高一数学必修三知识点总结及典型例题解析
- 格式:doc
- 大小:171.50 KB
- 文档页数:23
高一数学必修三全套知识点总结高一数学必修三是数学学科中的一门重点课程,它涵盖了许多重要的数学知识点和概念。
在这篇文章中,我将对高一数学必修三的全套知识点进行总结,帮助学生回顾和巩固所学知识。
1.二次函数二次函数是高一数学中一个重要的概念。
其一般形式为f(x)=ax^2+bx+c,其中a、b、c为常数。
通过对二次函数的研究,我们可以学习到顶点和轴对称、导数和增减性、零点和根、抛物线方程的计算等知识点。
2.函数的复合与反函数函数的复合指的是将一个函数的输出作为另一个函数的输入。
学生需要掌握复合函数的运算法则和计算方法。
反函数是指如果函数f和g满足f(g(x))=x和g(f(x))=x,那么函数g就是函数f的反函数。
学生需要熟练掌握确定函数的反函数的方法和性质。
3.三角函数三角函数是高一数学中一个重要的知识点。
学生需要学习正弦函数、余弦函数和正切函数的基本概念和性质,以及它们的图像和变换规律。
此外,学生还需要了解三角函数的周期性质和用三角函数解决问题的方法。
4.立体几何立体几何是高一数学必修三中一个重要的章节。
学生需要学习到球、圆柱体、圆锥体和棱台的定义、计算表面积和体积的方法。
此外,学生还需要学习到平行截面定理、立体的展开和切割法等几何思维的方法。
5.概率统计概率统计是数学中的一个实际应用领域。
学生需要学习概率统计的基本概念和计算方法,如排列组合、事件的概率计算、均值和方差的计算等。
同时,学生还需要学习到概率统计在实际问题中的应用,如生日悖论、抽样调查等。
6.数列与等差数列数列是高一数学中一个重要的概念。
学生需要学习数列的基本概念和性质,如递推关系、通项公式、求和公式等。
等差数列是一种特殊的数列,学生需要学习等差数列的基本概念和性质,如公差、首项、通项公式、求和公式等。
数列与等差数列的研究对于培养学生的数学思维能力和逻辑推理能力非常重要。
以上是高一数学必修三的全套知识点的简要总结。
通过对这些知识点的学习和掌握,学生可以提高数学的运算能力和问题解决能力,并为进一步学习高级数学和实际应用奠定坚实的基础。
高一数学必修三知识点总结一、平面向量平面向量是高中数学必修三中的一个重要知识点,也是每个高中生都需要掌握的内容。
平面向量又可以分为平面向量的运算、平面向量的表示和平面向量的模等几个方面。
1. 平面向量的运算平面向量的运算包括向量的加法、减法和数量乘法。
向量的加法满足交换律、结合律和分配律。
向量的减法可以通过向量求差或者通过向量相加再求相反数来实现。
数量乘法是指向量与实数的乘法,它改变了向量的长度但不改变其方向。
2. 平面向量的表示平面向量通常可以通过有向线段的形式表示。
有向线段由起点和终点确定,表示向量的方向和大小。
向量的坐标表示是比较常见的表示方式。
平面直角坐标系中,向量的起点通常可以设为原点,终点则可以由坐标得到。
3. 平面向量的模平面向量的模是指向量的长度,也可以理解为向量的大小。
对于平面向量(x, y),其模为√(x² + y²)。
模为1的向量称为单位向量。
二、数列与数学归纳法数列是高中数学必修三的又一个重要知识点,它是指按照一定规律排列的一列数字。
数列的性质和特点可以通过一些数学归纳法来证明。
1. 数列的表示和性质数列可以通过通项公式来表示,也可以通过递推公式来表示。
在数列中,我们常常关注的是首项、公差和项数等性质。
首项是指数列的第一项,公差是指连续两项之间的差值,项数则表示数列的长度。
2. 等差数列等差数列是指数列中任意两项之间的差值都相等的数列。
它的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
3. 等比数列等比数列是指数列中任意两项之间的比值都相等的数列。
它的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
三、三角函数三角函数是高中数学必修三中的重点内容,它与平面几何和三角恒等式等有密切的关系。
1. 三角函数的定义与性质在直角三角形中,我们可以定义正弦、余弦和正切等三角函数。
对于角A,正弦、余弦和正切的定义分别为sinA = 对边/斜边,cosA = 邻边/斜边,tanA = 对边/邻边。
(完整版)高一数学必修三函数知识点总结高一数学必修三函数知识点总结本文将对高一数学必修三中的函数知识点进行总结,具体内容如下:1. 函数的基本概念- 函数的定义:函数是一种关系,每个自变量对应唯一的因变量。
- 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
- 函数图像:函数的图像是自变量与因变量之间的对应关系所形成的图形。
2. 函数的表示方法- 解析式表示:函数可以用解析式表示,例如$f(x)=3x^2+2x-1$。
- 图像表示:函数还可以用图像表示,通过绘制函数的图像来展示函数的特点。
