要求函数f(x)的单调区间,即求函数f(x)的f′(x),令f′(x)=0,解出x,再根据导数与单调性的关系求解即可得到函数f(x)的单调区间、极值;(2)由(1)知函数当x∈(0,a)时,函数f(x)为减函数;当x∈(a,3a)时,函数f(x)为增函数.进而得到函数f(x)在[0,3a]上的最值.解:(1)f′(x)=﹣x2+4ax﹣3a2.令f′(x)=0,解得x=a或x=3a,列表:﹣a3+b由表可知:当x∈(﹣∞,a)时,函数f(x)为减函数;当x∈(3a,+∞)时,函数f(x)也为减函数;当x∈(a,3a)时,函数f(x)为增函数.∴函数f(x)的单调减区间为(﹣∞,a),(3a,+∞),单调增区间为(a,3a).当x=a时,f(x)的极小值为﹣a3+b;当x=3a时,f(x)的极大值为b.(2)x∈[0,3a],列表如下:x0(0,a)a(a,3a)3a﹣a3+b由表知:当x∈(0,a)时,函数f(x)为减函数;当x∈(a,3a)时,函数f(x)为增函数.∴当x=a时,f(x)的最小值为﹣a3+b;当x=0或x=3a时,f(x)的最大值为b.点评:本题考查了利用导数求闭区间上函数的最值,利用导数研究函数的单调性,函数在某点取得极值的条件,属于中档题.5.函数y=++的导数是.【答案】﹣x﹣2﹣4x﹣3﹣3x﹣4.【解析】利用导数的运算法则即可得出.解:y=++=x﹣1+2x﹣2+x﹣3,∴y′=(x﹣1+2x﹣2+x﹣3)′=﹣x﹣2﹣4x﹣3﹣3x﹣4.故答案为﹣x﹣2﹣4x﹣3﹣3x﹣4.点评:熟练掌握导数的运算法则是解题的关键.6.函数的导数为.【答案】【解析】根据导数的运算法则可得答案.解:∵∴y'==故答案为:点评:本题主要考查导数的运算法则.属基础题.求导公式一定要熟练掌握.7.曲线y=x3在点(0,0)处的切线方程是.【答案】y=0.【解析】先求出函数y=x3的导函数,然后求出在x=0处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程即可.解:∵y′=(x3)′=3x2,∴k=3×02=0,∴曲线y=x3在点(0,0)切线方程为y=0.故答案为:y=0.点评:本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,属于基础题.8.已知直线y=kx与曲线y=lnx相切,则k= .【答案】【解析】设切点,求出切线斜率,利用切点在直线上,代入方程,即可得到结论.解:设切点为(x0,y),则∵y′=(lnx)′=,∴切线斜率k=,又点(x0,lnx)在直线上,代入方程得lnx=•x=1,∴x=e,∴k==.故答案为:.点评:本题考查切线方程,考查导数的几何意义,考查学生的计算能力,属于中档题.9.函数y=(1﹣)(1+)的导数为.【答案】【解析】利用导数的运算法则和导数公式进行求导.解:因为y=(1﹣)(1+)=1﹣=,所以.故答案为:.点评:本题主要考查导数的计算以及导数的四则运算法则,比较基础.10.曲线在点(﹣1,﹣1)处的切线方程.【答案】2x﹣y+1=0.【解析】先求曲线的导数,因为函数在切点处的导数就是切线的斜率,求出斜率,再用点斜式写出切线方程,再化简即可.解:的导数为y′=,∴曲线在点(﹣1,﹣1)处的切线斜率为2,切线方程是y+1=2(x+1),化简得,2x﹣y+1=0故答案为:2x﹣y+1=0.点评:本题主要考查了函数的导数与切线斜率的关系,属于导数的应用.11.求下列函数的导数:(1)y=+2x;(2)y=lgx﹣sinx;(3)y=2sinxcosx;(4)y=.【答案】见解析【解析】分别利用导数的公式求函数的导数.解:(1).(2).(3)y'=(2sinxcosx)'=2cosxcosx﹣2sinxsinx=2cos2x.(4).点评:本题主要考查导数的运算,要求熟练掌握常见函数的导数公式和导数的运算法则.12.航天飞机升空后一段时间内,第t s时的高度h(t)=5t3+30t2+45t+4,其中h的单位为m,t 的单位为s.(1)h(0),h(1),h(2)分别表示什么?(2)求第2s内的平均速度;(3)求第2s末的瞬时速度.【答案】(1)h(0)表示航天飞机发射前的高度;h(1)表示航天飞机升空后1s的高度;h(2)表示航天飞机升空后2s的高度;(2)125米/秒;(3)225m/s.【解析】(1)由h(t)表示航天飞机发射t秒后的高度分别说明h(0),h(1),h(2)的意义;(2)直接由(h(2)﹣h(0))除以2得到第2s内的平均速度;(3)求出2秒时刻的瞬时变化率,取极限值求第2s末的瞬时速度.解:(1)答:h(0)表示航天飞机发射前的高度;h(1)表示航天飞机升空后1s的高度;h(2)表示航天飞机升空后2s的高度;(2)航天飞机升空后第2秒内的平均速度为===125(m/s).答:航天飞机升空后第2秒内的平均速度为125米/秒;(3)航天飞机升空后在t=2时的位移增量与时间增量的比值为v====5(△t)2+60(△t)+225,当△t趋向于0时,v趋向于225,因此,第2s末的瞬时速度为225m/s.答:航天飞机升空后第2秒末的瞬时速度为225米/秒.点评:本题考查了变化的快慢与变化率,解答的关键是准确的计算,是基础的概念题.13.试求过点P(3,5)且与曲线y=x2相切的直线方程.【答案】y=2x﹣1和y=10x﹣25.【解析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在切点(x0,x2)处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后结合切线过点P(3,5)即可求出切点坐标,从而问题解决.