分式的乘方运算
- 格式:ppt
- 大小:44.50 KB
- 文档页数:6
15.2 分式的运算1.分式的乘除(1)分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 用式子表示为:a b ·c d =a ·c b ·d . (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:a b ÷c d =a b ·d c =a ·d b ·c. 分式的除法要转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式.【例1】 计算:(1)4a 4b 215x 2·9x 8a 4b ; (2)a 2-1a 2+2a +1÷a 2-a a +1;(3)a 2-4a 2+4a +4·2a a 2-4a +4; (4)4x 2+4xy +y 22x +y÷(4x 2-y 2).2.分式的乘方(1)法则:分式乘方要把分子、分母分别乘方.(2)用式子表示:⎝⎛⎭⎫a b n =a n b n .解技巧 分式的乘方的理解 (1)分式乘方时,分子、分母要乘相同次方;(2)其结果的符号与有理数乘方结果的符号确定方法一样.【例2】 计算:(1)⎝⎛⎭⎫a 2-b 34; (2)⎝⎛⎭⎫x 2y -z 23.3.分式的加减(1)同分母分式相加减:①法则:分母不变,把分子相加减; ②用式子表示:a c ±b c =a ±b c. (2)异分母分式相加减:①法则:先通分,变为同分母的分式,再加减;②用式子表示:a b ±c d =ad bd ±bc bd =ad ±bc bd. 警误区 分式加减运算的注意点 (1)同分母分式的加减运算的关键是分子的加减运算,分子加减时要将其作为一个整体进行加减,当分子是多项式时,要添加括号;(2)异分母分式加减运算的关键是先通分,转化为同分母的分式相加减,再根据同分母分式加减法进行运算,通分时要注意最简公分母的确定;(3)分式加减运算的结果要化为最简分式或整式.【例3】 计算:(1)(a -b )22ab +(a +b )22ab ; (2)a a 2-1-11-a 2; (3)1x +y -1x -y +2x x 2-y 2;(4)12m 2-9+23-m ; (5)x -3x 2-1-2x +1; (6)4a +2-a -2.4.整数指数幂一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数.这样引入负整数指数幂后,指数的取值范围就推广到全体整数.根据整数指数幂的运算性质,当m ,n 为整数时,a m ÷a n =a m -n ,a m ·a -n =a m +(-n )=a m -n ,因此a m÷a n =a m ·a -n .特别地,a b=a ÷b =a ·b -1,所以⎝⎛⎭⎫a b n =(a ·b -1)n ,即商的乘方⎝⎛⎭⎫a b n 可以转化为积的乘方(a ·b -1)n . 这样,整数指数幂的运算性质可以归纳为:(1)a m ·a n =a m +n (m ,n 是整数);(2)(a m )n =a mn (m ,n 是整数);(3)(ab )n =a n b n (m ,n 是整数).【例4】 计算:(1)⎝⎛⎭⎫-23-2; (2)a 2b -3(a -1b )3÷(ab )-1.5.科学记数法(1)用科学记数法表示绝对值大于1的数时,应当表示为a ×10n 的形式,其中1≤|a |<10,n 为原数整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,可以表示为a ×10-n 的形式,其中n 为原数第1个不为零的数字前面所有零的个数(包括小数点前面的那个零),1≤|a |<10.提示:用科学记数法的形式表示数更方便于比较数的大小.【例5】 把下列各数用科学记数法表示出来:(1)650 000; (2)-36 900 000; (3)0.000 002 1; (4)-0.000 006 57.6.分式的乘除混合运算分式的乘除混合运算要统一为乘法运算来计算.谈重点 分式乘除混合运算的方法 (1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即从左到右的顺序,有括号先算括号里面的;(2)分式的乘除混合运算要注意每个分式中分子、分母括号的处理,以及结果符号的确定;(3)分式的乘除混合运算结果应为最简分式或整式.7.分式的混合运算分式的四则混合运算与有理数的混合运算相同,必须按照运算顺序,先乘方,再乘除,后加减,有括号时先去小括号再去中括号,最后结果要化为最简分式或整式.解技巧 分式混合运算的技巧 分式四则混合运算要注意:(1)按照运算顺序进行,确定合理的运算顺序是解题的关键;(2)灵活运用交换律、结合律、分配律,可以使运算简捷,而且还可以提高运算速度和准确率;(3)将结果化为最简分式或整式;(4)运算过程中要注意符号的确定.8.把分式化简后再求值 分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.化简运算过程中要注意约分、通分时分式的值保持不变,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算.【例6】 计算:1-x 2x 2+4x +4÷(x -1)2·x 2+3x +2x -1.【例7】 计算:⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ÷⎝⎛⎭⎫1a +1b 2·2a 2-b 2+2ab.