3. 常见的函数类型- 线性函数:线性函数的解析式为$f(x)=kx+b$,其中$k$和$b$为常数。
- 幂函数:幂函数的解析式为$f(x)=ax^m$,其中$a$和$m$为常数。
- 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。
- 指数函数:指数函数的解析式为$f(x)=a^x$,其中$a$为常数。
- 对数函数:对数函数的解析式为$f(x)=\log_a x$,其中$a$为常数。
4. 函数的性质和运算- 奇偶性:函数可以是奇函数或偶函数,具体取决于函数图像在原点关于$x$轴是否对称。
- 单调性:函数可以是递增函数或递减函数,具体取决于函数图像在定义域上的变化。
- 复合函数:复合函数是由两个或多个函数经过组合而成的新函数。
- 反函数:反函数是函数的逆运算,可以使得两个函数互为逆运算。
5. 函数的应用- 函数在实际问题中的应用非常广泛,例如在物理学、经济学和工程学等领域中常常会用到各种函数来描述和解决问题。
- 函数的应用包括函数的图像分析、函数的模型建立和函数的最优化等。
以上是高一数学必修三中的函数知识点总结,希望对您有所帮助。
高一数学知识点总结必修3在高中数学课程中,必修3是一个重要的学习单元,其中包含了许多重要的数学知识点。
通过对这些知识点的总结和归纳,我们可以更好地理解并掌握这些内容。
本文将对高一数学必修3的知识进行总结,帮助同学们更好地掌握这些内容。
一、函数与导数函数与导数是必修3中的一个重要章节。
在这个章节中,我们学习了函数的概念、函数的性质及其图像的变化规律。
同时,我们还学习了导数的概念和导数的计算方法。
掌握函数与导数的知识,可以帮助我们分析和解决一些实际问题,比如函数的极值、最值等。
二、三角函数三角函数是必修3中另一个重要的知识点。
通过学习三角函数,我们可以研究角的性质和各种三角函数的性质。
在这一章节中,我们需要掌握三角函数的定义、基本性质以及相关的计算方法。
此外,还需要了解三角函数在实际问题中的应用,如三角函数的图像变化和角的变化规律等。
三、统计与概率统计与概率也是必修3中的一个重要内容。
在这个章节中,我们学习了统计学的基本概念,包括数据的收集、整理和分析等。
同时,我们还学习了概率的概念和计算方法,了解了事件的概率和样本空间等重要概念。
通过统计与概率的学习,我们可以更好地理解和应用概率统计知识,分析和解决实际问题。
四、数列与数学归纳法数列与数学归纳法是必修3中的一个重要章节。
学习数列,我们需要了解数列的定义、性质以及常见数列的计算方法。
同时,了解数列的收敛性和极限等重要概念,可以帮助我们更好地理解数列的变化规律。
在学习数学归纳法时,我们还需要了解归纳法的基本原理和应用方法,能够通过归纳法证明一些数学问题的成立。
五、平面向量平面向量也是高一数学必修3的重要知识点。
通过学习平面向量,我们可以了解向量的定义、性质和运算法则。
同时,了解向量的共线性和垂直性等重要性质,并学习向量的数量积和向量积的计算方法。
通过学习平面向量,我们可以更好地理解和运用向量的相关知识,分析和解决实际问题。
六、立体几何立体几何是高一数学必修3中的最后一个重要章节。
目录:数学3(必修)数学3(必修)第一章:算法初步 [基础训练A组]数学3(必修)第一章:算法初步 [综合训练B组]数学3(必修)第一章:算法初步 [提高训练C组]数学3(必修)第二章:统计 [基础训练A组]数学3(必修)第二章:统计 [综合训练B组]数学3(必修)第二章:统计 [提高训练C组]数学3(必修)第三章:概率 [基础训练A组]数学3(必修)第三章:概率 [综合训练B组]数学3(必修)第三章:概率 [提高训练C组]新课程高中数学训练题组根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
欢迎使用本资料!(数学3必修)第一章:算法初步[基础训练A组]一、选择题1.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示1a = 3b = a a b =+ b a b =- PRINT a ,bIF 10a < THEN 2y a =* else y a a =* “n=”,n i =1 s=1 i< =n s=s*i i=i+1 PRINT s ENDC .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同 2.用二分法求方程022=-x 的近似根的算法中要用哪种算法结构( )A .顺序结构B .条件结构C .循环结构D .以上都用 3.将两个数8,17a b ==交换,使17,8a b ==,下面语句正确一组是 ( ) A. B. C. D.4.计算机执行下面的程序段后,输出的结果是( )A .1,3B .4,1C .0,0D .6,0 5.当3=a 时,下面的程序段输出的结果是( )A .9B .3C .10D .6二、填空题1.把求!n 的程序补充完整2.用“冒泡法”给数列1,5,3,2,7,9按从大到小进行排序时,经过第一趟排序后得到的新数列为 。
