广东省中山市东升高中高一数学导学案人教版
- 格式:doc
- 大小:2.33 MB
- 文档页数:32
中山市东升高中高一年级校本教材开发小组编印数学导学案2008~2009 学年第一学期模块:必修 ②章节: 第二章 点线面的位置关系 班级: 姓名:中山市东升高中 高一数学◆必修2◆导学案 编写:赵进 校审:王艳艳1§2.1.1 平面学习目标1. 了解平面的描述性概念;2. 掌握平面的表示方法和基本画法;3. 掌握平面的基本性质;4. 能正确地用数学语言表示点、直线、平面以及它 们之间的关系. 学习过程一、课前准备(预习教材 P 40~ P 43,找出疑惑之处) 引入: 平面是构成空间几何体的基本要素.那么什么 是平面呢?平面如何表示呢?平面又有哪些性质呢?二、新课导学 ※ 探索新知探究 1:平面的概念与表示问题:生活中哪些物体给人以平面形象?你觉得平 面可以拉伸吗?平面有厚薄之分吗?新知 1:平面(plane)是平的;平面是可以无限延展 的;平面没有厚薄之分.问题:通常我们用一条线段表示直线,那你认为用 什么图形表示平面比较合适呢? 新知 2:如上图,通常用平行四边形来表示平面.平 面可以用希腊字母 ,, a b g 来表示,也可以用平行四 边形的四个顶点来表示,还可以简单的用对角线的 端点字母表示.如平面a ,平面ABCD ,平面AC 等.规定:①画平行四边形,锐角画成45°,横边长等 于其邻边长的 2 倍; ②两个平面相交时, 画出交线, 被遮挡部分用虚线画出来;③用希腊字母表示平面时,字母标注在锐角内.问题:点动成线、线动成面.联系集合的观点,点和 直线、平面的位置关系怎么表示?直线和平面呢? 新知 3:⑴点A 在平面a 内,记作 A a Î ;点 A 在 平面a 外,记作 A a Ï .⑵点 P 在直线l 上,记作 P l Î ,点P 在直线外,记作P l Ï .⑶直线l 上所有 点都在平面a 内,则直线l 在平面a 内(平面a 经过 直线l ),记作l aÌ ;否则直线就在平面外,记作 l a Ë .探究 2:平面的性质问题:直线l 与平面a 有一个公共点P ,直线l 是否 在平面a 内?有两个公共点呢?新知 4:公理1 如果一条直线上的两点在一个平面 内,那么这条直线在此平面内.用集合符号表示为: ,, A l B l ÎÎ 且 , A B l a a aÎÎÞÌ 问题:两点确定一直线,两点能确定一个平面吗? 任意三点能确定一个平面吗?新知 5:公理 2 过不在一条直线上的三点,有且只 有一个平面.如上图,三点确定平面ABC .问题:把三角板的一个角立在课桌面上,三角板所 在平面与桌面所在平面是否只相交于点 B ?为什 么?新知 6:公理 3 如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线.如下 图所示:平面a 与平面b 相交于直线l ,记作 l a b = I .公理3 用集合符号表示为, P a Î 且Pb Î Þ l a b = I ,且P l Î ※ 典型例题例 1 如图,用符号表示下列图形中点、直线、平面 之间的位置关系.2008年下学期◆高一 月 日 班级: 姓名: 第二章 点、 线、 面的位置关系2例 2 如图在正方体ABCD A B C D ¢¢¢¢ - 中,判断下列 命题是否正确,并说明理由: ⑴直线AC 在平面ABCD 内; ⑵设上下底面中心为 , O O ¢, 则平面AA C C ¢¢ 与平面BB ¢D D ¢ 的交线为OO ¢;⑶点 ,, A O C ¢可以确定一平面; ⑷平面AB C ¢¢与平面AC D¢ 重合.※ 动手试试 练 用符号表示下列语句,并画出相应的图形: ⑴点A 在平面a 内,但点B 在平面a 外; ⑵直线a 经过平面a 外的一点M ; ⑶直线a 既在平面a 内,又在平面b 内.三、总结提升 ※ 学习小结1. 平面的特征、画法、表示;2. 平面的基本性质(三个公理);3. 用符号表示点、线、面的关系.※ 知识拓展平面的三个性质是公理(不需要证明,直接可以用), 是用公理化方法证明命题的基础.其中公理1可以用 来判断直线或者点是否在平面内;公理2用来确定 一个平面,判断两平面重合,或者证明点、线共面; 公理 3 用来判断两个平面相交,证明点共线或者线 共点的问题.学习评价※ 自我评价 你完成本节导学案的情况为 ( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下面说法正确的是( ).①平面 ABCD 的面积为 210cm ②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④ 平面不一定用平行四边形表示.A.①B.②C.③D.④ 2. 下列结论正确的是( ). ①经过一条直线和这条直线外一点可以确定一个 平面②经过两条相交直线,可以确定一个平面③经 过两条平行直线,可以确定一个平面④经过空间任 意三点可以确定一个平面 A.1个 B.2个 C.3个 D.4个3. 如图在四面体中,若直线EF 和GH 相交,则它 们的交点一定( ).A.在直线DB 上B.在直线AB 上C.在直线CB 上D.都不对 4. 直线 12 , l l 相交于点P ,并且分别与平面g 相交于 点 , A B 两点, 用符号表示为____________________. 5. 两个平面不重合,在一个面内取 4点,另一个面 内取 3 点,这些点最多能够确定平面_______个.课后作业1. 画出满足下列条件的图形:⑴三个平面:一个水平,一个竖直,一个倾斜; ⑵ ,,, l AB CD a b a b =ÌÌ I AB ∥l ,CD ∥l .2.如图在正方体中,A 是顶点, , B C 都是棱的中点, 请作出经过 ,, A B C 三点的平面与正方体的截面.O ¢ O B C D ADC B A HGDCFBA中山市东升高中 高一数学◆必修2◆导学案 编写:赵进 校审:王艳艳3§2.1.2 空间直线与直线之间的位置关系学习目标1. 正确理解异面直线的定义;2. 会判断空间两条直线的位置关系;3. 掌握平行公理及空间等角定理的内容和应用;4. 会求异面直线所成角的大小.学习过程一、课前准备(预习教材 P 44~ P 47,找出疑惑之处) 复习 1: 平面的特点是______、_______ 、 _______. 复习 2:平面性质(三公理)公理 1___________________________________; 公理 2___________________________________; 公理3___________________________________.二、新课导学※ 探索新知探究 1:异面直线及直线间的位置关系问题:平面内两条直线要么平行要么相交(重合不 考虑),空间两条直线呢? 观察:如图在长方体中,直线A B ¢ 与CC ¢的位置关系如何?结论:直线A B ¢ 与CC ¢既不相交,也不平行.新知 1:像直线A B ¢ 与CC ¢这样不同在任何一个平 面内的两条直线叫做异面直线(skew lines).试试:请在上图的长方体中,再找出3 对异面直线.问题:作图时,怎样才能表示两条直线是异面的? 新知 2:异面直线的画法有如下几种( , a b 异面): 试试:请你归纳出空间直线的位置关系.探究 2:平行公理及空间等角定理问题:平面内若两条直线都和第三条直线平行,则 这两条直线互相平行,空间是否有类似规律? 观察: 如图 21,在长方体中, 直线C D¢¢∥ A B ¢¢,AB ∥ A B ¢¢,那么直线AB 与C D ¢¢平行吗?图 21新知 3: 公理 4 (平行公理)平行于同一条直线的两 条直线互相平行.问题: 平面上,如果一个角的两边与另一个角的两边 分别平行,则这两个角相等或者互补,空间是否有 类似结论?观察:在图 21 中, ADC Ð 与 A D C ¢¢¢ Ð , ADC Ð 与 A BC ¢¢¢ Ð 的两边分别对应平行,这两组角的大小关 系如何?新知 4: 定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.探究 3:异面直线所成的角问题:平面内两条直线的夹角是如何定义的?想一想异面直线所成的角该怎么定义?图 22新知 5: 如图22,已知两条异面直线 , a b , 经过空间 任一点O 作直线 a ¢∥a ,b ¢∥b ,把a ¢与b ¢所成的 锐角(或直角)叫做异面直线 , a b 所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作a b ^ . 反思:思考下列问题.⑴ 作异面直线夹角时,夹角的大小与点O 的位置有关吗?点O 的位置怎样取才比较简便?⑵ 异面直线所成的角的范围是多少?⑶ 两条互相垂直的直线一定在同一平面上吗?⑷ 异面直线的夹角是通过什么样的方法作出来的?它体现了什么样的数学思想? ※ 典型例题例1 如图23, ,,, E F G H 分别为空间四边形ABCD 各边 ,,, AB BC CD DA 的中点,若对角线 2, BD = 4 AC = ,则 22 EG HF + 的值为多少?(性质:平行四 边形的对角线的平方和等于四条边的平方和).aaba2008年下学期◆高一 月 日 班级: 姓名: 第二章 点、 线、 面的位置关系4图 23例 2 如图 24,在正方体中,求下列异面直线所成的角.⑴BA ¢和CC ¢ ⑵B D ¢¢和C A¢ 图 24※ 动手试试练 正方体 ABCD A B C D ¢¢¢¢ - 的棱长为a ,求异面直线AC 与 A D ¢¢所成的角.三、总结提升※ 学习小结1. 异面直线的定义、夹角的定义及求法;2. 空间直线的位置关系;3. 平行公理及空间等角定理.※ 知识拓展异面直线的判定定理:过平面外一点与平面内一 点的直线, 和平面内不经过该点的直线是异面直线.如图, ,,, a A B B a a a a ÌÏÎÏ ,则直线AB 与直线 a 是异面直线.学习评价※ 自我评价 你完成本节导学案的情况为 ( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. ,, a b c 为三条直线,如果 , a c b c ^^ ,则 , a b 的位 置关系必定是( ).A.相交B.平行C.异面D.以上答案都不对 2. 已知 , a b 是异面直线,直线c 平行于直线a ,那么c 与b ( ). A.一定是异面直线 B.一定是相交直线 C.不可能是平行直线 D.不可能是相交直线 3. 已知 l a b = I , , a b a b ÌÌ , 且 , a b 是异面直线, 那么直线l ( ).A.至多与 , a b 中的一条相交B.至少与 , a b 中的一条相交C.与 , a b 都相交D.至少与 , a b 中的一条平行4. 正方体 ABCD A B C D ¢¢¢¢ - 的十二条棱中,与直线 AC ¢是异面直线关系的有___________条.5. 长方体 1111 ABCD A B C D - 中, 3 AB = , 2, BC = 1 AA =1, 异面直线AC 与 11 A D 所成角的余弦值是______.课后作业 1. 已知 , E E ¢是正方体 AC ¢棱 AD , A D ¢¢的中点,求证: CEB C E B¢¢¢ Ð=Ð . 2. 如图 25,在三棱锥P ABC - 中,PA BC ^ ,E 、F 分别是PC 和 AB 上的点,且 32PE AF EC FB == ,设EF 与PA 、BC 所成的角分别为 , a b , 求证: 90 a b += °.图 25中山市东升高中 高一数学◆必修2◆导学案 编写:赵进 校审:王艳艳5§2.1.3 空间直线与平面之间的位置关系§2.1.4 平面与平面之间的位置关系学习目标1. 掌握直线与平面之间的位置关系, 理解直线在平 面外的概念,会判断直线与平面的位置关系;2. 掌握两平面之间的位置关系, 会画相交平面的图 形.学习过程一、课前准备(预习教材 P 48~ P 50,找出疑惑之处)复习 1:空间任意两条直线的位置关系有_______、 _______、_______三种. 复习 2:异面直线是指________________________ 的两条直线,它们的夹角可以通过______________ 的方式作出,其范围是___________.复习 3:平行公理:__________________________ ________________;空间等角定理:_______________________________________________________.二、新课导学 ※ 探索新知探究 1:空间直线与平面的位置关系 问题: 用铅笔表示一条直线, 作业本表示一个平面, 你试着比画,它们之间有几种位置关系?观察:如图 31,直线A B ¢ 与长方体的六个面有几种 位置关系?图 31新知 1:直线与平面位置关系只有三种: ⑴直线在平面内—— ⑵直线与平面相交—— ⑶直线与平面平行——其中,⑵、⑶两种情况统称为直线在平面外.反思:⑴从交点个数方面来分析,上述三种关系对应的交 点有多少个?请把结果写在新知1的——符号后面 ⑵请你试着把上述三种关系用图形表示出来,并想 想用符号语言该怎么描述.探究 2:平面与平面的位置关系问题:平面与平面的位置关系有几种?你试着拿两 个作业本比画比画.观察:还是在长方体中,如图 32,你看看它的六个面两两之间的位置关系有几种?图 32新知 2:两个平面的位置关系只有两种: ⑴两个平面平行——没有公共点 ⑵两个平面相交——有一条公共直线试试:请你试着把平面的两种关系用图形以及符号 语言表示出来.※ 典型例题例 1 下列命题中正确的个数是( )①若直线l 上有无数个点不在平面a 内,则l ∥a . ②若直线l 与平面a 平行, 则l 与平面a 内的任意一 条直线都平行.