解:y′=2x,过其上一点(x0,x2)的切线方程为y﹣x02=2x(x﹣x),∵所求切线过P(3,5),∴5﹣x02=2x(3﹣x),解之得x=1或x=5.从而切点A的坐标为(1,1)或(5,25).当切点为(1,1)时,切线斜率k1=2x=2;当切点为(5,25)时,切线斜率k2=2x=10.∴所求的切线有两条,方程分别为y﹣1=2(x﹣1)和y﹣25=10(x﹣5),即y=2x﹣1和y=10x﹣25.点评:本小题主要考查导数的概念、导数的几何意义和利用导数研究曲线上某点切线方程的能力,考查运算求解能力.属于基础题.14.如图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干根等长的铁筋焊接在一起的架子支撑.已知镜口圆的直径为12 m,镜深2 m,(1)建立适当的坐标系,求抛物线的方程和焦点的位置;(2)若把盛水和食物的容器近似地看作点,试求每根铁筋的长度.【答案】(1)y2=18x,F(,0).(2)6.5m.【解析】(1)先建立直角坐标系,得到A的坐标,然后设出抛物线的标准方程进而可得到P的值,从而可确定抛物线的方程和焦点的位置.(2)根据盛水的容器在焦点处,结合两点间的距离公式可得到每根铁筋的长度.解:(1)如图,在反光镜的轴截面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于镜口直径.由已知,得A点坐标是(2,6),设抛物线方程为y2=2px(p>0),则36=2p×2,p=9.所以所求抛物线的标准方程是y2=18x,焦点坐标是F(,0).(2)∵盛水的容器在焦点处,∴A、F两点间的距离即为每根铁筋长.|AF|==(或|AF|=+2=).故每根铁筋的长度是6.5m.点评:本题主要考查抛物线的应用.抛物线在现实生活中应用很广泛,在高考中也占据重要的地位,一定要掌握其基础知识做到活学活用.15.有一种电影放映机的放映灯泡的玻璃上镀铝,只留有一个透明窗用作通光孔,它的反射面是一种曲线旋转而成的曲面的一部分,灯丝定在某个地方发出光线反射到卡门上,并且这两物体间距离为4.5 cm,灯丝距顶面距离为2.8 cm,为使卡门处获得最强烈的光线,在加工这种灯泡时,应使用何种曲线可使效果最佳?试求这个曲线方程.【答案】+=1.【解析】采用椭圆旋转而成的曲面,效果最佳,如图建立平面直角坐标系,设出椭圆的方程,根据灯丝距顶面距离为p,根据椭圆的性质可知|F1F2|=2c,且△BF1F2为直角三角形,利用勾股定理即可表示出|BF2|的长,然后根据椭圆的定义可知|F1B|+|F2B|=2a,即可求出a与b的值,代入设出的椭圆方程即可确定出解析式.解:采用椭圆旋转而成的曲面,如图建立直角坐标系,中心截口BAC是椭圆的一部分,设其方程为+=1,灯丝距顶面距离为p,由于△BF1F2为直角三角形,因而,|F2B|2=|F1B|2+|F1F2|2=p2+4c2,由椭圆性质有|F1B|+|F2B|=2a,所以a=(p+)=(2.8+)≈4.05cm,b=≈3.37m.∴所求方程为+=1.点评:此题考查学生掌握椭圆的简单性质,考查了数形结合的数学思想,是一道中档题.16.(3分)已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(﹣10,0),则焦点坐标为()A.(±13,0)B.(0,±10)C.(0,±13)D.(0,±)【答案】D【解析】由题意可得椭圆的焦点在y轴上且a=13,b=10,利用c2=a2﹣b2即可得到c.解:由题意可得椭圆的焦点在y轴上且a=13,b=10,∴=.∴焦点为.故选D.点评:熟练掌握椭圆的性质是解题的关键.17.(3分)(2009•广东)巳知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.【答案】.【解析】由题设条件知,2a=12,a=6,b=3,由此可知所求椭圆方程为.解:由题设知,2a=12,∴a=6,b=3,∴所求椭圆方程为.答案:.点评:本题考查椭圆的性质和应用,解题时要注意公式的灵活运用.18.(3分)已知p:∅⊆{0},q:{1}∈{1,2}.由他们构成的新命题“p∧q”,“p∨q”,“¬p”中,真命题有()A.1个B.2个C.3个D.4个【答案】A【解析】由集合之间的关系判断出命题p、q的真假,再由复合命题的真假性原则进行判断即可.解:由集合之间的关系得:命题p:∅⊆{0}是真命题,命题q:{1}∈{1,2}是假命题,所以p∧q是假命题,p∨q真命题,命题p是假命题,故选A.点评:本题考查了集合之间的关系,以及复合命题真假性原则的应用.19.(3分)命题p:方向相同的两个向量共线,q:方向相反的两个向量共线,则命题“p∨q”为.【答案】方向相同或相反的两个向量共线.【解析】根据复合命题p∨q的定义和题意,直接写出命题“p∨q”即可.解:由命题p:方向相同的两个向量共线命题,q:方向相反的两个向量共线,得即命题“p∨q”为:“方向相同或相反的两个向量共线”.故答案为:方向相同或相反的两个向量共线.点评:本题考查了复合命题的定义,属于基础题.20.(3分)命题“若a<b,则2a<2b”的否命题为,命题的否定为.【答案】否命题为:若a≥b,则2a≥2b命题的否定为:若a<b,则2a≥2b【解析】同时否定条件和结论得到命题的否命题.不改变条件,只否定结论,得到命题的否定.解:命题“若a<b,则2a<2b”的否命题为:若a≥b,则2a≥2b,命题的否定为:若a<b,则2a≥2b.故答案为:否命题为:若a≥b,则2a≥2b命题的否定为:若a<b,则2a≥2b点评:本题考查了命题的否命题和命题的否定.。