3.用“秦九韶算法”计算多项式12345)(2345+++++=x x x x x x f ,当x=2时的值的a=b b=a c=b b=a a=c b=a a=b a=cc=b b=ai=1 s=0 WHILE i<=4 s=s*x+1 i=i+1 WEND过程中,要经过 次乘法运算和 次加法运算。
2024年高一数学必修三知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义与表示- 函数的自变量和因变量- 函数的定义域和值域- 函数图像与坐标系上的点的对应关系2. 一元一次方程与一元一次不等式- 一元一次方程的定义和解的方法- 一元一次不等式的定义和解的方法- 一元一次方程与一元一次不等式的应用3. 一元二次方程与二次函数- 一元二次方程的定义和解的方法- 二次函数的定义和性质- 一元二次方程与二次函数的关系- 一元二次方程与二次函数的应用4. 分式方程与分式不等式- 分式方程的定义和解的方法- 分式不等式的定义和解的方法- 分式方程与分式不等式的应用5. 指数与对数- 指数的定义和性质- 指数与幂运算的关系- 对数的定义和性质- 对数与指数运算的关系- 指数与对数的应用二、三角函数1. 弧度制与角度制- 弧度制与角度制的定义和换算关系2. 常用三角函数- 正弦函数、余弦函数、正切函数的定义和性质- 正弦函数、余弦函数、正切函数在坐标系上的图像- 正弦函数、余弦函数周期性的特点3. 三角函数的基本关系- 三角函数之间的基本关系式- 三角函数的奇偶性4. 三角函数的图像与性质- 正弦函数、余弦函数的图像特点- 正切函数的图像特点5. 三角函数的应用- 广义正弦定理和广义余弦定理- 三角函数在几何问题中的应用- 三角函数在物理问题中的应用三、数列与数列的和1. 数列的概念与性质- 数列的定义和表示- 数列的有限项和无限项- 数列的公式与递推关系- 数列的等差和等比2. 等差数列与等比数列- 等差数列的定义和性质- 等差数列的通项公式和前n项和公式- 等比数列的定义和性质- 等比数列的通项公式和前n项和公式3. 数列的应用- 数列在数学游戏中的应用- 数列在数学推理中的应用- 数列在等分数列和等比数列中的应用4. 常用数列公式与技巧- 数列求和公式的推导与运用- 常用数列的特殊性质和技巧总结:____年高一数学必修三主要涉及函数与方程、三角函数、数列与数列的和等知识点。
高一数学必修三知识点归纳总结(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修三知识点归纳总结本店铺为各位同学整理了《高一数学必修三知识点归纳总结》,希望对你的学习有所帮助!1.高一数学必修三知识点归纳总结篇一立体几何1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决平行与垂直的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
新课标必修3概率部分知识点总结◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不可能事件( impossible event )❖ 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()nm A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值♦ 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件()()()B P A P B A P B A +=+:,则有互斥和⌧ 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()nm A P = ⍓ 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为()的侧度的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。
高一数学必修三知识点总结一、函数的概念与性质1. 函数的定义:一个从集合A到集合B的映射,记作f: A → B。
2. 函数的表示方法:解析式、表格、图象。
3. 函数的性质:单调性、奇偶性、周期性、有界性。
- 单调性:函数在某个区间内,值随自变量的增加而增加或减少。
- 奇偶性:f(-x) = f(x)为偶函数,f(-x) = -f(x)为奇函数。
- 周期性:存在正数T,使得对于所有x,f(x+T) = f(x)。
- 有界性:函数的值在某个范围内。
二、基本初等函数1. 幂函数:y = x^n (n为实数)。