③如果两条平行直线中的一条与一个平面平行,那 么另一条也与这个平面平行.④若直线l 与平面a 平行,则l 与平面a 内的任意一 条直线都没有公共点.A.0B.1C.2D.32008年下学期◆高一 月 日 班级: 姓名: 第二章 点、 线、 面的位置关系6例 2 已知平面 , a b ,直线 , a b ,且a ∥b ,a a Ì ,b b Ì ,则直线a 与直线b 具有怎样的位置关系?※ 动手试试 练 1. 若直线a 不平行于平面a ,且a a Ë ,则下列 结论成立的是( ) A.a 内的所有直线与a 异面 B.a 内不存在与a 平行的直线 C.a 内存在唯一的直线与a 平行D.a 内的直线与a 都相交.练 2. 已知 ,, a b c 为三条不重合的直线, ,, a b g 为三 个不重合的平面:①a ∥c ,b ∥c Þ a ∥b ; ②a ∥g ,b ∥g Þ a ∥b ; ③a ∥c ,c ∥a Þ a ∥a ; ④a ∥g ,a ∥a a Þ ∥g ; ⑤a a Ë ,b a Ì ,a ∥b Þ a ∥a . 其中正确的命题是( )A.①⑤B.①②C.②④D.③⑤三、总结提升 ※ 学习小结1. 直线与平面、平面与平面的位置关系;2. 位置关系用图形语言、符号语言如何表示;3. 长方体作为模型研究空间问题的重要性. ※ 知识拓展求类似确定空间的部分、平面的个数、交线的 条数、交点的个数问题,都应对相应的点、线、面的 位置关系进行分类讨论, 做到不重不漏.分类讨论是 数学中常用的重要数学思想方法,可以使问题化难 为易、化繁为简.学习评价※ 自我评价 你完成本节导学案的情况为 ( ) . A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线l 在平面a 外,则( ). A.l ∥a B.l 与a 至少有一个公共点 C.l A a = I D.l 与a 至多有一个公共点 2. 已知a ∥a ,b a Ì ,则( ). A.a ∥b B.a 和b 相交C.a 和b 异面D.a 与b 平行或异面3. 四棱柱的的六个面中,平行平面有( ). A.1 对 B.1 对或2 对 C.1 对或 2 对或 3 对D.0 对或1 对或 2对或 3 对4. 过直线外一点与这条直线平行的直线有____条; 过直线外一点与这条直线平行的平面有____个.5. 若在两个平面内各有一条直线, 且这两条直线互 相平行, 那么这两个平面的位置关系一定是______. 课后作业 1. 已知直线 , a b 及平面a 满足: a ∥a ,b ∥a ,则 直线 , a b 的位置关系如何?画图表示.2. 两个不重合的平面, 可以将空间划为几个部分? 三个呢?试画图加以说明.中山市东升高中 高一数学◆必修2◆导学案 编写:赵进 校审:王艳艳7§2.1 空间点、直线、平面之间的位置关系(练习)学习目标1. 理解和掌握平面的性质定理,能合理运用;2. 掌握直线与直线、直线与平面、平面与平面的位 置关系;3. 会判断异面直线,掌握异面直线的求法;4. 会用图形语言、符号语言表示点、线、面的位置关系.学习过程一、课前准备(预习教材 P 40~ P 50,找出疑惑之处) 复习 1:概念与性质⑴平面的特征和平面的性质(三个公理); ⑵平行公理、等角定理;⑶直线与直线的位置关系 ì ïí ï î 平行 相交异面 ⑷直线与平面的位置关系 ì ïí ï î在平面内 相交平行 ⑸平面与平面的位置关系 ìíî平行 相交 复习 2:异面直线夹角的求法:平移线段作角,解 三角形求角.复习 3:图形语言、符号语言表示点、线、面的位置关系⑴点与线、点与面的关系; ⑵线与线、线与面的关系; ⑶面与面的关系.二、新课导学 ※ 典型例题 例 1 如图 41, ABC D 在平面a 外,AB P a = I , BC Q a = I , AC R a = I ,求证:P ,Q ,R 三点共线.图 41小结:证明点共线的基本方法有两种⑴找出两个面的交线,证明若干点都是这两个平面 的公共点,由公理 3 可推知这些点都在交线上,即 证若干点共线. ⑵选择其中两点确定一条直线,证明另外一些点也 都在这条直线上. 例 2 如图 42,空间四边形ABCD 中,E ,F 分别是AB 和CB 上的点,G ,H 分别是CD和 AD 上的点,且EH FG 与 相交于点K .求证:EH,BD ,FG 三条直线相交于同一点.图 42小结:证明三线共点的基本方法为:先确定待证的三线中的两条相交于一点,再证明此点是二直线所 在平面的公共点,第三条直线是两个平面的交线, 由公理 3 得证这三线共点.例 3 如图 43,如果两条异面直线称作“一对” ,那么在正方体的 12 条棱中,共有异面直线多少对? 图 43反思:分析清楚几何特点是避免重复计数的关键,计数问题必须避免盲目乱数,分类时要不重不漏.※ 动手试试练 1. 如图 44,是正方体的平面展开图,图 44则在这个正方体中:2008年下学期◆高一 月 日 班级: 姓名: 第二章 点、 线、 面的位置关系8①BM 与ED 平行 ②CN 与BE 是异面直线③CN 与BM 成60°角 ④DM 与BN 是异面直线其中正确命题的序号是( )A.①②③B.②④C.③④D.②③④练 2. 如图 45, 在正方体中,E ,F 分别为AB 、AA ¢的中点,求证:CE ,D F¢ ,DA 三线交于一点. 图 45练3. 由一条直线和这条直线外不共线的三点,能确 定平面的个数为多少? 小结:分类讨论的数学思想三、总结提升※ 学习小结1. 平面及平面基本性质的应用;2. 点、线、面的位置关系;3. 异面直线的判定及夹角问题.※ 知识拓展异面直线的判定方法:①定义法:利用异面直线的定义,说明两直线不平 行,也不相交,即不可能在同一个平面内. ②定理法:利用异面直线的判定定理说明.③反证法(常用):假设两条直线不异面,则它们一 定共面,即这两条直线可能相交,也可能平行,然 后根据题设条件推出矛盾.学习评价※ 自我评价 你完成本节导学案的情况为 ( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线 1 l ∥ 2 l ,在 1 l 上取 3 个点,在 2 l 上取 2 个点, 由这 5 个点确定的平面个数为( ). A.1 个 B.3 个 C.6个 D.9 个 2. 下列推理错误的是( ). A. A l Î , A a Î ,B l Î ,B a Î l aÞÌ B. A a Î , A b Î ,B a Î ,B b Î AB a b Þ= I C.l a Ë , A l A aÎÞÏ D.A ,B ,C a Î , A ,B ,C b Î ,且 A ,B ,C 不共线 a b Þ 与 重合3. a ,b 是异面直线,b ,c 是异面直线, 则a ,c 的位置 关系是( ).A.相交、平行或异面B.相交或平行C.异面D.平行或异面4. 若一条直线与两个平行平面中的一个平面平行, 则它与另一平面____________.5. 垂直于同一条直线的两条直线位置关系是_____ _____________;两条平行直线中的一条与某一条直线垂直,则另一条和这条直线______.课后作业1. 如图 46,在正方体中M ,N 分别是 AB 和DD ¢的 中点,求异面直线B M ¢ 与CN 所成的角.图 462. 如图 47,已知不共面的直线a ,b ,c 相交于O 点, M ,P 点是直线a 上两点,N ,Q 分别是直线b ,c 上 一点.求证:MN 和PQ 是异面直线.图 47P NM O中山市东升高中 高一数学◆必修2◆导学案 编写:赵进 校审:王艳艳9§2.2.1 直线与平面平行的判定学习目标1. 通过生活中的实际情况,建立几何模型,了解直 线与平面平行的背景;2. 理解和掌握直线与平面平行的判定定理, 并会用 其证明线面平行.学习过程一、课前准备(预习教材 P 54~ P 55,找出疑惑之处)复习:直线与平面的位置关系有______________, _______________,_________________.讨论:直线和平面的位置关系中,平行是最重要的关系之一,那么如何判定直线和平面是平行的呢? 根据定义好判断吗?二、新课导学 ※ 探索新知探究 1:直线与平面平行的背景分析实例 1:如图 51,一面墙上有一扇门,门扇的两边 是平行的.当门扇绕着墙上的一边转动时, 观察门扇 转动的一边l 与墙所在的平面位置关系如何?图 51实例 2:如图 52,将一本书平放在桌面上,翻动书 的封面,观察封面边缘所在直线l 与桌面所在的平面具有怎样的位置关系?图 52结论:上述两个问题中的直线l 与对应平面都是平 行的.探究 2:直线与平面平行的判定定理 问题: 探究1两个实例中的直线l 为什么会和对应的 平面平行呢?你能猜想出什么结论吗?能作图把 这一结论表示出来吗?新知:直线与平面平行的判定定理定理:平面外一条直线与此平面内的一条直线平 行, 则该直线与此平面平行. 如图 53所示, a ∥a .图 53反思:思考下列问题⑴用符号语言如何表示上述定理;⑵上述定理的实质是什么?它体现了什么数学思 想?⑶如果要证明这个定理,该如何证明呢?※ 典型例题 例 1 有一块木料如图54 所示,P 为平面BCEF 内一点,要求过点P 在平面BCEF 内作一条直线与平 面ABCD 平行,应该如何画线?图 54例 2 如图 55,空间四边形ABCD 中, , E F 分别是, AB AD 的中点,求证:EF ∥平面BCD .图 55※ 动手试试练1. 正方形ABCD 与正方形ABEF 交于AB , M 和N 分别为AC 和BF 上的点,且AM FN = , 如图 56 所示.求证:MN ∥平面BEC .图 56练 2. 已知 ABC D , , D E 分别为 , AC AB 的中点,沿 DE 将 ADE D 折起,使A 到 A ¢的位置,设M 是 A B ¢ 的中点,求证:ME ∥平面A CD ¢ .三、总结提升※ 学习小结1. 直线与平面平行判定定理及其应用,其核心是线 线平行Þ线面平行;2. 转化思想的运用:空间问题转化为平面问题. ※ 知识拓展判定直线与平面平行通常有三种方法: ⑴利用定义: 证明直线与平面没有公共点.但直接证 明是困难的,往往借助于反正法来证明. ⑵利用判定定理, 其关键是证明线线平行.证明线线 平行可利用平行公理、中位线、比例线段等等. ⑶利用平面与平面平行的性质.(后面将会学习到)学习评价※ 自我评价 你完成本节导学案的情况为 ( ) . A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 若直线与平面平行, 则这条直线与这个平面内的 ( ).A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交 2. 下列结论正确的是( ). A.平行于同一平面的两直线平行B.直线l 与平面a 不相交,则l ∥平面aC. , A B 是平面a 外两点, , C D 是平面a 内两点, 若 AC BD = ,则AB ∥平面aD.同时与两条异面直线平行的平面有无数个3. 如果AB 、BC 、CD 是不在同一平面内的三条线 段,则经过它们中点的平面和直线 AC 的位置关系 是( ).A.平行B.相交C.AC 在此平面内D.平行或相交 4. 在正方体 1111 ABCD A B C D - 的六个面和六个对角 面中,与棱AB 平行的面有________个.5. 若直线 , a b 相交,且a ∥a ,则b 与平面a 的位 置关系是_____________.课后作业1. 如图 57,在正方体中,E 为 1 DD 的中点,判断1 BD 与平面AEC 的位置关系,并说明理由.图 572. 如图 58,在空间四边形ABCD 中,P 、Q 分别是 ABC D 和 BCD D 的重心.求证:PQ ∥平面ACD .图 58N MFEDBA§2.2. 2 平面与平面平行的判定学习目标1. 能借助于长方体模型讨论直线与平面、 平面与平 面的平行问题;2. 理解和掌握两个平面平行的判定定理及其运用;3. 进一步体会转化的数学思想.学习过程一、课前准备(预习教材 P 56~ P 57,找出疑惑之处) 复习 1: 直线与平面平行的判定定理是___________ ___________________________________________. 复习 2:两个平面的位置关系有___种,分别为____ ___和_______.讨论:两个平面平行的定义是两个平面没有公共点, 怎样证明两个平面没有公共点呢?你觉得好证吗? 二、新课导学 ※ 探索新知探究:两个平面平行的判定定理问题 1:平面可以看作是由直线构成的.若一平面内 的所有直线都与另一个平面平行,则这两个平面平 行吗?由此你可以得到什么结论?结论:两个平面平行的问题可以转化为一个平面内 的直线与另一个平面平行的问题.问题 2:一个平面内所有直线都平行于另外一个平 面好证明吗?能否只证明一个平面内若干条直线 和另外一个平面平行,那么这两个平面就平行呢? 试试:在长方体中,回答下列问题 ⑴如图 61, AA AA B B ¢¢¢ Ì面, AA ¢∥面BB C C ¢¢ , 则面AA B B ¢¢ ∥面BB C C ¢¢ 吗?图 61⑵如图 62,AA ¢∥EF ,AA ¢∥ DCC D¢¢ 面,EF ∥ DCC D ¢¢ 面 ,则 A ADD ¢¢ 面 ∥ DCC D¢¢ 面 吗? 图 62⑶如图 63,直线A C ¢¢和B D ¢¢相交,且A C ¢¢、B D ¢¢ 都和平面ABCD 平行(为什么),则平面A B C D ¢¢¢¢∥ 平面ABCD 吗?图 63反思:由以上 3 个问题,你得到了什么结论?