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一数学一元二次不等式解法练习题例 1 解下列不等式:(1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2(3)(2x +1)(x -3)>3(x 2+2) 22(413)332x x x >--+()2(5)1113x x x x >--+例有意义,则的取值范围是.2 x x 2--x 6例 3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.A aB aC aD a .<.>.=.=-12121212A a xB x a .<<.<<11aaC x aD x x a .>或<.<或>x aa 11例不等式+>的解集为5 1x 11-x()A .{x|x >0}B .{x|x ≥1}C .{x|x >1}D .{x|x >1或x =0}例与不等式≥同解的不等式是6 0x x--32()A .(x -3)(2-x)≥0B .0<x -2≤1C .≥230--xxD .(x -3)(2-x)≤0练习: 不等式 < 的解为 < 或 > ,则 的值为( )1 {x x 1 x 2a ax -1 例 若 < < ,则不等式 - - < 的解是( )4 0 a 1 (a)( 0 1a例 解不等式 ≥ .7 2 3 7 2 32 x x x - + -例8 解关于x的不等式(x-2)(ax-2)>0.高一数学一元二次不等式解法练习题解析例 1 解下列不等式:(1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2(3)(2x +1)(x -3)>3(x 2+2) 22(413)332x x x >--+ ()2(5)1113x x x x >--+ 分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成).答 (1){x|x <2或x >4}(2){x|1x }≤≤32(3)∅(4)R (5)R说明:不能使用解公式的时候要先变形成标准形式.例有意义,则的取值范围是.2 x x 2--x 6分析 求算术根,被开方数必须是非负数.解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2.例 3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理.解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知-=-+=-=-=-⎧⎨⎪⎪⎩⎪⎪ba a()()1211122×得a b ==-1212,.A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a -答 选C . 说明:注意本题中化“商”为“积”的技巧.A a xB x a .<<.<<11aaC x aD x x a .>或<.<或>x aa 11分析比较与的大小后写出答案. a 1a解∵<<,∴<,解应当在“两根之间”,得<<.选.0a 1a a x A 11a a例不等式+>的解集为5 1x 11-x()A .{x|x >0}B .{x|x ≥1}C .{x|x >1}D .{x|x >1或x =0}分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分.练习: 不等式 < 的解为 < 或 > ,则 的值为( )1 {x x 1 x 2a ax - 1 例 若 < < ,则不等式 - - < 的解是( )4 0 a 1 (a)( 0 1a解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x -1>0,即x >1.选C .说明:本题也可以通过对分母的符号进行讨论求解.例与不等式≥同解的不等式是6 0x x--32()A .(x -3)(2-x)≥0B .0<x -2≤1C .≥230--xxD .(x -3)(2-x)≤0 解法一原不等式的同解不等式组为≥,≠. ()()x x x ---⎧⎨⎩32020 故排除A 、C 、D ,选B .解法二≥化为=或-->即<≤x 320x 3(x 3)(2x)02x 3--x两边同减去2得0<x -2≤1.选B . 说明:注意“零”.解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x |-3<x <1}. 说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题.例 解不等式 ≥ .7 2 3 7 2 32 x x x - + -例8 解关于x 的不等式(x -2)(ax -2)>0.分析 不等式的解及其结构与a 相关,所以必须分类讨论. 解 1° 当a =0时,原不等式化为 x -2<0其解集为{x|x <2};2 a 02(x 2)(x )0°当<时,由于>,原不等式化为--<,其解集为22a a{x|2ax 2}<<; 3 0a 12(x 2)(x )0°当<<时,因<,原不等式化为-->,其解集为22a a{x|x 2x }<或>;2a4° 当a =1时,原不等式化为(x -2)2>0,其解集是{x|x ≠2};5 a 12(x 2)(x )0°当>时,由于>,原不等式化为-->,其解集是22a a{x|x x 2}<或>.2a从而可以写出不等式的解集为: a =0时,{x|x <2};a 0{x|2ax 2<时,<<};0a 1{x|x 2x }<<时,<或>;2aa =1时,{x|x ≠2};a 1{x|x x 2}>时,<或>.2a说明:讨论时分类要合理,不添不漏.。