2. 指数函数:y = a^x (a > 0, a ≠ 1)。
3. 对数函数:y = log_a(x) (a > 0, a ≠ 1)。
4. 三角函数:正弦、余弦、正切等。
- 正弦函数:y = sin(x)。
- 余弦函数:y = cos(x)。
- 正切函数:y = tan(x)。
三、函数的应用1. 实际问题中的函数建模:如速度-时间关系、投资-收益关系等。
2. 函数的最值问题:通过函数的单调性、导数等求解最值。
3. 函数的图像分析:通过图像了解函数的性质和变化趋势。
四、函数的极限与连续性1. 极限的概念:描述函数值趋向于某一点的性质。
2. 极限的计算:利用极限的四则运算、夹逼定理等求解。
3. 连续函数:在某个区间内,函数值连续变化。
五、导数与微分1. 导数的定义:描述函数在某一点处的变化率。
2. 导数的计算:利用导数的定义、导数公式、链式法则等。
3. 微分的概念:函数在某一微小区间内的线性变化。
六、导数的应用1. 函数的极值问题:通过导数求解函数的极大值和极小值。
2. 曲线的切线与法线:利用导数求曲线在某一點的切线和法线方程。
3. 函数的单调性:通过导数判断函数在某个区间内的单调性。
七、积分1. 不定积分:求函数原函数的过程。
2. 定积分:计算函数在某个区间内的积分值。
3. 积分的应用:求解面积、体积、弧长等问题。
人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习算法与程序框图【学习目标】1.初步建立算法的概念;2.让学生通过丰富的实例体会算法的思想;3.让学生通过对具体问题的探究,初步了解算法的含义;4.掌握程序框图的概念;5.会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;6.掌握画程序框图的基本规则,能正确画出程序框图.【要点梳理】【算法与程序框图 397425 知识讲解1】要点一、算法的概念1、算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2、算法的特征:(1)确定性:算法的每一步都应当做到准确无误、“不重不漏”.“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.(2)逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.(3)有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.(4)不唯一性:求解某一个问题的算法不一定是唯一的,对于一个问题可以有不同的算法.3、设计算法的要求(1)写出的算法,必须能解决一类问题(如:判断一个整数35是否为质数;求任意一个方程的近似解……),并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确.且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的.4、算法的描述:(1)自然语言:自然语言就是人们日常使用的语言,可以是汉语、英语或数学语言等.用自然语言描述算法的优点是通俗易懂,当算法中的操作步骤都是顺序执行时比较容易理解.缺点是如果算法中包含判断和转向,并且操作步骤较多时,就不那么直观清晰了.(2)程序框图:所谓框图,就是指用规定的图形符号来描述算法,用框图描述算法具有直观、结构清晰、条理分明、通俗易懂、便于检查修改及交流等特点.(3)程序语言:算法最终可以通过程序的形式编写出来,并在计算机上执行.要点诠释:算法的特点:思路简单清晰,叙述复杂,步骤繁琐,计算量大,完全依靠人力难以完成,而这些恰恰就是计算机的特长,它能不厌其烦地完成枯燥的、重复的繁琐的工作,正因为这些,现代算法的作用之一就是使计算机代替人完成某些工作,这也是我们学习算法的重要原因之一.事实上,算法中出现的程序只是用基本的语句把程序的主要结构描述出来,与真正的程序还有差距,所以算法描述的许多程序并不能直接运行,要运行程序,还要把程序按照某种语言的严格要求重新改写才行.【算法与程序框图 397425 知识讲解2】要点二、程序框图1、程序框图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.23一个程序框图包括以下几部分:实现不同算法功能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字.4、算法的三种基本逻辑结构(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的.它是由若干个依次执行的步骤组成的,它是任何一个算法都离不开的一种基本算法结构.见示意图和实例:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作.