新知:两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行, 则这两个平面平行. 如图 64所示,a ∥b .图 64反思:⑴定理的实质是什么? ⑵用符号语言把定理表示出来.⑶如果要证明定理,该怎么证明呢? ※ 典型例题例 1 已知正方体 1111ABCD A B C D - , 如图 65, 求证: 平面 11 AB D ∥1 CB D . 图 65例 2 如图 66, 已知 , a b 是两条异面直线, 平面a 过a ,与b 平行,平面b 过b ,与a 平行, 求证:平面a ∥平面b图 66小结:证明面面平行,只需证明线线平行,而且这 两条直线必须是相交直线. ※ 动手试试练. 如图 67, 正方体中, ,,, M N E F 分别是棱A B ¢¢, A D ¢¢,B C ¢¢,C D ¢¢的中点,求证:平面AMN ∥ 平面EFDB . 图 67三、总结提升 ※ 学习小结1. 平面与平面平行的判定定理及应用;2. 转化思想的运用.※ 知识拓展判定平面与平面平行通常有 5种方法 ⑴根据两平面平行的定义(常用反证法); ⑵根据两平面平行的判定定理;⑶垂直于同一条直线的两个平面平行(以后学习); ⑷两个平面同时平行于第三个平面,则这两个平面 平行(平行的传递性);⑸一个平面内的两条相交直线分别平行于另外一 个平面内的两条直线, 则这两个平面平行(判定定理 的推论).学习评价※ 自我评价 你完成本节导学案的情况为 ( ) . A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 平面a 与平面b 平行的条件可以是( ). A.a 内有无穷多条直线都与b 平行B.直线a 与 , a b 都平行,且不在a 和b 内C.直线a a Ì ,直线b b Ì ,且a ∥b ,b ∥aD.a 内的任何直线都与b 平行2. 经过平面a 外的一条直线a 且与平面a 平行的 平面( ). A.有且只有一个 B.不存在 C.至多有一个 D.至少有一个3. 设有不同的直线 , a b ,及不同的平面a 、b ,给出的三个命题中正确命题的个数是( ). ①若a ∥a ,b ∥a ,则a ∥b ②若a ∥a ,a ∥b ,则a ∥b ③若 , a a a Ì ∥b ,则a ∥b .A.0 个B.1 个C.2 个D.3 个4. 如果两个平面分别经过两条平行线中的一条, 则 这两个平面的位置关系是________________.5. 若两个平面都平行于两条异面直线中的每一条, 则这两平面的位置关系是_______________.课后作业1. 如图 68,在几何体ABC A B C ¢¢¢ - 中, 1 Ð +2180 Ð= °, 34180 Ð+Ð= °,求证:平面ABC ∥ 平面A B C ¢¢¢.图 682. 如图 69,A ¢、B ¢、C ¢分别是 PBC D 、 PCA D 、 PAB D 的重心.求证:面A B C ¢¢¢∥ ABC 面 .图 69baF EM N BC ¢ ADCAD ¢。
高中数学必修1导学案§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1. 集合和元素(1)如果a 是集合A 的元素,就说a 属于集合A,记作a A ∈; (2)如果a 不是集合A 的元素,就说a 不属于集合A,记作a A ∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn 图.4.集合的分类:有限集;无限集;空集.5.常用数集及其记法:自然数集记作N ,正整数集记作*N 或N +,整数集记作Z ,有理数集记作Q ,实数集记作R .[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x +>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{},,M a b c =中的三个元素可构成某一个三角形的三边的长,那么此三角形一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值. 分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A.例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合(B )0与 {}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是 ()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B= .[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
中山市东升高中高一年级校本教材开发小组编印数学导学案2008~2009 学年第二学期模块: 必 修④章节: 第二章 平面向量班级: 姓名:中山市东升高中 高一数学◆必修4◆导学案 编写:王艳艳 校审:赵进1§2.1 平面向量的实际背景及基本概念⑴学习目标1. 通过对物理中有关概念的分析, 了解向量的实际 背景,进而深刻理解向量的概念;2. 掌握向量的几何表示;3. 理解向量的模、零向量与单位向量的概念.学习过程 一、课前准备(预习教材 82 P ~ 84P ,找出疑惑之处) 复习 1: 位置是日常生活中我们提到较多的一个词,在几何中常用点表示位置,研究如何用一点的位置 确定另外一点的位置,请同学们以学校(点 A )为 参照点,用图形确定出自己家的位置.复习 2:力是常见的物理量,重力、浮力、弹力等都是既有 又有 的量;而有一类量如长度、质量、面积、体积等,只有 没有 ,这类量我们称之为数量. 二、新课导学※ 学习探究新知 1:向量的概念数学中,我们把这种既有大小,又有方向的量叫做向量(vector ).数量和向量的异同点有哪些?试试 1:下列物理量:①质量;②速度;③位移; ④力;⑤加速度;⑥路程;⑦密度;⑧功. 其中不 是向量的有( ) A.1 个 B.2 个 C.3 个 D.4 个 由于实数与数轴上的点一一对应,所以数量常 常用数轴上的一个点表示,那么不同的点就表示不 同的数量.向量能不能用几何表示出来?如果能, 该 如何表示呢?新知 2:向量的表示法⑴我们常用带箭头的线段来表示向量,线段按一定比例画出,它的长短表示向量的大小,箭头的指向 表示向量的方向.如下图,在有向线段的终点处画上箭头表示它的方 向.⑵以A 为起点,B 为终点的有向线段记作ABuuu r(注:起点在前,终点在后). 已知AB uuu r ,线段AB的长度也叫做有向线段 AB uuu r 的长度,也称为模,记作 AB uuu r .有向线段包含三个要素:起点,方向,长度.⑶有向线段也可用字母如a r ,b r ,c r,L 表示. 反思:⑴“向量就是有向线段,有向线段就是向量” 的说法对吗?⑵为什么三要素中不包含终点?⑶数量能比较大小吗?向量呢?向量的模呢?新知 3:两个特殊的向量 零向量(zero vector ):长度为0的向量; 单位向量(unit vector):长度等于1的向量.平行向量(parallel vectors):方向相同或相反的非零向量. 若向量a r ,b r 平行,记作: // a b r r .规定: ①零向量与任一向量平行, 即对任意向量a r , 都有0//a r r.②零向量的方向不确定,是任意的.试试 2:下列说法中正确的有( )个⑴零向量是没有方向的向量;⑵零向量与任一向量平行;⑶零向量的方向是任意的;⑷零向量只能与零向量平行.A.0 个B.1 个C.2 个D.3 个 ※典型例题例 1 在如图所示的坐标纸中,用直尺和圆规画出下 列向量:⑴ 3 OA = uuu r,点A 在点O 的正北方向; ⑵ 22 OB = uuu r ,点B 在点O 南偏东60 o方向.2009年上学期◆高一 月 日 班级: 姓名: 第二章 平面向量2例 2 如下图,试根据图中的比例尺以及三地的位置,在图中分别用向量表示A 地至B 、C 两地的位移,并求出 A 地至B 、C 两地的实际距离.(精确 到1km ).※ 动手试试练 1. 画出有向线段,分别表示一个竖直向上、大 小为 2N 的力和一个水平向左、大小为 4N 的 力.(1cm 长表示1N ) 练 2. 某同学向北走了2km ,又向东走了1km ,则 该同学走过的路程是多少?位移的长度是多少? 并选择适当的比例尺,用向量表示这个人的位移.三、总结提升 ※ 学习小结1. 向量的相关概念;2. 向量的两种表示法;3. 两 个特殊的向量,尤其要注意零向量的方向. ※ 知识拓展向量又称为矢量,最初被应用于物理学.很多 物理量如力、速度、位移以及电场强度、磁感应强 度等都是向量.大约公元前 350年前,古希腊著名 学者亚里士多德就知道了力可以表示成向量,两个 力的组合作用可用著名的平行四边形法则来得 到. “向量”一词来自力学、解析几何中的有向线 段.最先使用有向线段表示向量的是英国大科学家 牛顿.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列各量中不是向量的是( ). A .浮力 B .风速 C .位移 D .密度 2. 下列说法正确的是( ).A .向量 AB uuu r 与向量BA uuu r的长度不等B .两个有共同起点长度相等的向量,则终点相同C .零向量没有方向D .任一向量与零向量平行3. 某人南行100 米,后向东行 100 米,则这时他位 移的方向是( ).A .东偏南30 oB .南偏东30oC .东偏南45 oD .南偏东25 o4. 物理中的作用力与反作用力 一对平行向 量.(是或不是)5. 已知腰为2, 底边为 3 的等边 ABC D ,则底边BC 上的中线向量AD uuu r 的模 AD uuu r为 .课后作业1. 某人从A 点出发向西走了200m 到达B 点,然后 改变方向向西偏北60 o走了400m 到达C 点,最后 又改变方向,向东走了200m 到达D 点,⑴作出向量AB uuu r 、BC uuu r 、CD uuu r(1cm 表示200m );⑵求DA uuu r的模.2. 在正方体 '''' ABCD A B C D - 中,与 AB uuu r 平行的向量有哪些?中山市东升高中 高一数学◆必修4◆导学案 编写:王艳艳 校审:赵进3§2.1 平面向量的实际背景及基本概念⑵学习目标在理解向量和平行向量的基础上掌握相等向 量和共线向量的概念.学习过程一、课前准备 (预习教材 84 P ~ 86 P ,找出疑惑之处)复习 1:向量是 的量; 数量是 的量; 有向线段是 的线段,它的三要素 是 , , ; 零向量是 的向量; 单位向量是 的向量; 平行向量是 的非零向量. 复习 2:下列说法中正确的有①向量可以比较大小;②零向量与任一向量平行; ③向量就是有向线段;④非零向量a r 的单位向量是 aarr .二、新课导学 ※ 学习探究新知 4:相等向量长度相等且方向相同的向量叫做相等向量 (equal vector ),如下图, 用有向线段表示的向量a r与b r 相等,记作:ab = r r .思考:任意两个相等的非零向量,是否可用同一条 有向线段来表示?与有向线段的起点有关吗?新知 5:平行向量和共线向量同学们知道,方向相同或相反的非零向量叫做平行向量. 如果a r 、b r 、c r是平行向量,则可记为 //// a b c r r r. 因为任一组平行向量都可以移动到同一 条直线上, 因此, 平行向量也叫做共线向量(collinear vectors).试试:下列说法中正确的是①若 // a b r r ,则a b = r r ;②若 a b = r r ,则a b = r r; ③若 a b = r r ,则 // a b rr; ④若a b = r r ,则 a b = r r . ※ 典型例题例 1 如下图,设O 是正六边形ABCDEF 的中心,分别写出图中与OD uuu r ,OE uuu r ,OF uuu r 相等的向量.变式:与AB uuu r相等的向量有哪些?例 2 如下图所示,D 、E 、F 分别是正 ABC D 的 各边中点,则在以 A 、B 、C 、D 、E 、F 六个 点中任意两点为起点与终点的向量中,找出与向量 DE uuu r平行的向量.注意:共线向量的端点不一定共线,注意向量的可以平行移动性. ABCEFD2009年上学期◆高一 月 日 班级: 姓名: 第二章 平面向量4※ 动手试试练 1. 在四边形ABCD 中,AB DC = uuu r uuu r,则相等的向量是( ) . A. AD uuu r 与CB uuu r C. AC uuu r 与BD uuu r B.OB uuu r 与OD uuu r D.AO uuu r 与OC uuu r 练 2. 判断下列说法的正误:①向量的模是一个正实数; ②若两个向量平行,则两个向量相等;③若两个单位向量互相平行,则这两个单位向量相 等; ④温度有零上和零下温度,所以温度是向量; ⑤物理中的作用力与反作用力是一对共线向量;三、总结提升 ※ 学习小结①相等向量的概念;②平行向量也称为共线向量.※ 知识拓展本章中所提到的向量都是自由向量,所谓自由 向量就是在不改变长度和方向的前提下,向量可以 在空间自由移动,所以在此基础上理解共线向量就 是平行向量概念较容易.学习评价 ※ 自我评价 你完成本节导学案的情况为 ( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列命题中,正确的是( ).A. a b = r r Þ a b = r rB. a b > r r Þ a b> r r C.a b = r r Þ // a b r r D. 0 a = r Þ 0 a = r2. 