例1圆(Λ∙-3)2+(y-3)2=9±到直线3Λ-+4>'-11=0的距离为1的点有几个?分析:借助图形直观求解.或先求出直线厶、厶的方程,从代数计算中寻找解答.解法圆(x-3)2 + (y-3)2=9 的圆心为q(3,3),半径∕ = 3∙设圆心O I到直线3x + 4V-Il = O的距离为〃,则∣3×3 + 4×3-Il∣√3¼41如图,在圆心Q同侧,及直线3x÷4y-ll=0平行且距离为1的直线厶及圆有两个交点,这两个交点符合题意.・•・及直线3x÷4y-ll = 0平行的圆的切线的两个切点中有一个切点也符合题意.・・・符合题意的点共有3个.解法二符合题意的点是平行于直线3Λ÷4y-ll = 0,且及之距离为1 的直线和圆的交点.设所求直线为3x + 4y + m = 0,贝∣J√=±≤ = 1,∙e∙ m+ll = ±5 9即In = -6 9或加= —16,也即∕1x3x + 4y-6 = 0 9⅛K∕23x + 4y-16 =0 •典型例设圆O1≡(x-3)2+(y-3)2=9的圆心到直线厶的距离为〃】、心则∣3×3÷4×3-6L ∣3×3÷4×3-16L K•••厶及q相切,及圆q有一个公共点;厶及圆q相交,及圆q有两个公共点•即符合题意的点共3个•说明:对于本题,若不留心,则易发生以下误解:设圆心O I到直线3x + 4y-ll = 0的距离为〃,则^∣3×3÷4×3-11L2<3.√P74Γ•I圆O]到3x + 4y-ll = 0距离为1的点有两个•显然,上述误解中的〃是圆心到直线3x÷4y-ll = 0的距离,d<r,只能说明此直线及圆有两个交点,而不能说明圆上有两点到此直线的距离为1∙到一条直线的距离等于定值的点,在及此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线及圆的公共点•求直线及圆的公共点个数,一般根据圆及直线的位置关系来判断, 即根据圆心及直线的距离和半径的大小比较来判断•典型例题三例3求过两点A(l,4)、B(3,2)且圆心在直线y = 0上的圆的标准方程并判断点P(2,4)及圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P及圆的位置关系,只须看点P及圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为(兀-d}2 +(y-by =r2.∙.∙圆心在y = 0上,故b = 0.圆的方程为(X-^)2 + >,2= r2.又Y该圆过4(1,4)、B(3,2)两点..J(l-α)2 + 16 = ∕*2[(3-α), +4 = r2解之得:Q=-I, r2 = 20.所以所求圆的方程为(x + l)2+y2=20・解法二:(直接求出圆心坐标和半径)因为圆过A(l,4)、3(3,2)两点,所以圆心C必在线段A3的垂直平分线/上,又因为S=苦1,故/的斜率为1,又AB的中点为(2,3),故AB的垂直平分线/的方程为:y-3 = x-2即x-y + l = 0.又知圆心在直线y = 0上,故圆心坐标为C(-l, 0)・*. Φ⅛ r = ∖AC∖ =√(l + l)2+42 = λ∕20 ・故所求圆的方程为(X +1)2+ b =20・又点P(2,4)到圆心C(-1,0)的距离为J=IPq = λ∕(2 +1)2+42=√25>r.・•・点P在圆外.说明:木题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心及定点之间的距离和半径的大小关系来判定点及圆的位置关系,若将点换成直线又该如何来判定直线及圆的位置关系呢?典型例题四例4圆X2 + y2 +2x + 4y-3 = 0上到直线x + y + ∖ = 0的距离为血的点共有().(A) 1 个(B) 2 个(C) 3 个(D) 4 个分析:把X2 + y2 +2x+4y-3 = 0化为(x +1)2 +(y + 2)2 =8 ,圆心为(-1,-2), 半径为「= 2血,圆心到直线的距离为√Σ,所以在圆上共有三个点到直线的距离等于运,所以选C.典型例题五例5 过点P(-3,-4)作直线/,当斜率为何值时,直线/及圆C:(X-I)2+(y + 2)2=4有公共点,如图所示.分析:观察动画演示,分析思路.解:设直线/的方程为y + 4 = k(x + 3)即kx- y + 3k -4 = 0根据(/S有比+2 + 3£-4|刁y∣∖+k2整理得3k2-4k=0解得40≤k≤-•3典型例题六例6己知圆Ot√ + y2=4,求过点P(2,4)及圆O相切的切线. 解:T点P(2,4)不在圆O上,・•・切线PT的直线方程可设为y =心- 2)+4根据d = r•• •7+4|_2√f+P解得k=〉4所以y = -(x-2)÷4即3x-4y + 10 = 0因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为;ι=2∙说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.木题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于O解决(也要注意漏解)・还可以运用v÷>v = r2,求岀切点坐标•5、儿的值来解决,此时没有漏解•例7自点衣-3,3)发出的光线/射到兀轴上,被兀轴反射,反射光线所在的直线及圆C:√ + y2-4x-4y + 7 = 0相切(1)求光线/和反射光线所在的直线方程.