(2)条件结构如下面图示中虚线框内是一个条件结构,此结构中含有一个判断框,算法执行到此判断给定的条件P 是否成立,选择不同的执行框(A框、B框).无论P条件是否成立,只能执行A框或B框之一,不可能既执行A框又执行B框,也不可能A框、B框都不执行.A框或B框中可以有一个是空的,即不执行任何操作.见示意图要点诠释:条件结构中的条件要准确,不能含混不清,要清楚在什么情况下需要作怎样的判断,用什么条件来区分.(3)循环结构在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.①当型循环结构,如左下图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构,继续执行下面的框图.②直到型循环结构,如右下图所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立,依次重复操作,直到某一次给定的判断条件P成立为止,此时不再返回来执行A框,离开循环结构,继续执行下面的框图.见示意图要点诠释:循环结构中使用什么样的条件控制循环的开始和结束,要清楚满足某个条件的变量的次数与循环次数的联系与区别.误区提醒1、框图中的流程线不能出现交叉的现象.若有交叉,则程序语句无法写出;2、各种框图有其固定的格式和作用,不要乱用.如条件结构中不要忘了“是”与“否”,流程线不要忘记画箭头;3、条件分支结构的方向要准确;4、循环结构中,计数变量要赋初值,计数变量的自加不要忘记,自加多少不能弄错.另外计数变量一般只负责计数任务;5、循环结构中循环的次数要严格把握,区分“<”与“≤”等.循环变量的取值与循环结构(当型与直到型)有关,需区分清楚.另外,同一问题用两种不同的结构解决时,其判断条件恰是相反的;6、程序框图不要出现死循环(无限步的循环).【典型例题】类型一:算法的概念例1.(1)下列描述不能看作算法的是().A.做米饭需要刷锅,淘米,添水,加热这些步骤B.洗衣机的使用说明书C.解方程2x2+x-1=0D.利用公式S=πr2,计算半径为4的圆的面积,就是计算π×42(2)下列关于算法的说法:①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生明确的结果.其中正确的有().A.1个B.2个C.3个D.4个【答案】(1)C (2)C【解析】(1)A、B、D都描述了解决问题的过程,可以看作算法.而C只描述了一个事实,没说明怎么解决问题,不是算法.(2)根据算法的特征可以知道,算法要有明确的开始与结束,每一步操作都必须是明确而有效的,必须在有限步内得到明确的结果,所以②③④正确.而解决某一类问题的算法不一定是唯一的,故①错误.【总结升华】算法一般是机械的,有时需要进行大量的重复计算,只要按部就班去做,总能算出结果.通常把算法过程称为“数学机械化”,数学机械化的最大优点是它可以借助计算机来完成.实际上处理任何问题都需要算法,如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续…….举一反三:【变式1】我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组的解,二分法求出函数的零点等,对算法的描述有:①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.以上算法的描述正确的有().A.1个B.2个C.3个D.4个【答案】D类型二:算法的描述例2.写出求方程组32142x yx y-=⎧⎨+=-⎩①②的解的算法.【解析】可利用消元法或代入法求解.算法一:第一步:②×2+①,得到5x=14-4.③第二步,解方程③,可得x=2.④第三步,将④代入②,可得2+y=-2.⑤第四步,解⑤得y=-4.第五步,得到方程组的解为24 xy=⎧⎨=-⎩算法二:第一步,由②式移项可以得到x=-2-y.③第二步,把③代入①,得y=-4.④第三步,把④代入③,得x=2.第四步,得到方程组的解为24 xy=⎧⎨=-⎩.【总结升华】通过求解二元一次方程组可知,求解某个问题的算法不一定唯一.对于具体的实例可以选择合适的算法,尽量做到“省时省力”,使所用的算法是最优算法.举一反三:【变式1】试描述求解三元一次方程组1233162x y zx y zx y z++=⎧⎪--=⎨⎪--=-⎩①②③的算法步骤.【解析】算法1:第一步,①+③,得x=5.④第二步,将④分别代入①式和②式可得73 1y zy z+=⎧⎨+=-⎩⑤⑥.第三步,⑥-⑤,得y=-4.⑦第四步,将⑦代入⑤可得z=11.第五步,得到方程组的解为5411xyz=⎧⎪=-⎨⎪=⎩.算法2:第一步,①+②,得2x -y=14. ④ 第二步,②-③,得x -y=9. ⑤ 第三步,④-⑤,得x=5. ⑥第四步,将⑥代入⑤式,得y=-4. ⑦ 第五步,将⑥和⑦代入①式,得z=11.第六步,得到方程组的解为5411x y z =⎧⎪=-⎨⎪=⎩.