若 AB AD = uuu r uuu r , 且BA CD = uuu r uuu r , 则四边形ABCD 的形状为( ).A.平行四边形B.菱形C.矩形D.等腰梯形3. 一木块放在桌面上,木块所受重力为G ,桌面所 受压力为 1 G ,则G 与 1 G 之间的关系为( ). A.大小不等,方向相同 B.大小相等,方向不同 C.大小相等,方向相同 D.大小不等,方向不同4. B 、C 是线段AD 的三等分点,分别以图中各点 为起点和终点,最多可以写出 个互不相同的 向量.5. 下列命题中,说法正确的有①若a b = r r ,b c = r r ,则a c = r r ;②若 // a b r r , // b c r r ,则 // a c r r ;③若 a b = r r ,则 a b = r r 或 a b =- r r;④若 AB DC = uuu r uuu r ,则 A ,B ,C ,D 是一个平行四边形的四个顶点. 课后作业1. 四边形ABCD 和 ABDE 都是平行四边形.⑴与向量ED uuu r相等的向量有哪些?⑵若 3 AB = uuu r ,则向量EC uuu r的模等于多少?2. 一位模型赛车手遥控一辆赛车向正东方向前进 1m ,逆时针方向转变a 度,继续按直线向前行进1m ,再逆时针方向转变a 度, 按直线向前行进1m , 按此方向继续操作下去. ⑴按1:100比例作图说明当 45 a = o时,操作几次时 赛车的位移为零?⑵按此法操作使赛车能回到出发点,a 应满足什么条件?请写出其中两个. A B C D OABCD E ABCD中山市东升高中 高一数学◆必修4◆导学案 编写:王艳艳 校审:赵进5§2.2.1 向量的加法运算及其几何意义学习目标1. 掌握向量加法的概念, 结合物理学中的相关知识 理解向量加法的意义;2. 熟练掌握向量加法的三角形法则和平行四边形法则; 3. 理解向量加法的运算律.学习过程(预习教材 89 P ~ 94 P ,找出疑惑之处) 一、课前准备复习 1:下列说法正确的有①向量可以用有向线段来表示;②两个有共同起点且长度相等的向量,其终点必相 同;③两个有共同终点的向量,一定是共线向量;④向量AB uuu r 与向量CD uuu r是共线向量, 则点 A , B , C , D 必在同一条直线上;⑤若 AB DC = uuu r uuu r,则 A ,B ,C ,D 是一个平行四边形的四个顶点.复习 2:周三大清洁时,两个同学抬着回收箱去卖 废品,请同学们做出回收箱的受力图,并思考拉力 和重力满足什么条件便可将回收箱抬起.二、新课导学 ※ 学习探究问题:在复习 2 中回收箱所受的重力与两个同学拉力的合力有什么关系呢?数的加法启示我们,从运算的角度看,重力和 拉力的合力是一对大小相等,方向相反的力.如图,已知非零向量a r 、b r,在平面内任取一 点 A ,做AB a = uuu rr ,BC b = uuu r r ,则向量AC uuu r 叫做a r 与br 的和,记作:a b + r r ,即a b AB BC AC +=+= r r uuu r uuu r uuu r.新知 1:求两个向量和的运算,叫做向量的加法.这 种求向量和的方法,称为向量加法的三角形法则.自学90 P 的向量加法的平行四边形法则,想想两个 法则有没有共通的地方? 规定:零向量与向量a r 的加法: 00 a a a +=+= r r r r r※ 典型例题例 1 已知向量a r 、b r ,求作向量a b + r r.小结 1: 在使用三角形法则特别要注意 “首尾相接” , 即第二个向量的起点与第一个向量的终点重合.变式:当在数轴上表示两个共线向量时,它们的加 法与数的加法有什么关系? 小结 2:当a r ,b r不共线时, a b a b +<+ r r r r ;当a r ,b r同向时, a b a b +=+ r r r r ;当a r ,b r反向时, a b a b +=- r r r r (或 b a - r r ).思考:数的运算律有哪些?类似的,向量的加法是否也有运算律呢?新知 2:向量加法的交换律和结合律: a b b a +=+ r r r r ;( ) ( )a b c a b c ++=++ r r r r r r例 2 一架飞机向北飞行 400km , 然后改变方向向东 飞行 300km , 求飞机飞行的路程及两次位移的合成.2009年上学期◆高一 月 日 班级: 姓名: 第二章 平面向量6※ 动手试试练 1. 如图,已知a r 、b r,用向量加法的三角形法则和平行四边形法则做出a b+ r r.练 2. 在静水中划船速度是每分钟 20m ,水流速度 是每分钟 20m ,如果船从岸边出发径直沿垂直于水 流方向行走,那么船实际行进速度应是多少?实际 行进方向与水流方向的夹角为多少?三、总结提升 ※ 学习小结1. 向量求和的三角形法则和平行四边形法则;2. 向量加法满足的两个运算律:交换律和结合律.※ 知识拓展向量在引入运算之后,向量的工具作用才能得 到充分发挥. 实际上,引入一个新的量后,考察它 的运算及运算律是数学研究的基本问题. 另外,向 量的线性运算的另一个特点是它有深刻的物理背 景和几何意义,因此在引入一种运算后,总是要考 察一下它的几何意义,也使得向量在解决几何问题 时可以发挥很好的作用.学习评价※ 自我评价 你完成本节导学案的情况为 ( ) . A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 平行四边形 ABCD 中, AB a = uuu r r , AD b = uuu r r ,则 AC BA + uuu r uu u r等于( ).A.a rB.b rC.0 rD.a b + r r 2. 下列等式不正确的是( ). A. 0 a a += r r r B.a b b a +=+ r r r r C. ( ) ( )a b c a b c ++¹++ r r r r r r D. AC DC AB BD=++ uuu r uuu r uuu r uuu r 3.在 ABCD Y 中,BC DC BA ++ uuu r uuur uu u r等于( ).A.BC uuu rB.DA uuu rC.AB uuu rD.AC uuu r4. AB BC CD ++ uuu r uuu r uuu r = ; OA OC BO CO +++ uuu r uuu r uuu r uuu r = .5. 已知向量 a r 、 b r 满足 a b b += r r r且 1 b = r ,则a ab ++ r r r=. 课后作业1. 已知正六边形 ABCDEF ,O 是它的中心,若 BA a = uuu r r ,BC b = uuu r r ,试用a r 、b r 表示向量OE uuu r .2. 在菱形 ABCD 中, 60 DAB Ð= o , 1 AB = uuu r,求 BC DC + uuu r uuu r的值.a rbr中山市东升高中 高一数学◆必修4◆导学案 编写:王艳艳 校审:赵进7§2.2.2 向量的减法运算及其几何意义学习目标1. 通过实例,掌握向量减法的运算,并理解其几何 意义;2. 能运用向量减法的几何意义解决一些问题. 学习过程(预习教材 94 P ~ 96 P ,找出疑惑之处) 一、课前准备复习:⑴设AB a = uuu r r ,BC b = uuu r r ,则 叫做a r与 b r的和,记作 . ⑵a + r =0+ r =a r ⑶向量加法运算的交换律: ; 结合律 . ⑷求作两个向量和的方法有 法则和法则.二、新课导学 ※ 学习探究问题: 我们知道,在数的运算中,减去一个数等 于加上这个数的相反数,向量的减法是否也有类似 的法则?如何理解向量的减法呢?规定 1: 与a r 长度相等, 方向相反的向量, 叫做a r的相反向量,记作 a - r.由于方向反转两次仍然回到原来的方向,因此a r 和 a - r 互为相反向量,即 ( )a a =-- r r .规定 1:零向量的相反向量仍是零向量. 思考:任一向量a r 与其相反向量 a - r的和是什么?如果a r 、b r 是互为相反的向量, 那么a = r , b = r ,a b += r r .请同学们利用相反向量的概念, 思考 ( )a b+- r r的作图方法.如下图,已知a r 、b r,在平面内任取一点O , 做OA a = uuu r r ,OB b = uuu r r ,则BA a b =- uuu r r r . 即a b - r r可以表示为从向量b r的终点指向向量a r的终点的向量, 这就是向量减法的几何意义.以上做法称为向量减法的三角形法则,可以 归纳为“起点相接,连接两向量的终点,箭头指向 被减数”.※ 典型例题例 1 如下图,已知向量a r 、b r 、c r 、d u r ,求作向量a b - r r ,c d - r u r .变式:作出向量a b c d +-- r r r u r.例 2 在 ABC V 中,O 是重心,D 、E 、F 分别是BC 、 AC 、AB 的中点,化简下列两式: ⑴CB CE BA -+ uuu r uuu r uuu r ;⑵OE OA EA -+ uuu r uuu r uuu r.变式:化简AB FE DC ++ uuu r uuu r uuu r.2009年上学期◆高一 月 日 班级: 姓名: 第二章 平面向量8※ 动手试试练 1. 已知a r 、b r ,求作a b - r r.练 2. 设AB a = uuu r r ,AD b = uuu r r ,BC c = uuu r r ,试用 ,, a b c r r r 表示DC uuur .三、总结提升※ 学习小结1. 相反向量的概念;2. 向量减法的三角形法则,要注意“起点相接,连 接两向量的终点,箭头指向被减数”. ※ 知识拓展以向量 AB a = uuu r r 、 AD b = uuu r r为邻边作平行四边形ABCD,则两条对角线的向量为 AC a b =+ uuu r r r, BD b a =- uuu r r r ,DB a b =- uuu r r r,这一结论在以后应用还 是非常广泛的,应该加强理解并记住.学习评价※ 自我评价 你完成本节导学案的情况为 ( ) . A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列等式中正确的个数是( ).①a o a -= r r r ;②b a a b +=+ r r r r;③ ( )a a --= r r ; ④ ( ) 0 a a +-= r r ;⑤ ( )a b a b+-=- r r r r A.2 B.3 C.4 D.52. 在 ABC V 中,, BC a CA b == uuu r r uuu r r , 则 AB uuu r等于 ( ) . A.a b + r r B. ( )a b -+- r r C.a b - r r D. a b-+ r r3. 化简OP QP PS SP -++ uuu r uuu r uuu r uur的结果等于( ).A.QP uuu rB.OQ uuu rC.SP uurD.SQuuu r 4. 在正六边形 ABCDEF 中,AE m = uuu r u r , AD n = uuu r r, 则BA uuu r= .5. 已知a r 、b r 是非零向量,则 a b a b -=+ r r r r 时, 应满足条件 .课后作业1. 化简下列各式:①AB AC DB -- uuu r uuu r uuu r ; ②AB BC AD DB +-- uuu r uuu r uuu r uuu r .2. 已知O 是 ABCD Y 的对角线AC 与BD 的交点, 若 AB a = uuu r r ,BC b = uuu r r ,OD c = uuu r r,试证明:c a b OB +-= r r r uuu r.中山市东升高中 高一数学◆必修4◆导学案 编写:王艳艳 校审:赵进9§2.2.3 向量数乘运算及其几何意义⑴学习目标1. 掌握向量数乘运算,并理解其几何意义;2. 理解两个向量共线的含义;3. 掌握向量的线性运算性质及其几何意义.学习过程一、课前准备 复习: ⑴向量a r 的相反向量是指与a r的向量, 记作 . 零向量的相反向量是 .⑵ ( )a -- r = , ( )a a +- r r = .⑶若a b =- r r ,则a r 、b r 是 ,且a b + r r = .⑷向量a r 加上b r的相反向量,叫做 ,即:a b a -=+ r r r .二、新课导学 ※ 学习探究问题:已知非零向量a r,作出:①a a a ++ r r r;②( ) ( ) ( )a a a -+-+- r r r .通过图形,同学们能否说明它们的几何意义?新知:我们规定实数l 与向量a r的积是一个向量, 这种运算叫做向量的数乘(multiplication of vectorby scalar ),记作: a l r,它的长度和方向规定如下:⑴ a a l l = r r ;⑵当 0 l > 时, a l r 的方向与a r的方向相同;当 0 l < 时, a l r 的方向与a r的方向相反. 思考:当 0 l = 时, a l r的值是一个向量还是一个实 数?根据实数与向量的积的定义,我们有以下的运 算律:⑴ ( )( ) a a l m lm = r r ; ⑵( )a a a l m l m +=+ r r r ;⑶ ( )a b a b l l l +=+ r r r r .