切线的斜率为图3k = -^ik =—3 4进一步求出反射光线所在的直线的方程为4x-3y + 3 = 0 或3x-4y-3 = 0最后根据入射光及反射光关于X轴对称,求出入射光所在直线方程为4x + 3y + 3 = 0 或3x+4y-3 = 0光路的距离为∖A'M∖ ,可由勾股定理求得PrMf=PrCf TCMf=7.说明:木题亦可把圆对称到兀轴下方,再求解.例8如图所示,已知圆O: x2+y2 =4及y轴的正方向交于A点,点B 在直线y = 2上运动,过B做圆O的切线,切点为C,求ΔABC垂心H的轨迹.分析:按常规求轨迹的方法,设H(.y),找;r,y的关系非常难.由于H点随B , C点运动而运动,可考虑H, B , C三点坐标之间的关系. 解:设H(X,y), C(X ,y),连结4H, CH ,贝IJAH丄BC, CH丄AB f BC是切线OC丄BC,所以OC//AH, CHIIOA, OA = OC f所以四边形AOCH是菱形.所以∖CH∖ = ∖θA∖ = 2f得I y= y~2'又C(X ,y)满足∕÷∕=4,所以√÷(y-2)2=4(x≠0)即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程•做题时应注意分析图形的几何性质,求轨迹时应注意分析及动点相关联的点,如相关联点轨迹方程己知,可考虑代入法.典型例题九例9求半径为4,及圆√+∕-4x-2y-4 = 0相切,且和直线尸0相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆C:(X-Uy +(y-b)2 =r2.圆C及直线y = 0相切,且半径为4,则圆心C的坐标为G(α,4)或C2(^,-4)・又己知圆X 2 + y 2 _ 4 X _ 2_ 4 = 0的圆心A的坐标为(2,1),半径为3.若两圆相切,则IGAI=4 + 3 = 7或IGAl=4-3 = 1・⑴当GS,4)时,(α-2)2÷(4-l)2=72,或(α-2)2+(4-1)2 = I2 (无解),故可得0 = 2±2佰.・•・所求圆方程为(X-2-2√W+(V-4)2=42, 或(X - 2 + 2√10 )2 + (y - 4)2 = 42 .(2)当C?(“ , 一4)时,(α — 2)2 +(-4-1)2 = 7?,或(α一2)2 + (一4 — I)? = F (无解),故α = 2 ± 2√6 .・•・所求圆的方程为(x-2-2√6)2+(y + 4)2=42, 或(x-2 + 2√z6)2+(y + 4)2 =42 .说明:对本题,易发生以下误解:由题意,所求圆及直线)=0相切且半径为4,则圆心坐标为C(",4), 且方程形如(x-α)2+(y-4)2 =42・又圆x2 +y2 -4x-2y-4 = 0 ,即(x-2)2+(y-l)2=32 ,其圆心为A(2,1),半径为3.若两圆相切,则IcAI = 4 +3・故(«-2)2+(4-1)2 =72,解之得6∕ = 2±2√1O .所以欲求圆的方程为(X_2_2√"10)2+(y-4)2=42,或(X_2 + 2√Iθ)2+(y-4)2 = 42.上述误解只考虑了圆心在直线y = O上方的情形,而疏漏了圆心在直线下方的情形.另外,误解中没有考虑两圆内切的情况•也是不全面的.典型例题十例10已知圆x2 + y2+x-6y + m = O及直线x + 2y-3 = 0相交于P、Q两点,O为原点,且OP丄O0,求实数加的值.分析:设P、0两点的坐标为(x l,y l)> (X2O12) »则由S • % =7, 可得⅜÷>'1>'2=0,再利用一元二次方程根及系数的关系求解.或因为通过原点的直线的斜率为上,由直线/及圆的方程构造以上为未知数的X X一元二次方程,由根及系数关系得出為p∙褊。
【其中复习】高一数学不等式解法经典例题解下列分式不等式:(1);(2)分析:当分式不等式化为时,要注意它的等价变形①②(1)解:原不等式等价于用“穿根法”∴原不等式解集为。
(2)解法一:原不等式等价于∴原不等式解集为。
解法二:原不等式等价于用“穿根法”∴原不等式解集为典型例题三例3 解不等式分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义二是根据绝对值的性质:或,因此本题有如下两种解法、解法一:原不等式即∴或故原不等式的解集为、解法二:原不等式等价于即∴、典型例题四例4 解不等式、分析:这是一个分式不等式,其左边是两个关于二次式的商,由商的符号法则,它等价于下列两个不等式组:或所以,原不等式的解集是上面两个不等式级的解集的并集、也可用数轴标根法求解、解法一:原不等式等价下面两个不等式级的并集:或或或或或、∴原不等式解集是、解法二:原不等式化为、画数轴,找因式根,分区间,定符号、符号∴原不等式解集是、说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解、解法二中,“定符号”是关键、当每个因式的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间、在解题时要正确运用、典型例题五例5 解不等式、分析:不等式左右两边都是含有的代数式,必须先把它们移到一边,使另一边为0再解、解:移项整理,将原不等式化为、由恒成立,知原不等式等价于、解之,得原不等式的解集为、说明:此题易出现去分母得的错误解法、避免误解的方法是移项使一边为0再解、另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理、典型例题六例6 