【例8】 先化简,再求值:⎝⎛⎭⎫3x x -1-x x +1·x 2-12x ,其中x =-3.9.运用分式运算解决实际问题运用分式运算解决实际问题,关键是理解题意,找准各种量之间的关系,这也是解决数学应用题的基本方法,作差法等也是解决这类问题的常用方法.在判断两分式的差的正负的时候,可以考虑利用完全平方式的非负性和题中字母的实际意义来解题.作差法举例:若x ≠y 且x >0,y >0,比较4x +y 与x +y xy的大小.【例9】 甲、乙两工人生产同一种零件,甲每小时比乙多生产8个,现要求甲生产出168个零件,乙生产出144个零件,则他们两人谁能先完成任务?10.分式混合运算的开放型题所以在解决此类问题时,首先还是要正确进行分式的化简,然后还要注意问题的多解的情况.举例:已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.【例10】 已知A =1x -2,B =2x 2-4,C =x x +2.将它们组合成(A -B)÷C 或A -B÷C 的形式,请你从中任选一种进行计算.先化简,再求值,其中x =3.。
分式的运算与分式方程一、分式的运算1、分式的乘除分式乘法法则:分式乘分式,分子的积作为积的分子,分母的积作为积的分母,即DB CA D CB A ⋅⋅=⋅分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即C BD A C D B A D C B A ⋅⋅=⋅=÷分式的乘方:b ab a n nn=)( ,此公式不仅要会正用,有时根据题目需要还要会逆用。
2、分式的加减运算的次序:(1)同级运算,应从左到右按顺序算。
(2)进行乘除与乘方的混合运算时,应先乘方后乘除。
(3)分式混合运算,先算乘除,再算加减。
例1、(1)化简:1112421222-÷+--⋅--a a a a a a (2)化简:2324324422222+⋅--+÷++-+x x x x x x x x (3)化简:()a b bba ab a -÷-⋅+222 (4)化简:())()(y x x y x xyyx-⋅+÷-2223例2、计算:(1)81385---+m m m (2)s s -++1312 (3)11122---x x x(4)969392222++-+++x xx x x x x (5)111+-+x x (6)242++-a a例3、(1)2121442-÷++-x x x )((2)x x x x x x x x 44412222-÷+----+)((3)12111222+-÷--+x xx x x例4、有这样一道题:“计算:xxx x x x x -+-÷-+-2221112的值,其中2007=x ”,某同学把2007=x 错抄成2008=x ,但它的结果与正确答案相同,你说这是怎么回事?例5、已知aba abb b a ab b ab a --⋅+÷-+2222的值为正整数,试求所有符合条件的a 的整数值.例6、已知:0132=+-a a ,试求)1)(1(22aa a a --的值.例7、求待定字母的值(1)若111312-++=--x Nx M x x ,试求N M ,的值. (2)已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值.例8、若.1111的值,求++++++++=c ca cb bc b a ab a abc二、整数指数幂两个规定:(1)当100=≠a a 时,;(2)当aa a nn 1,0=≠-时.由此我们可以将正整数数幂推广到全体整数。
分式的加减乘除乘方混合运算在数学中,分式是由分子和分母组成的表达式,表示两个数的商。
分式可以进行加、减、乘、除以及乘方等混合运算。
本文将介绍和讲解如何进行分式的加减乘除乘方混合运算。
一、分式的加法运算分式的加法运算是指将两个分式相加的操作。
要进行分式的加法运算,需要保证两个分式的分母相同,然后分别将分子相加,再将分子写在分式的分子位置上,分母不变。
例如:1/3 + 2/3 = (1+2)/3 = 3/3 = 1二、分式的减法运算分式的减法运算是指将两个分式相减的操作。
同样地,要进行分式的减法运算,也需要保证两个分式的分母相同,然后分别将分子相减,再将分子写在分式的分子位置上,分母不变。
例如:5/6 - 1/6 = (5-1)/6 = 4/6 = 2/3三、分式的乘法运算分式的乘法运算是指将两个分式相乘的操作。
要进行分式的乘法运算,只需要将两个分式的分子相乘,将两个分式的分母相乘,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:2/5 * 3/4 = (2*3)/(5*4) = 6/20 = 3/10四、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。
要进行分式的除法运算,需要将第一个分式的分子乘以第二个分式的倒数,也就是将第一个分式的分子乘以第二个分式分数倒数的分子,将第一个分式的分母乘以第二个分式分数倒数的分母。
例如:1/2 ÷ 2/3 = (1/2)*(3/2) = 3/4五、分式的乘方运算分式的乘方运算是指将一个分式进行指数运算的操作。
要进行分式的乘方运算,需要将分式的分子和分母分别进行指数运算,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:(1/2)^2 = 1^2 / 2^2 = 1/4六、分式的混合运算分式的混合运算是指将分式的加减乘除以及乘方运算混合在一起进行的操作。
在进行混合运算时,需要根据运算法则依次进行各个运算的步骤,最终得到结果。