根据以上的运算律,填空: ⑴( )a l -=- r=l ;⑵ ( )a b l -= r r - .※ 典型例题 例 1 计算:⑴( ) 76a -´ r; ⑵ () ( )438 a b a b a +--- r r r r r ; ⑶() ()54232 a b c a b c -+--+ r r r r r r. 思考:引入向量数乘运算后,你能发现数乘向量与 原向量之间的位置关系吗?新知:向量 ( )0 a a ¹ r r r 与b r共线,当且仅当有唯一一个实数l ,使b a l = r r.例 2 已知两个两个向量 1 e u r 和 2 e u u r不共线 , 12 AB e e =- uuu r u r u u r , 12 28 BC e e =- uuu r u r u u r , 12 33 CD e e =+ uuu r u r u u r ,求 证:A 、B 、D 三点共线.变式 : 在四边形 ABCD 中 , 2 AB a b =+ uuu r r r,4 BC a b =-- uuu r r r , 53 CD a b =-- uuu r r r,证明: ABCD 是梯形.ar2009年上学期◆高一 月 日 班级: 姓名: 第二章 平面向量※ 动手试试 练 1. 计算:⑴ () () ( )64222 a b c a b c b c -+--+--+ r r r r r r r r ;⑵( )( ) ( )( )m n a b m n a b +--++ r r r r.练 2. 已知向量 a r , b r 不共线,问 2 c a b =- r r r与 32 d a b =- u r r r 是否共线?三、总结提升※ 学习小结1. 向量数乘的定义;2. 实数与向量的积满足的运算律;3. 两向量共线所满足的条件.※ 知识拓展1.实数与向量的积的特殊情况:当 0 l = 时, 0 a l = r r ;而 0 l ¹ ,若 0 a = r r 时,也有 0 a l = r r .2.实数与向量可以求积,但是不能进行加减运算,比如 a l + r , a l - r无法运算.3.数乘向量还是一个向量.学习评价※ 自我评价 你完成本节导学案的情况为 ( ) . A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列各式中不表示向量的是( )A.0 a × rB. 3 a b+ r r C. 3a r D. 1 e x y- r ( , x y R Î ,且x y ¹ )2. 在 ABC D 中,E 、F 分别是AB 、 AC 的中点,若 AB a = uuu r r ,AC b = uuu r r,则EF uuu r 等于( )A. ( ) 1 2 a b + r rB. ( )1 2 a b - r r C. ( ) 1 2 b a - r r D. ( )1 2 a b-+ r r 3. 12 2 a e e =+ r u r u u r , 12 34 b e e =- r u r u u r ,且 1 e u r 、 2 e u u r共线,则 a r 与b r( ) A.共线 B.不共线 C.不确定 D.可能共线也可能不共线4. 若 3 a = r ,b r 与a r的方向相反,且 5 b = r ,则 a r = b r .5. 已知 12 2 a e e =- r u r u u r , 12 2 b e e =+ r u r u u r , 12 62 c e e =- r u r u u r, 则a b + r r 与c r (填共线、不共线).课后作业1. 已知 ABCD 的三边BC a = uuu r r ,CA b = uuu r r , AB c = uuu r r, 三边中点分别为D 、E 、F ,求证: 0 AD BE CF ++= uuu r uuu r uuu r r.2. 用向量的方法证明: 对角线互相平分的四边形是 平行四边形.中山市东升高中 高一数学◆必修4◆导学案编写:王艳艳 校审:赵进§2.2.3 向量数乘运算及其几何意义⑵学习目标1. 掌握向量数乘运算,并理解其几何意义;2. 理解两个向量共线的含义;3. 掌握向量的线性运算性质及其几何意义.学习过程一、课前准备复习: ⑴实数l 与向量a r的积是一个 , 记作 .⑵ R l Î , a l r= .⑶当 0 l > 时, a l r 的方向与a r的方向 ;当 0 l < 时, a l r 的方向与a r的方向 ;当 0 l = 时, a l r= ;⑷ , R l m Î , ( )a l m r= ;( )a l m + r=; ( )a b l + r r = .⑸判断正误:向量b r 与向量a r共线,当且仅当只有一个实数l ,使得b a l = r r.二、新课导学 ※ 学习探究新知:向量的加、减、数乘运算统称为向量的线性运算. 对于任意向量a r 、b r,以及任意实数l 、 1 m 、2 m ,恒有 ( )1212 a b a b l m m lm lm+=± r r r r. 请同学们解释它的几何意义.※ 典型例题例 3 如图,平行四边形ABCD 的两条对角线相交于点M ,且 AB a = uuu r r ,AD b = uuu r r ,你能用a r 、b r表示 AM uuuu r 、BM uuuu r 、CM uuuu r 、DM uuuur 吗?变式:若O 为平行四边形的中心, 1 4 AB e = uuu r u r, 2 6 BC e = uuu r u u r ,则 21 32 e e - 等于多少?例 4 已知任意四边形ABCD ,E 为 AD 的中点,F为BC 的中点,求证:EF EF AB DC +=+ uuu r uuu r uuu r uuu r.2009年上学期◆高一 月 日 班级: 姓名: 第二章 平面向量※ 动手试试 练 1.已知四边形 ABCD 是等腰梯形,E 、F 分别是腰AD 、BC 的中点,M 、N 是线段EF 上的两个点,且EM MN NF == ,下底是上底的 2 倍,若AB a = uuu r r ,BC b = uuu r r ,求AM uuuu r .练 2. ABC V 中, 1 3AD AB = uuu r uuu r , // DE BC ,且与边 AC 相交于点E , ABC D 的中线AM 与DE 相交于 点N .设AB a = uuu r r ,AC b = uuu r r ,用a r 、b r分别表示向量 ,,,,, AE CB DE CE DN NA uuu r uuu r uuu r uuu r uuur uuu r . 三、总结提升※ 学习小结1. 进一步理解向量数乘的定义;2. 熟练应用实数与向量的积满足的运算律计算;3. 应用两向量共线所满足的条件解决几个点共线 的问题. ※ 知识拓展 ⑴要证明向量a r 、b r共线,只需证明存在实数 l ,使得b a l = r r即可.⑵如果 0 a b == r r r,数l 依然存在,此时l 并不 唯一,是任意数值.⑶要特别注意向量共线定理中的向量 a r必须 是非零向量.学习评价 ※ 自我评价 你完成本节导学案的情况为 ( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列各式计算正确的是( )A. ( ) 22 a b c a b c++=++ r r r r r r B. ( ) ()330 a b a b ++-= r r r r r C. 2 AB BA AB += uuu r uuu r uuu r D. 3544 a b a b a b++-=- r r r r r r 2. 下列向量a r 、b r共线的有( )① 12 2, a e b e ==- r u r r u u r ;② 1212 ,22 a e e b e e =-=-+ r u r u u r r u r u u r ; ③ 1212 21 4, 510a e eb e e =-=- r u r u u r r u r u u r ;④ 1212 ,22 a e e b e e =+=- r u r u u r r u r u u r ( 12 , e e u r u u r 不共线) A.②③ B.②③④ C.①③④ D.①②③④3. 若 8,5 AB AC == uuu r uuu r ,则 BC uuu r 的取值范围是 ( ) A.[ ] 3,8 B.( ) 3,8 C.[ ] 3,13 D.( ) 3,13 4. ( )2 a a b a éù --- ëû r r r r = ; 322 a b c b -+-=- r r r r . 5. 设 12 , e e u r u u r 是两个不共线向量, 若向量 12b e e l =+ r u r u u r , 与向量 12 2 a e e =- r u r u u r共线,则实数l 的值为 .课后作业1. 化简:① ( ) ( )1 228442 12a b a b éù +-- ëû r r r r ;② ( ) ( )11 4346 32a b c a b c éùéù-+--- ëûëû r r r r r r 2. 在平行四边形 ABCD 中,点M 是 AB 的中点,点N 在BD 上,且 13 BN BD = ,求证:M 、N 、C三点共线.中山市东升高中 高一数学◆必修4◆导学案 编写:王艳艳 校审:赵进§2.3.1 平面向量基本定理§2.3.2 平面向量正交分解及坐标表示学习目标1. 掌握平面向量基本定理;2. 了解平面向量基本定理的意义;3. 掌握平面向量的正交分解及其坐标表示. 学习过程 一、课前准备 复习 1: 向量b r 、 ( )0 a a ¹ r r r 是共线的两个向量, 则a r 、 b r之间的关系可以表示为 .复习 2:给定平面内任意两个向量1 e u r 、2 e u u r,请同学们作出向量 12 32 e e + u r u u r 、 12 2 e e - u r u u r .二、新课导学※ 学习探究问题:在复习 2 中,请大家想一想,平面内的任一向量是否都可以用形如 1122 e e l l + u r uur 的向量表示呢? 如下图,设 1 e u r 、 2 e u u r 是同一平面内两个不共线的 向量,a r 是这一平面内的任一向量,通过作图,发 现任一向量a r都可以表示成 1122e e l l + u r u u r . 新知 1:平面向量基本定理平面向量基本定理: 如果 1 e u r 、 2 eu u r是同一平面内 两个不共线的向量,那么对于这一平面内的任意向量a r, 有且只有一对实数 1 l 、 2 l , 使 1122 a e e l l =+ r u r u u r . 其中,我们把不共线的向量 1 e u r 、 2 e u u r 叫做表示这一平面内所有向量的一组基底(base). 理解此定理要注意:① 1 e u r 、 2 eu u r是同一平面内两 个不共线的向量;②该平面内的任意向量a r都可以 用 1 e u r 、 2 eu u r 线性表示,且这种表示是唯一的;③对于 基底的选取不唯一,只要是同一平面内的两个不共 线向量都可以作为基底.思考:如果两个向量不共线,则它们的位置关系我 们怎么表示呢?新知 2:两向量的夹角与垂直如图,已知两个非零向量a r和 b r . 作 OA a = uuu r r , OB b = uuu r r,则 ( ) 0180 AOB q q Ð=££ o o 叫做向量a r 与b r的夹角.特别地,⑴当 0 q = o 时,a r 与b r 同向;⑵当 180 q = o时,a r 与b r 反向; ⑶当 90 q = o 时,a r 与b r 垂直,记作:a b ^ r r .在不共线的两个向量中, 90 q = o ,即两向量垂直是一种重要的情形,把一个向量分解成两个互相 垂直的向量,叫做把向量正交分解.例如把图中木 块所受的重力分解为向 下的力 1 F 和对斜面的压 力 2 F .思考:平面直角坐标系中的每一个点都可以用一对 有序实数(即它的坐标)表示. 对于直角坐标平面 内的每一个向量,如何表示呢?新知 3:向量的坐标表示如图, 根据平面向量基本定理,有且只有一对实数x 、 y 使得a xi y j =+ r r r, 我们把有 序数对( ) , x y 叫做向量 a r 的坐标,记作: ( ) , a x y = r ,其中x 叫做a r在x 轴上的坐标,y 叫做a r在 y 轴上的坐标.注意:符号( ) , x y 在平面直角坐标系中有了双重意义,它既可以表示一个固定的点,又可以表示一个 向量,为了加以区别,在叙述中,常说点( ) , x y ,或向量( ) , x y . ※ 典型例题 例1 已知梯形ABCD 中, // AB DC , 且 2ABCD = , E 、F 分别是DC 、AB 的中点, 设AD a = uuu r r ,AB b = uuu r r 试用 , a b r r 为基底表示DC uuur 、BC uuu r .2009年上学期◆高一 月 日 班级: 姓名: 第二章 平面向量例 2 已知 O 是坐标原点,点 A 在第一象限, 43 OA = uuu r , 60 xOA Ð= o ,求向量OA uuu r 的坐标.※ 动手试试练 1. 在矩形 ABCD 中, AC 与BD 交于点O ,若 1 5 BC e = uuu r u r , 2 3 DC e = uuu r u u r ,则OC uuu r 等于多少?练 2. 若 0 a ¹ r r , 且 0 b ¹ r r , 且 a b a b ==- r r r r , 求a r 与 a b + r r的夹角.三、总结提升 ※ 学习小结1. 平面向量基本定理;2. 