设,解关于的不等式、分析:进行分类讨论求解、解:当时,因一定成立,故原不等式的解集为、当时,原不等式化为;当时,解得;当时,解得、∴当时,原不等式的解集为;当时,原不等式的解集为、说明:解不等式时,由于,因此不能完全按一元二次不等式的解法求解、因为当时,原不等式化为,此时不等式的解集为,所以解题时应分与两种情况来讨论、在解出的两根为,后,认为,这也是易出现的错误之处、这时也应分情况来讨论:当时,;当时,、典型例题七例7 解关于的不等式、分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解、解:原不等式或由,得:由判别式,故不等式的解是、当时,,,不等式组(1)的解是,不等式组(2)的解是、当时,不等式组(1)无解,(2)的解是、综上可知,当时,原不等式的解集是;当时,原不等式的解集是、说明:本题分类讨论标准“,”是依据“已知及(1)中‘,’,(2)中‘,’”确定的、解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点、一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定、本题易误把原不等式等价于不等式、纠正错误的办法是熟练掌握无理不等式基本类型的解法、典型例题八例8 解不等式、分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可、解答:去掉绝对值号得,∴原不等式等价于不等式组∴原不等式的解集为、说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解、典型例题九例9 解关于的不等式、分析:不等式中含有字母,故需分类讨论、但解题思路与一般的一元二次不等式的解法完全一样:求出方程的根,然后写出不等式的解,但由于方程的根含有字母,故需比较两根的大小,从而引出讨论、解:原不等式可化为、(1)当(即或)时,不等式的解集为:;(2)当(即)时,不等式的解集为:;(3)当(即或1)时,不等式的解集为:、说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论、比如本题,为求不等式的解,需先求出方程的根,,因此不等式的解就是小于小根或大于大根、但与两根的大小不能确定,因此需要讨论,,三种情况、典型例题例10 已知不等式的解集是、求不等式的解集、分析:按照一元二次不等式的一般解法,先确定系数的正负,然后求出方程的两根即可解之、解:(解法1)由题可判断出,是方程的两根,∴,、又的解集是,说明、而,,∴、∴,即,即、又,∴,∴的解集为、(解法2)由题意可判断出,是方程的两根,∴、又的解集是,说明、而,、对方程两边同除以得、令,该方程即为,它的两根为,,∴,、∴,,∴方程的两根为,、∵,∴、∴不等式的解集是、说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有,是已知量,故所求不等式解集也用,表示,不等式系数,,的关系也用,表示出来;(3)注意解法2中用“变换”的方法求方程的根、典型例题二例12 若不等式的解为,求、的值、分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于、式子、解:∵,,∴原不等式化为、依题意,∴、说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解、典型例题三例13 不等式的解集为,求与的值、分析:此题为一元二次不等式逆向思维题,要使解集为,不等式需满足条件,,的两根为,、解法一:设的两根为,,由韦达定理得:由题意:∴,,此时满足,、解法二:构造解集为的一元二次不等式:,即,此不等式与原不等式应为同解不等式,故需满足:∴,、说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力、对有关字母抽象问题,同学往往掌握得不好、典型例题四例14 解关于的不等式、分析:本题考查一元一次不等式与一元二次不等式的解法,因为含有字母系数,所以还考查分类思想、解:分以下情况讨论(1)当时,原不等式变为:,∴(2)当时,原不等式变为:①①当时,①式变为,∴不等式的解为或、②当时,①式变为、②∵,∴当时,,此时②的解为、当时,,此时②的解为、说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:分类应做到使所给参数的集合的并集为全集,交集为空集,要做到不重不漏、另外,解本题还要注意在讨论时,解一元二次不等式应首选做到将二次项系数变为正数再求解、典型例题五例15 解不等式、分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,可转化为或,而等价于:或、解:原不等式等价于下面两个不等式组:①②由①得,∴由②得∴,所以原不等式的解集为,即为、说明:本题也可以转化为型的不等式求解,注意:,这里,设全集,,则所求不等式的解集为的补集,由或、即,∴原不等式的解集是、。
高一数学习题精选高一数学是让很多学生头疼的一门学科,因为其涉及的知识面广、难度大且难以理解。
为了帮助学生更好地掌握高一数学,老师们会选定一些典型例题,深入讲解其解题思路,帮助学生掌握数学思维和解题方法。
下面就列举几个高一数学典型例题。
1. 解一元一次方程对于一个一元一次方程,可以根据基本原理得到:ax + b = cx = (c-b)/a其中,a、b、c都为常数。