类型三:算法的设计【算法与程序框图 397425 算法中的例1】例3.设计一个算法,从3个互不相等的数中选出最小的一个数.,并用数学语言表达. 【解析】第一步:假定这3个数中第一个是“最小值”;第二步:将第二个数与“最小值”比较,如果它小于此“最小值”,那么就用这个数取代“最小值”; 第三步:再重复第二步,将第三个数与最小值比较,如果它小于此“最小值”,那么就用这个数取代“最小值”;第四步:此时的“最小值”就是三个数中的最小值,输出最小值.所谓的算法,就是解决该类问题的一般步骤. 举一反三:【变式1】任意给定一个正整数n ,设计出判断n 是否为质数的一个算法. 【解析】第一步,当n =1时,n 既不是质数,也不是合数; 第二步,当n =2时,n 是质数;第三步,当n ≥3时,从2到n -1依次判断是否存在n 的因数(因数1除外),若存在,则n 是合数;若不存在,则n 是质数.类型四:顺序结构的应用【算法与程序框图 397425 程序框图中的例1】 例4.对于一个二次函数2y ax bx c =++,求出顶点坐标.【解析】算法步骤:S1 用户输入二次函数的系数a,b,c ;S2 计算顶点坐标24,24b ac b x y a a-=-=(赋值);S3 输出顶点坐标.举一反三:【变式1】已知x=40,y=3.画出计算z=15x+8y 的值的程序框图. 【答案】程序框图如下图所示.类型五:条件结构的应用例5.已知函数232 1 (0)1 (01)2 (1)x x y x x x x x -<⎧⎪=+≤<⎨⎪+≥⎩,写出求该函数的函数值的算法,并画出程序框图.【解析】该函数是分段函数,因此当给出一个自变量x 的值时,需先判断x 的范围,然后确定利用哪一段的解析式求函数值.画程序框图时,必须采用条件分支结构,因为函数解析式分了三段,所以需要两个判断框,即进行两次判断.算法如下:第一步,输入x .第二步,如果x <0,那么使y=2x -1,输出y ;否则,执行第三步. 第三步,如果0≤x <1,那么使y=x 2+1,输出y ;否则,执行第四步.第四步,y=x 2+2x 第五步,输出y .程序框图如下图所示.【总结升华】凡是必须先根据条件作出判断,然后再决定进行哪一个步骤的问题,在画程序框图时,必须引入判断框,采用条件结构.而像本题求分段函数的函数值的程序框图的画法,如果是分两段的函数,只需引入一个判断框;如果是分三段的函数,需引入两个判断框;分四段的函数需引入三个判断框,依此类推.判断框内的内容是没有固定顺序的.举一反三:【变式1】已知函数 1 (0)()0 (0)1 (0)x f x x x ->⎧⎪==⎨⎪<⎩, 写出求函数()f x 的任一函数值的一个算法并画出程序框图.【解析】记y=f (x).算法:第一步:输入x .第二步:如果x >0,那么使y=-1;如果x=0,那么使y=0;如果x <0,那么使y=1. 第三步:输出函数值y . 程序框图如下图所示.【变式2】如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用程序框图表示这一算法过程.【答案】开始结束类型六:循环结构的应用例6.设计一个计算1+3+5+7+…+999的值的算法,并画出程序框图.【解析】算法一:当型循环:第一步,令S=0,i=1.第二步,若i≤999成立,则执行第三步;否则输出S,结束算法.第三步,S=S+i.第四步,i=i+2,返回第二步,程序框图如图(1).算法二:直到型循环:第一步,令S=0,i=1.第二步,S=S+i.第三步,i=i+2.第四步,若i不大于999,转第二步;否则,输出S,结束算法.程序框图如图1-1-8(2).【总结升华】注意直到型循环和当型循环的区别.直到型循环先执行i=i+2,再判断i>999是否成立,若成立才输出S;而当型循环先判断i≤999是否成立,若成立,则执行i=i+2,直到条件i≤999不成立才结束循环,输出S.举一反三:【变式1】给出30个数:1,2,4,7,11,…,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框处①和执行框②处应分别填入()A.i≤30?;p=p+i-1 B.i≤31?;p=p+i+1C.i≤31?;p=p+i D.i≤30?;p=p+i【答案】D【解析】由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30即①中应填写i≤30;又由第1个数是1;第2个数比第1个数大1,即1+1=2;第3个数比第2个数大1,即2+2=4;第4个数比第3个数大1,即4+3=7;…故②中应填写p=p+i故选:D.【变式2】(2016春河南周口期中)设计求1+3+5+7+…+31的算法,并画出相应的程序框图.【解析】第一步:S=0;第二步:i=1;第三步:S=S+i;第四步:i=i+2;第五步:若i不大于31,返回执行第三步,否则执行第六步;第六步:输出S值.程序框图如图:类型七:利用算法和程序框图解决实际问题例7.