两向量的夹角与垂直;3. 平面向量的坐标表示.※ 知识拓展在解具体问题时,要适当地选取基底,但其他 向量能够用基底来表示,选择了不共线的两个向量 1 e u r 、 2 e u u r , 平面上的任何一个向量a r 都可以用 1 e u r 、 2 e u u r 唯一表示为 1122 a e e l l =+ r u r u u r , 这样几何问题就转化为代数问题,转化为只含有 1 e u r 、 2 e u u r的代数运算.学习评价※ 自我评价 你完成本节导学案的情况为 ( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 设O 是平行四边形 ABCD 两对角线 AC 与BD 的交点,下列向量组,其中可作为这个平行四边形 所在平面表示所有向量的基底是( ) ① AD uuu r 与 AB uuu r ②DA uuu r 与BC uuu r ③CA uuu r 与DC uuur ④OD uuu r 与OB uuu r A.①② B.③④ C.①③ D.①④2. 已知向量 1 e u r 、 2 e u u r不共线,实数 x 、 y 满足( ) ( ) 1212 342363 x y e x y e e e-+-=+ u r u u r u r u u r,则x y - 的值 等于( )A.3B. 3- C.0 D.2 3. 若O 、A 、B 为平面上三点,C 为线段AB 的中 点,则( )A.OC OA OB =+ uuu r uuu r uuu rB. ( )1 2 OC OA OB=+ uuu r uuu r uuu r C. 2 AB OC = uuu r uuu rD. ( )1 2OC OA OB=- uuu r uuu r uuu r 4. 若a r 、b r不共线,且 ( ) 0, a b R l m l m +=Î r r r ,则l = ,m =. 5. 已知两向量 1 e u r 、 2 e u u r 不共线, 12 2 a e e =+ r u r u u r, 12 32 b e e l =- r u r u u r ,若a r 与b r 共线,则实数l = .课后作业1. 已知向量 12 23 a e e =- r u r u u r , 12 23 b e e =+ r u r u u r ,其中 1 e u r 、 2 e u u r 不共线,向量 12 29 c e e =- u r u u r ,问是否存在这样的实数l 、m ,使d a b l m =+ u r r r 与c r共线?2. 设OA uuu r 、OB uuu r不共线,点P 在O 、A 、B 所在的平面内, 且 ( ) ( ) 1 OP t OA tOB t R =-+Î uuu r uuu r uuu r, 求证:A 、B 、P 三点共线.。
最新人教版高一数学必修一导学案(全册)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§1.1 集合的含义及其表示(1)【教学目标】1.初步理解集合的概念,知道常用数集的概念及其记法.2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈. 3.能根据集合中元素的特点,使用适当的方法和准确的语言将其表示出来,并从中体会到用数学抽象符号刻画客观事物的优越性.【考纲要求】1.知道常用数集的概念及其记法.2.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈.【课前导学】1.集合的含义:构成一个集合.(1)集合中的元素及其表示: .(2)集合中的元素的特性: .(3)元素与集合的关系:(i)如果a是集合A的元素,就记作__________读作“___________________”;(ii)如果a不是集合A的元素,就记作______或______读作“_______________”.【思考】构成集合的元素是不是只能是数或点?【答】2.常用数集及其记法:一般地,自然数集记作____________,正整数集记作__________或___________,整数集记作________,有理数记作_______,实数集记作________.3.集合的分类:按它的元素个数多少来分:(1)________________________叫做有限集;(2)___________________ _____叫做无限集;(3)______________ _叫做空集,记为_____________4.集合的表示方法:(1)______ __________________叫做列举法;(2)________________ ________叫做描述法.(3)______ _________叫做文氏图【例题讲解】例1、下列每组对象能否构成一个集合?(1)高一年级所有高个子的学生;(2)平面上到原点的距离等于2的点的全体;- 2 -- 3 -(3)所有正三角形的全体; (4)方程22x =的实数解;(5)不等式12x +≥的所有实数解.例2、用适当的方法表示下列集合①由所有大于10且小于20的整数组成的集合记作A ; ②直线y x =上点的集合记作B ; ③不等式453x -<的解组成的集合记作C ;④方程组20x y x y +=⎧⎨-=⎩的解组成的集合记作D ;⑤第一象限的点组成的集合记作E ;⑥坐标轴上的点的集合记作F .例3、已知集合{}2|210,A x ax x x R =-+=∈,若A 中至多只有一个元素,求实数a 的取值范围.【课堂检测】1.下列对象组成的集体:①不超过45的正整数;②鲜艳的颜色;③中国的大城市;④绝对值最小的实数;⑤高一(2)班中考500分以上的学生,其中为集合的是____________2.已知2a ∈A ,a 2-a ∈A ,若A 含2个元素,则下列说法中正确的是 ①a 取全体实数; ②a 取除去0以外的所有实数;③a 取除去3以外的所有实数;④a 取除去0和3以外的所有实数3.已知集合{0,1,2}A x =+,则满足条件的实数x 组成的集合B =- 4 -【教学反思】§1.1 集合的含义及其表示(2)【教学目标】1.进一步加深对集合的概念理解;2.认真理解集合中元素的特性;3. 熟练掌握集合的表示方法,逐渐培养使用数学符号的规范性.【考纲要求】3.知道常用数集的概念及其记法.4.理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈.【课前导学】1.集合()(){}3,2,1,0=A ,则集合A 中的元素有 个.2.若集合{}|0,x ax x R =∈为无限集,则a = .3. 已知x 2∈{1,0,x },则实数x 的值 .4. 集合12|,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A = . 【例题讲解】例1、 观察下面三个集合,它们表示的意义是否相同?(1){}2|1A x y x ==+(2){}2|1B y y x ==+(3){}2(,)|1C x y y x ==+- 5 -例2、含有三个实数的集合可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,求20112011a b +.例3、已知集合{}222,(1),33A a a a a =++++,若1A ∈,求a 的值.【课堂检测】1. 用适当符号填空:(1){}2|,1_____A x x x A ==- (2){}2|60,3____B x x x B =+-=(){}C R x x x C ___52,,22|3∈≤=2.设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -= . 3.将下列集合用列举法表示出来:(){};6|1N m N m m A ∈-∈=且 ()⎭⎬⎫⎩⎨⎧∈∈-=N x N x x B ,99|2- 6 -【教学反思】§1.2 子集·全集·补集(1)【教学目标】1.理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系;2.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点.【考纲要求】1.能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集.2.清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.【课前导学】1.子集的概念及记法:如果集合A 的任意一个元素都是集合B 的元素( ),则称 集合 A 为集合B 的子集,记为_________或_________读作“_________”或“______________”用符号语言可表示为:________________ ,如右图所示:________________.2.子集的性质:① A A ② ____A ∅ ③ ,A B B C ⊆⊆,则___A C【思考】:A B ⊆与B A ⊆能否同时成立?【答】3.真子集的概念及记法:如果A B⊆,并且A B≠,这时集合A称为集合B的真子集,记为_________或_________读作“____________________”或“__________________”4.真子集的性质:①∅是任何的真子集符号表示为___________________②真子集具备传递性符号表示为___________________【例题讲解】例1、下列说法正确的是_________(1)若集合A是集合B的子集,则A中的元素都属于B;(2)若集合A不是集合B的子集,则A中的元素都不属于B;(3)若集合A是集合B的子集,则B中一定有不属于A的元素;(4)空集没有子集.例2.以下六个关系,其中正确的是_________(1){}∅≠(6)∅⊆(4)0∉∅(5){0}∅⊆∅;(2){}∅∈∅(3){0}∅=∅{}例3.(1)写出集合{a,b}的所有子集,并指出子集的个数;(2)写出集合{a,b,c}的所有子集,并指出子集的个数.- 7 -- 8 -【思考】含有n 个不同元素的集合有 个子集,有 个真子集,有 个非空真子集.例4.集合{|1}A x x =>,集合{|}B x x a =>.(1) 若A B ⊆,求a 的取值范围;(2)若A B ≠⊂,求a 的取值范围.【课堂检测】1.下列关系一定成立的是________(){}13|10x x ≠⊂≤ ()2{1,2}{2,1}⊆ ()(){}(){}3|,2,13=+∈y x y x 2.集合{},0)2)(1(|=--=x x x x A 则集合A 的非空子集有 个.3.若{}{}{},,16|,,23|,,13|Z n n c c C Z n n b b B Z n n a a A ∈+==∈-==∈+==则集合A,B,C 的包含关系为 .【教学反思】§1.2 子集·全集·补集(2)【教学目标】1.理解全集、补集概念,会进行简单集合的运算;2.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点.- 9 -【考纲要求】1. 理解全集、补集概念,会进行简单集合的运算;2. 通过概念教学,提高学生逻辑思维能力.【课前导学】1.全集的概念:如果集合U 包含我们所要研究的各个集合,这时U 可以看做一个全集.全集通常记作_____2.补集的概念:设____________,由U 中不属于A 的所有元素组成的集合称为U 的子集A 的补集, 记为_____读作“__________________________”即:U C A =_______________________U C A 可用右图阴影部分来表示:_______________________3.补集的性质:① U C ∅=__________________② U C U =__________________③ ()U U C C A =______________【例题讲解】例1已知全集2{2,3,23},{|21|,2},{5}U U a a A a C A =+-=-=,求实数a 的值.例2设,{|16},{|22}U R A x x B x a x a ==-≤≤=+≤≤,若U B C A ⊆,求实数a 的取值范围.- 10 - 例3若方程20x x a ++=至少有一个非负实数根,求a 的取值范围.【课堂检测】1.全集{}{}1,2,3,4,5,1,5,,U U A B C A ≠==⊂则集合B 有 个. 2.全集{},321,23|,-=>==a x x A R U 则下面正确的有()1U a C A ≠⊂ ()2U a C A ∈ (){}3a A ∈ (){}4U a C A ≠⊂ 3.(1)已知全集{},3|-≥=x x U 集合{},1|>=x x A 则U C A = .(2)设全集{},|31,,U Z A x x k k Z ===±∈则U C A 为 .【教学反思】§1.3 交集·并集(1)【教学目标】1.理解交集和并集的概念,会求两个集合的交集和并集;2.提高学生的逻辑思维能力,培养学生数形结合的能力;3.渗透由具体到抽象的过程;【考纲要求】交集和并集的概念、符号之间的区别与联系.【课前导学】1.交集: 叫做A 与B 的交集.记作 ,即: .2.并集: 叫做A 与B 的并集,记作 ,即: .3.设集合{}{},,3|,,2|N n n x x B N n n x x A ∈==∈==则________=⋂B A4.设{}{}{},3,3,1,13,2,12=⋂-=--=P M P m m M 则m 的值为 . 【例题讲解】例1.