举个例子:对于方程 2x + 3 = 5,可以通过上述公式算出:x = (5-3)/2 = 1学生们在解一元一次方程的时候,需要先将式子中的未知数提取出来,然后将常数项移过去,最后根据公式得到答案。
2. 计算三角函数的值计算三角函数的值也是高一数学的典型例题。
对于一个三角形,我们可以通过以下公式来计算其三角函数的值:sin A = a/c,cos A = b/c,tan A = a/b在计算三角函数的时候,学生们需要先确定三角形的三边长,然后根据上述公式得出对应的三角函数值。
需要注意的是,学生们在计算三角函数的时候,一定要将角度转换为弧度,否则计算出来的结果会有误差。
3. 解二次方程对于二次方程,学生们需要掌握求解方程的方法。
如下所示:ax² + bx + c = 0x = (-b±√(b²-4ac))/2a其中,a、b、c都为常数。
举个例子:对于方程 x² + 2x + 1 = 0,可以通过上述公式算出:x = (-2±√(2²-4×1×1))/2×1 = -1学生们在解二次方程的时候,需要注意判断方程的根的个数,并根据根的个数是否相等,来判断方程的多项式。
通过练习典型例题,学生们可以在解题的方法和思路上有所进步。
在日常学习中,老师们会针对不同的知识点设计不同难度的题目,以帮助学生更好地掌握知识。
因此,学生们需要认真对待每一道数学题,不仅需要掌握题目的解法,更需要理解它的意义和用途。
不等式解法经典例题典型例题一:高次不等式的解法分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .解:(1)原不等式可化为 0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二:分式不等式的解法分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x (1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,((2)解法一:原不等式等价于027313222>+-+-x x x x 21213102730132027301320)273)(132(222222><<<⇔⎪⎩⎪⎨⎧<+-<+-⎪⎩⎪⎨⎧>+->+-⇔>+-+-⇔x x x x x x x x x x x x x x x 或或或 ∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞。
高一数学习题及答案高一数学习题及答案数学是一门需要不断练习和思考的学科,而高一数学学习更是为后续学习打下坚实的基础。
在高一数学学习中,掌握基本的概念和方法是非常重要的。
下面将介绍一些高一数学常见的习题及答案,帮助同学们更好地理解和掌握数学知识。
一、代数运算1. 化简下列代数式:(x+2)(x-3)-(x-2)(x+3)解答:将式子展开,得到x²+2x-3x-6-x²-2x+3x+6,合并同类项,得到 0。
2. 若x²+y²=25,求x²-y² 的值。
解答:根据平方差公式,x²-y²=(x+y)(x-y)。
代入已知条件,得到x²-y²=(x+y)(x-y)=25。
二、函数与方程1. 已知函数 f(x)=2x+3,求 f(-2) 的值。
解答:将 x=-2 代入函数 f(x),得到 f(-2)=2(-2)+3=-1。
2. 求方程x²-4x+3=0 的根。
解答:使用求根公式,根据一元二次方程的一般形式ax²+bx+c=0,可得 x=(-b±√(b²-4ac))/(2a)。
代入已知条件,得到 x=(-(-4)±√((-4)²-4*1*3))/(2*1),化简后得到 x=1 或 x=3。
三、几何1. 已知直角三角形的斜边长为 5cm,一条直角边长为 3cm,求另一条直角边的长。
解答:根据勾股定理,斜边的平方等于两直角边平方的和。
代入已知条件,得到5²=3²+直角边²,化简得到直角边²=25-9=16,再开方得到直角边=4。
2. 一个正方形的边长为 a cm,求其对角线的长。
解答:根据勾股定理,对角线的平方等于两边平方的和。
代入已知条件,得到对角线²=a²+a²=2a²,再开方得到对角线=a√2。
集合
集合,本身就是一个强有力的数学工具,高中数学学习的集合,可以说,仅仅
是集合世界里的沧海一粟,我们学习了集合的概念,子集交集并集等概念,一些简单的集合运算与集合间的关系,但是高中考查集合的题目,基本上属于容易题,但也不乏中难题。
做集合的题目,一定要细心,要特别当心的,比如有没有讨论空集啊,真子集和子集的区别啊,交集和并集有没有取错啊,等等。
基础知识
一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法
2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆
真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠
⊂B 集合相等:若:,A B B A ⊆⊆,则A B =
-
3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ
4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A
B
交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A
B
补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,