北京获得了2008年第29届奥运会主办权.你知道在申办奥运会的最后阶段,国际奥委会是如何通过投票决定主办权归属的吗?对选出的5个申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票超过总票数的一半,那么该城市就获得主办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.试画出该过程的程序框图.【解析】本题为算法中与现实生活相联系的题目,从选举的方法看,应选择循环结构来描述算法.如图所示:【总结升华】解决与现实相关的问题时首先要理清题意,此循环结构中对用哪一个步骤控制循环,哪一个步骤作为循环体,要有清晰的思路.举一反三:【变式1】儿童乘坐火车时,若身高不超过1.1 m,则无需购票;若身高超过1.1 m,但不超过1.4 m,可买半票;若超过1.4 m,应买全票,请设计一个算法,并画出程序框图.【解析】根据题意,该题的算法中应用条件结构,首先以身高为标准,分成买和免票,在买票中再分出半票和全票.买票的算法步骤如下:第一步:测量儿童身高h.第二步:如果h≤1.1 m,那么免费乘车,否则若h≤1.4 m,则买半票,否则买全票.精品文档 用心整理资料来源于网络 仅供免费交流使用 程序框图如下图所示.【总结升华】本题的程序框图中有两个判断点,一个是以1.1 m 为判断点,1.1 m 把身高分为两段,在大于1.1 m 的一段中,1.4 m 又将其分两段,因此1.4 m 这个判断是套在1.1 m 的判断里的.所以我们用到两个条件结构.。
新课标必修3概率部分知识点总结及典型例题解析 ◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不可能事件( impossible event )❖ 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()nm A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值♦ 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件 ()()()B P A P B A P B A +=+:,则有互斥和⌧ 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()nm A P = ⍓ 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为()的侧度的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。
互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件对立事件(complementary events ):两个互斥事件中必有一个发生,则称两个事件为对立事件 ,事件A 的对立事件 记为:A独立事件的概率:()()()B P A P A =AB P , B , 则为相互独立的事件事件若,若()()()()n 21n 2121A ...A A ...A A A P , , ... , , P P P A A A n =则为两两独立的事件 颜老师说明:① 若, B , , B , 中最多有一个发生则为互斥事件A A 可能都不发生,但不可能同时发生 ,从集合的关来看两个事件互斥,即指两个事件的集合的交集是空集 ② 对立事件是指的两个事件,而且必须有一个发生,而互斥事件可能指的很多事件,但最多只有一个发生,可能都不发生 ③ 对立事件一定是互斥事件 ④ 从集合论来看:表示互斥事件和对立事件的集合的交集都是空集,但两个对立事件的并集是全集 ,而两个互斥事件的并集不一定是全集 ⑤ 两个对立事件的概率之和一定是1 ,而两个互斥事件的概率之和小于或者等于 1 ⑥ 若事件B A ,是互斥事件,则有()()()B P A P B A P +=+ ⑦ 一般地,如果 n A A A ,...,,21 两两互斥,则有()()()()n n A P A P A P A A A P +++=+++......2121 ⑧ ()()A P A P -=1 ⑨ 在本教材中n A A A +++...21 指的是n A A A ,...,,21 中至少发生一个 ⑩ ★ 在具体做题中,希望大家一定要注意书写过程,设处事件来,利用哪种概型解题,就按照那种概型的书写格式,最重要的是要设出所求的事件来 ,具体的格式请参照我们课本上(新课标试验教科书-苏教版)的例题例题选讲:例1. 在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?