设{1,0,1},{0,1,2,3},A B =-=求A B 及A B .例2.设22{|20},{|6(2)50},A x x px q B x x p x q =-+==++++=若1{}2A B =,求A B .例3. 设集合{24},{}A x x B x x a =-≤≤=<.(1)若A B B =,求a 的取值范围;(2)若A B =∅,求a 的取值范围.【课堂检测】1.设集合{}{}{},4,3,2,3,2,1,2,1===C B A 则()__________.A B C = 2.若集合{}{}|23,|23,S x x x T x x =≤≥=≤≤或则_________S T =.3.设集合{}21,|0 2.5,|,32U R A x x B x x x ⎧⎫==<<=≥≤-⎨⎬⎩⎭或则()()U U C A C B = . 4.已知{}{},1,1,3,3,1,122+--=-+-=a a a B a a A 则{}2,______A B a =-=则.【教学反思】§1.3 交集·并集(2)【教学目标】、(1)掌握集合交集及并集有关性质;运用性质解决一些简单问题;(2)掌握集合的有关术语和符号;使学生树立创新意识.【考纲要求】集合的交、并运算及正确地表示一些简单集合.【课前导学】1.有关性质:A A = A ∅= AB B AA A = A ∅= AB B A2.区间:设,,,a b R a b ∈<且规定[,]a b = ,(,)a b = ,[,)a b = ,(,]a b = ,(,)a +∞= ,(,]b -∞= ,(,)-∞+∞= .3. {1,2,3,4,5,6},{2,3,5},{1,4},())(),U U U U A B C A B C A C B ===求与(并探求(),U C A B ,U U C A C B 三者之间的关系.4.求满足{1,2}P Q =的集合,P Q 共有多少组?【例题讲解】例1设{}{}{},7,1,4,4,2,1,1,22-=+-=+--=C x y B x x A 且C B A = ,求y x ,的值及B A .例2设22{|1|,3,5},{21,2,21},A a B a a a a a =+=+++-若{2,3}A B =,求A B .例3设222{|40},{|2(1)10}.A x x x B x x a x a =+==+++-=(1)若A B B =,求a 的值;(2)若A B B =,求a 的值.例4设全集3{(,)|,},{(,)|1},{(,)|1}2y U x y x R y R M x y P x y y x x -=∈∈===≠+-,求().U C M P【课堂检测】1.设集合{},,3|Z x x x I ∈<={},2,1=A {},2,1,2--=B 则()U A C B 等于 .2.若{}{},,非正整数非负整数==B A 则=B A , =B A .3.设R U =,{},,50|<≤=x x A {},1|≥=x x B 则()()=B C A C U U .4.已知集合C B A ,,满足C B B A =,则C A ____.【教学反思】§2.1.1 函数的概念与图像(1)【教学目标】1.通过现实生活中的实例体会函数是描述变量之间的依赖关系得重要模型,理解函数概念;2.了解构成函数的三要素:定义域、对应法则、值域,会求一些简单函数的定义域并能说出他们的值域 .【考纲要求】了解构成函数的三要素;【课前导学】1.函数的定义:设A ,B 是两个 数集,如果按照某种确定的 ,使对于集合A中的 一个数x ,在集合B 中 和它对应,那么这样的对应叫做从A 到 B 的一个函数,记为 ,其中x 叫 ,x 的取值范围叫做函数 的 ,与x 的值相对应的y 的值叫 ,y 的取值范围叫做函数的 ;2.在对应法则R y R x b x y y x f ∈∈+=→,,,:中,若52→,则→-2 ;3.下列图象中不能..作为函数()y f x =的图象的是:y y【例题讲解】例1(1)N x x x ∈→,; (2)R x x x ∈+→,11; (3),y x →其中+∈∈-=N y N x x y ,,1;(4)y x →,其中{}{}3,2,1,0,1,1,0,1,21-∈-∈-=y x x y以上4个对应中,为函数的有 .变式:下列各组函数中,为同一函数的是 ;(1)()3-=x x f 与()962+-=x x x g (2)()1-=x x f 与12)(2+-=t t t g(3)24)(2+-=x x x f 与2)(-=x x g (4)2)(x x f π=与圆面积y 是半径x 的函数例2 求下列函数的定义域:(1)x x f -=11)( (2)22y x =+*变式:若)(x f y =的定义域为[]4,1,)2(+x f 的定义域为 ;例3已知函数223y x x =--+,求1(0),(1),(),()(1)2f f f f n f n --.变式1:函数223,(32)y x x x =--+-≤≤的值域是 函数223y x x =--+,{}2,1,0,1,2--∈x 的值域是 .变式2:若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数2x y =,值域为{}4,1的“同族函数”共有 个;【课堂检测】1. 对于集合{|06}A x x =≤≤,{|03}B y y =≤≤,有下列从A 到B 的三个对应:①12x y x →= ;②13x y x →=;③x y x →=;其中是从A 到B 的函数的对应的序号为 ;2. 函数3()|1|2f x x =+-的定义域为 ____________3. 若2()(1)1,{1,0,1,2,3}f x x x =-+∈-,则((0))f f = ;【教学反思】§2.1.1 函数的概念与图像(2)【教学目标】通过现实生活中的实例体会函数是描述变量之间的依赖关系得重要模型,理解函数概念;了解构成函数的三要素:定义域、对应法则、值域,会求一些简单函数的定义域并能说出他们的值域 .【考纲要求】了解构成函数的三要素;【课前导学】1.求下列函数的定义域:(1)22-⋅+=x x y (2)322--=x x y2.函数)(x f y =的定义域为[]4,1-,则函数)2(x f y =的定义域为 ;3.求下列函数的值域:(1))20(1≤<-=x x y (2)2y x=(3))30(322≤≤+-=x x x y【例题讲解】例1.求下列函数的定义域:(1)()01x yx x +=- (2)1y x =+例2.求下列函数的值域:(1)32y x =- (2)[)246,1,5y x x x =-+∈(3)2845y x x =-+ (4)y x =例3(1)已知函数y =R ,求实数m 的取值范围;(2)设[]1,(1)A b b =>,函数21()(1)12f x x =-+,当x A ∈,()f x 的值域也是A ,求b 的值.【课堂检测】1.函数y =的定义域为 ,111y x=+的定义域为 .2.函数211y x =+的值域为 .3.函数y x =的值域为 .【教学反思】§2.1.1 函数的概念与图像(3)【教学目标】1.理解函数图象的意义;2.能正确画出一些常见函数的图象;3.会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势;4.从“形”的角度加深对函数的理解. 【课前导学】1.函数的图象:将函数()f x 自变量的一个值0x 作为 坐标,相应的函数值作为 坐标,就得到坐标平面上的一个点00(,())x f x ,当自变量 ,所有这些点组成的图形就是函数()y f x =的图象.2.函数()y f x =的图象与其定义域、值域的对应关系:函数()y f x =的图象在x 轴上的射影构成的集合对应着函数的 ,在y 轴上的射影构成的集合对应着函数的 .3. 函数()f x x =与2()x g x x =的图象相同吗?并画出函数2()x g x x=的图像.4.画出下列函数的图象:(1)()1f x x =+; (2)2()(1)1,[1,3)f x x x =-+∈;(3)5y x =,{1,2,3,4}x ∈; (4)()f x =【例题讲解】例1. 画出函数2()1f x x =+的图象,并根据图象回答下列问题:(1)比较(2),(1),(3)f f f -的大小;(2)若120x x <<(或120x x <<,或12||||x x <)比较1()f x 与2()f x 的大小;(3)分别写出函数2()1f x x =+((1,2]x ∈-), 2()1f x x =+((1,2]x ∈)的值域.例2. 已知函数()f x =⎪⎩⎪⎨⎧>≤≤-<+)1(,)1(-1,)1(322x x x x x ,x(1)画出函数图象; (2)求(((2)))f f f -的值(3)求当()7f x =-时,求x 的值;例3作出下列函数的图像;(1) 234y x x =+- (2) 221y x x =--【课堂检测】1.函数()f x 的定义域为[]2,3-,则()y f x =的图像与直线2x =的交点个数为 .2. 函数)(x f y =的图象如图所示,填空: (1)=)0(f ______;(2)=)1(f ______;(3)=)2(f _________;(4)若1121<<<-x x ,则)()(21x f x f 与的大小关系是_______________. 3.画出函数()xf x x x=+的图像.【教学反思】§2.1.2函数的表示方法(1)【教学目标】1.掌握函数的三种表示方法(图象法、列表法、解析法),理解同一个函数可以用不同的方法来表示;2.了解分段函数,会作其图,并简单地应用; 3.会用待定系数法、换元法求函数的解析式. 【考纲要求】在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.【课前导学】1.一次函数一般形式为 .2.二次函数的形式:(1)一般式:;(2)交点式:;(3)顶点式: .3.已知()31f g x=,=+,则[()]=-,()23f x xg x xg f x= .[()]4.已知函数()f x.=+-=,求()f x是二次函数,且满足(0)1,(1)()2f f x f x x【例题讲解】例1.下表所示为x与y间的函数关系:那么它的解析式为 .例2. 函数()f x在闭区间[1,2]-上的图象如下图所示,则求此函数的解析式.1例3. (1)已知一次函数)(x f 满足[]34)(+=x x f f ,求)(x f .(2)已知2(1)2f x x x +=-,求()f x .【课堂检测】1.已知21,0()21,0x x f x x x ⎧+≥=⎨+<⎩,(2)f -= ;2(1)f a += .2.已知1)f x =+()f x = .3.若二次函数2223y x mx m =-+-+的图像对称轴为20x +=,则m = ,顶点坐标为 .【教学反思】§2.1.2函数的表示方法(2)【教学目标】掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数;会用待定系数法、换元法求函数的饿解析式;通过实际问题体会数学知识的广泛应用性,培养抽象概括能力和解决问题的能力.【考纲要求】在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.【课前导学】1.函数()01)(2≠+=x x xx f ,则)1(x f 是 ; 2.已知1)1(+=+x x f ,那么)(x f 的解析式为 ;3.一个面积为2100m 的等腰梯形,上底长为xm ,下底长为上底长的3倍,则高y 与x 的解析式为 ;4.某种笔记本每本5元,买x ({}4,3,2,1∈x )个笔记本的钱数记为y (元),则以x 为自变量的函数y 的解析式为 ;【例题讲解】例 1. 动点P 从边长为1的正方形ABCD 的顶点A 出发,顺次经过B 、C 、D 再回到A ,设x 表示点P 的行程,y 表示线段PA 的长,求y 关于x 的函数解析式.变式:如图所示,梯形ABCD 中,CD AB //,5==BC AD ,,10=AB 4=CD ,动 点P 自B 点出发沿DA CD BC →→路线运动,最后到达A 点,设点P 的运动路程为x ,ABP ∆的面积为y ,试求)(x f y =的解析式并作出图像.例2已知函数满足1()2()f x f ax x +=,(1)求(1),(2)f f 的值; (2)求()f x 的解析式.【课堂检测】1.周长为定值l的矩形,它的面积S是此矩形的长为x的函数,则该函数的解析式为;2.若函数()f x满足关系式1()2()3f x f xx+=,则(2)f= ;【教学反思】§2.1.3函数的单调性(1)【教学目标】1. 会运用函数图象判断函数是递增还是递减;2. 理解函数的单调性,能判别或证明一些简单函数的单调性;3. 注意必须在函数的定义域内或其子集内讨论函数的单调性.【考纲要求】通过已学过的函数特别是二次函数,理解函数的单调性,学会运用函数图象理解和研究函数的性质【课前导学】1.下列函数中,在区间()2,0上为增函数的是 ;(1)xy 1= (2)12-=x y (3)x y -=1 (4)2)12(-=x y 2.若b x k x f ++=)12()(在()+∞∞-,上是减函数,则k 的取值范围是 ;3.函数122-+=x x y 的单调递增区间为 ;4.画出函数12+=x y 的图象,并写出单调区间.【例题讲解】例1:画出下列函数图象,并写出单调区间.(1)22y x =-+; (2)1y x=;(3)21, 0()22, 0x x f x x x ⎧+≤=⎨-+>⎩.例2.