记为U C A
5.集合12{,,
,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n
–1个;
6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R
例题
(
【分析】A 中至多有一个元素,换句话说,方程至多有一个解,也就是说,要么,方程无解,要么方程只有一个解。
又因为二次项系数是a ,我们不能确定这个方程到底是一元一次方程还是一元二次方程,所以就要对a 是否等于0进行分类讨论。
`
…
函数
高一的函数包含了初中已学过的一次函数、二次函数、反比例函数,但是更多的,注重这些函数本质的研究,研究的是多种形式共存的函数的共性——单调性、奇偶性、周期性等等,都是函数重要的性质。
函数的多重转化,也许一个函数只是一个数,也可以使一个式子,也可以是多个不同种类的函数组成一个新的函数。
研究函数,不仅要从解析式,更要从图像、从实际应用的角度出发,构建一个完整的数学体系。
基础知识
一、函数的奇偶性
1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)
2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;
,
(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性
1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2
① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减
三、二次函数y = ax 2
+bx + c (0a ≠)的性质
《
1、顶点坐标公式:⎪⎪⎭
⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a
b a
c 442-
2.二次函数的解析式的三种形式
(1)一般式2
()(0)f x ax bx c a =++≠; (2)顶点式2
()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠.
四、指数与指数函数 1、幂的运算法则: (1)a m
• a n
= a m + n
,(2)n m n m a a a -=÷,(3)( a m
) n
= a
m n
(4)( ab ) n = a n
• b n
(5) n n n b a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=- (8)m n m
n a a =(9)m n m n
a
a 1=-
(
2、根式的性质
(1
)n
a =.
(2)当n
a =; 当n
,0
||,0
a a a a a ≥⎧==⎨-<⎩.
4、指数函数y = a x
(a > 0且a ≠1)的性质:
(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)
5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 五、对数与对数函数 1对数的运算法则:
(1)a b
= N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b
= b (5)
a log a N = N
`
(6)log a (MN) = log a M + log a N (7)log a (N
M
) = log a M -- log a N
(8)log a N b
= b log a N (9)换底公式:log a N =
a
N
b b log log
(10)推论 log log m n a a n
b b m
=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =
a
N log 1
(12)常用对数:lg N = log 10 N (13)自然对数:ln A =
log e A (其中 e = …) 2、对数函数y = log a x (a > 0且a ≠1)的性质: (1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)
>
六、幂函数y = x a
的图象:(1) 根据 a
·
例如: y = x 2
2
1
x x y =
=
11
-==
x x
y
七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题
*
如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x
y N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
即 ()y f x =的图象与X 轴相交时交点的横坐标。
2.函数零点存在性定理:如果函数()y f x =在区间[],a b 上的图象是连续不断的一条
曲线,并有()()0f a f b ⋅<,那么()y f x =在区间(),a b 内有零点,即存在(),c a b ∈, 使得()0f c =,这个C 就是零点。
例题
】
:0≤x≤2→0≤2x≤4→f(x )定义域为【0,4】,又因为x≠1所以g (x )定义域为【0,1)∪(1,4】
下面是关于二次函数、一元二次方程、一元二次不等式的例题,这一部分既是重点知识,也是高考必考的难点。