【分析】题目所给的6个球中有4个红球,2个其它颜色的球,我们可以根据不同的思路有不同的解法解法1:(互斥事件)设事件 A 为“选取2个球至少有1个是红球” ,则其互斥事件为A意义为“选取2个球都是其它颜色球”()()()1514 151 - 1A P - 1 A P 151 2)56(1A P ===∴=⨯= 答:所选的2个球至少有一个是红球的概率为 1514 . 解法2:(古典概型)由题意知,所有的基本事件有15256=⨯种情况,设事件 A 为“选取2个球至少有1个是红球” ,而事件A 所含有的基本事件数有1423424=⨯+⨯所以()1514=A P 答:所选的2个球至少有一个是红球的概率为1514 . 解法3:(独立事件概率)不妨把其它颜色的球设为白色求,设事件 A 为“选取2个球至少有1个是红球” ,事件A 有三种可能的情况:1红1白;1白1红;2红,对应的概率分别为:5364 , 5462 , 5264⨯⨯⨯, 则有 ()15145364 5462 5264=⨯+⨯+⨯=A P 答:所选的2个球至少有一个是红球的概率为 1514 . 评价:本题重点考察我们对于概率基本知识的理解,综合所学的方法,根据自己的理解用不同的方法,但是基本的解题步骤不能少!变式训练1: 在大小相同的6个球中,2个是红球,4 个是白球,若从中任意选取3个,求至少有1个是红球的概率?解法1:(互斥事件)设事件 A 为“选取3个球至少有1个是红球”,则其互斥事件为A ,意义为“选取3个球都是白球”()()()54 51 - 1A P - 1 A P 51425364 123)456(123234A P 3634===∴=⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯==C C 答:所选的3个球至少有一个是红球的概率为 54 . 解法2:(古典概型)由题意知,所有的基本事件有2012345636=⨯⨯⨯⨯=C 种情况,设事件 A 为“选取3个球至少有1个是红球” ,而事件A 所含有的基本事件数有16234241224=⨯⨯=⨯+⨯C , 所以 ()542016==A P 答:所选的3个球至少有一个是红球的概率为 54 . 解法3:(独立事件概率)设事件 A 为“选取3个球至少有1个是红球” ,则事件A 的情况如下:红 白 白 51435462=⨯⨯ 1红2白 白 白 红 51425364=⨯⨯ 白 红 白 51435264=⨯⨯ 红 红 白 151445162=⨯⨯ 2红1白 红 白 红 151415462=⨯⨯ 白 红 红 151415264=⨯⨯所以 ()541513513=⨯+⨯=A P 答:所选的3个球至少有一个是红球的概率为54 . 变式训练2:盒中有6只灯泡,其中2只次品,4只正品,有放回的从中任抽2次,每次抽取1只,试求下列事件的概率:(1)第1次抽到的是次品(2)抽到的2次中,正品、次品各一次解:设事件A 为“第1次抽到的是次品”, 事件B 为“抽到的2次中,正品、次品各一次”则 ()3162==A P ,()94664224=⨯⨯+⨯=B P (或者()9462646462=⨯+⨯=B P ) 答:第1次抽到的是次品的概率为31 ,抽到的2次中,正品、次品各一次的概率为94 变式训练3:甲乙两人参加一次考试共有3道选择题,3道填空题,每人抽一道题,抽到后不放回,求(1)甲抽到选择题而乙抽到填空题的概率?(2)求至少1人抽到选择题的概率?【分析】(1)由于是不放回的抽,且只抽两道题,甲抽到选择题而乙抽到填空题是独立的,所以可以用独立事件的概率(2)事件“至少1人抽到选择题”和事件“两人都抽到填空题”时互斥事件,所以可以用互斥事件的概率来解:设事件A 为“甲抽到选择题而乙抽到填空题”,事件B 为“至少1人抽到选择题”,则B 为“两人都抽到填空题”(1)()()⎪⎪⎭⎫ ⎝⎛=⨯⨯===⨯=1035633 1035363261313P P P A P A P 或者 (2)()()⎪⎪⎭⎫ ⎝⎛===⨯=51 5152632623P P B P B P 或者 则 ()()545111=-=-=B P B P 答:甲抽到选择题而乙抽到填空题的概率为 103,少1人抽到选择题的概率为 54 . 变式训练4:一只口袋里装有5个大小形状相同的球,其中3个红球,2 个黄球,从中不放回摸出2个球,球两个球颜色不同的概率?【分析】先后抽出两个球颜色相同要么是1红1球,要么是1黄1球略解:()()⎪⎪⎭⎫ ⎝⎛===⨯+⨯= 536 534352425325C A P A P 或者 变式训练5:设盒子中有6个球,其中4个红球,2 个白球,每次人抽一个,然后放回,若连续抽两次,则抽到1个红球1个白球的概率是多少?略解: () 946642662464626264=⨯⨯+⨯⨯=⨯+⨯=A P高中数学必修三第一章算法初步1.1 算法与程序框图1、算法的概念(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.2、程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。