求证函数1()1f x x=-在()0,+∞上是减函数.思考:在(),0-∞是 函数,在定义域内是减函数吗?例3.求证函数3()f x x x =+在(),-∞+∞上是增函数.【课堂检测】1.函数1062+-=x x y 在单调增区间是 ;2.函数11-=xy 的单调递减区间为 ; 3.函数⎩⎨⎧<≥=)0()0(2x xx x y 的单调递增区间为 ,单调递减区间为 ; 4.求证:函数x x x f +-=2)(在⎪⎭⎫ ⎝⎛∞-21,上是单调增函数.【教学反思】§2.1.3函数的单调性(2)【教学目标】1.理解函数的单调性、最大(小)值极其几何意义;2.会用配方法、函数的单调性求函数的最值;3.培养识图能力与数形语言转换的能力.【课前导学】1.函数12+-=x y 在[]2,1-上的最大值与最小值分别是 ;2.函数x x y +-=2在[]0,3-上的最大值与最小值分别是 ;3.函数12+-=xy 在[]3,1上最大值与最小值分别是 ; 4.设函数)0()(≠=a xa x f ,若)(x f 在()0,∞-上是减函数,则a 的取值范围为 .【例题讲解】例1. (1)若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,在(,2]-∞-上是减函数,则实数m 的值为 ;(2)若函数2()45f x x mx m =-+-在[2,)-+∞上是增函数,则实数m 的取值范围为 ;(3)若函数2()45f x x mx m =-+-的单调递增区间为[2,)-+∞,则实数m 的值为 .例2.已知函数)(x f y =的定义域是],[b a ,a c b <<.当],[c a x ∈时,)(x f 是单调增函数;当],[b c x ∈时,)(x f 是单调减函数,试证明)(x f 在c x =时取得最大值.例3.(1)求函数1()f x x x=+的单调区间; (2)求函数221()x x f x x -+=,1,44x ⎡⎤∈⎢⎥⎣⎦的值域.【课堂检测】1. 函数1)1()(--=x a x f 在()+∞∞-,上是减函数实数a 的取值范围是 .2. 函数2()4(0)f x x mx m =-+>在(,0]-∞上的最小值是 .3. 函数()f x =的最小值是 ,最大值是 .【教学反思】§2.1.3 函数的奇偶性(1)【教学目标】3.了解函数奇偶性的含义;4.掌握判断函数奇偶性的方法,能证明一些简单函数的奇偶性;5.初步学会运用函数图象理解和研究函数的性质。
2.1.1 指数与指数幂的运算(1)1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质.一、课前准备(预习教材P48~ P50,找出疑惑之处)复习1:正方形面积公式为;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的,记作;如果一个数的立方等于a,那么这个数叫做a 的,记作 .二、新课导学※学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1. 某市人口平均年增长率为1.25℅,1990年人口数为a万,则x年后人口数为多少万?实例2. 给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长50cm,宽34cm,厚0.01mm,进行对折x次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达7.3℅,则x年后GDP为2000年的多少倍?问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t年后体内碳14的含量P 与死亡时碳14关系为57301()2tP=. 探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察:2(2)4±=,那么2±就叫4的;3327=,那么3就叫27的;4(3)81±=,那么3±就叫做81的 . 依此类推,若n x a=,,那么x叫做a 的 .新知:一般地,若n x a=,那么x叫做a的n次方根( n th root ),其中1n>,n*∈N.例如:328=2 =.反思:当n为奇数时, n次方根情况如何?33-,记:x=当n为偶数时,正数的n次方根情况?例如:81的4次方根就是,记:.强调:负数没有偶次方根;0的任何次方根都是0 =.试试:4b a=,则a的4次方根为;3b a=,则a的3次方根为 .新知:(radical),这里n叫做根指数(radical exponent),a叫做被开方数(radicand).试试:计算2.反思:从特殊到一般,n结论:n a=. 当na=;当n是(0)||(0)a aaa a≥⎧=⎨-<⎩.※典型例题例1求下类各式的值:(1);(2);(3;(4)a b<).变式:计算或化简下列各式.(1(2.推广:(a≥0).※动手试试练1.-练2.化简三、总结提升※学习小结1. n次方根,根式的概念;2. 根式运算性质.※ 知识拓展1. 整数指数幂满足不等性质:若0a >,则0n a >.2. 正整数指数幂满足不等性质: ① 若1a >,则1n a >;② 若01a <<,则01n a <<. 其中n ∈N *.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:).A. 3B. -3C. ±3D. 81 2. 625的4次方根是( ).A. 5B. -5C. ±5D. 253. 化简2是( ). A. b - B. b C. b ± D. 1b4.= .5. 计算:3=;1. 计算:(1 (2)2. 计算34a a -⨯和3(8)a +-,它们之间有什么关系? 你能得到什么结论?3. 对比()nn nab a b =与()nn n a a b b=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 理解分数指数幂的概念;2. 掌握根式与分数指数幂的互化;3. 掌握有理数指数幂的运算.一、课前准备(预习教材P 50~ P 53,找出疑惑之处)复习1:一般地,若n x a =,则x 叫做a 的 ,其中1n >,n *∈N . 简记为:. 的式子就叫做,具有如下运算性质:n =;= ;= .复习2:整数指数幂的运算性质.(1)m na a =;(2)()m na=;(3)()nab= .二、新课导学※学习探究探究任务:分数指数幂引例:a>01025a a=,则类似可得=;23a== .新知:规定分数指数幂如下*(0,,,1)mna a m n N n=>∈>;*1(0,,,1)mnmna a m n N na-==>∈>.试试:(1)将下列根式写成分数指数幂形式:= ;= ;= (0,)a m N*>∈.(2)求值:238;255;436-;52a-.反思:幂为 .②分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质:(0,0,,a b r s Q>>∈)ra·r r sa a+=;()r s rsa a=;()r r sab a a=.※典型例题例1 求值:2327;4316-;33()5-;2325()49-.变式:化为根式.例2 用分数指数幂的形式表示下列各式(0)b>:(1)2b b;(2)533b b;(3例3 计算(式中字母均正):(1)211511336622(3)(8)(6)a b a b a b -÷-; (2)311684()m n .小结:例2,运算性质的运用;例3,单项式运算. 例4 计算: (1334a a a(0)a >;(2)312103652(2)()m n m n --÷- (,)m n N *∈;(3)÷小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思:①结论:无理指数幂.(结合教材P 53利用逼近的思想理解无理指数幂意义)② 无理数指数幂(0,)a a αα>是无理数是一个确定的实数.实数指数幂的运算性质如何?※ 动手试试练1. 把851323x --⎫⎪⎪⎝⎭化成分数指数幂.练2. 计算:(1443327; (2三、总结提升※ 学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.※ 知识拓展放射性元素衰变的数学模型为:0t m m e λ-=,其中t 表示经过的时间,0m 表示初始质量,衰减后的质量为m ,λ为正的常数.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. mmnna a a ÷= B. m n mn a a a ⋅=C. ()nm m n a a += D. 01n n a a -÷=2.化简3225的结果是( ). A. 5 B. 15 C. 25 D. 125 3. 计算(122--⎡⎤⎢⎥⎣⎦的结果是( ).AB.C.2 D.24. 化简2327-= . 5. 若102,104mn==,则3210m n -= .1. 化简下列各式:(1)3236()49; (2. 2.1⎛- ⎝.§2.1.1 指数与指数幂的运算(练习)2. 会用分数指数幂表示根式;3. 掌握根式与分数指数幂的运算.一、课前准备(复习教材P 48~ P 53,找出疑惑之处) 复习1:什么叫做根式?运算性质?的式子就叫做 ,具有性质:n =;=;= .复习2:分数指数幂如何定义?运算性质? ① m na = ;m na-= .其中*0,,,1a m n N n >∈>②r s a a = ; ()r s a = ; ()s ab = .复习3:填空.① n为 时,(0)||...........(0)x x x ≥⎧==⎨<⎩.② 求下列各式的值:= ;= ;= ;=;= ;= ;= .二、新课导学※ 典型例题例1 已知1122a a-+=3,求下列各式的值:(1)1a a -+; (2)22a a -+; (3)33221122a a a a----.补充:立方和差公式3322()()a b a b a ab b±=±+. 小结:①平方法;②乘法公式;③根式的基本性质=(a≥0)等.注意,a≥0十分重要,无此条件则公式不成立.≠.变式:已知11223a a--=,求:(1)1122a a-+;(2)3322a a--.例2从盛满1升纯酒精的容器中倒出13升,然后用水填满,再倒出13升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n次后?小结:①方法:摘要→审题;探究→结论;②解应用问题四步曲:审题→建模→解答→作答.※动手试试练1. 化简:11112244()()x y x y-÷-.练2. 已知x+x-1=3,求下列各式的值.(1)1122x x-+;(2)3322x x-+.练3. 已知12(),0xf x x x π=⋅>,试求.三、总结提升※ 学习小结1. 根式与分数指数幂的运算;2. 乘法公式的运用.※ 知识拓展 1. 立方和差公式:3322()()a b a b a ab b +=+-+; 3322()()a b a b a ab b -=-++.2. 完全立方公式:33223()33a b a a b ab b +=+++;33223()33a b a a b ab b -=-+-.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:).354a a a(a >0)的值是( ).A. 1B. aC. 15aD. 1710a3. 下列各式中成立的是( ).A .1777()n n m m=B=C 34()x y + D .=4. 化简3225()4-= .5. 化简2115113366221()(3)()3a b a b a b -÷= .1. 已知32x a b --=+, .2.2n a +=时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;2. 理解指数函数的概念和意义;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点).一、课前准备(预习教材P54~ P57,找出疑惑之处)复习1:零指数、负指数、分数指数幂怎样定义的?(1)0a=;(2)na-=;(3)mna=;mna-= .其中*0,,,1a m n N n>∈>复习2:有理指数幂的运算性质.(1)m na a=;(2)()m na=;(3)()nab= .二、新课导学※学习探究探究任务一:指数函数模型思想及指数函数概念实例:A.细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?B.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数(0,1)xy a a a=>≠且叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.反思:为什么规定a>0且a≠1呢?否则会出现什么情况呢?试试:举出几个生活中有关指数模型的例子?探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出下列函数图象:1()2xy=,2xy=讨论:(1)函数2xy =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1()2x y =的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或13后呢?新知:根据图象归纳指数函数的性质.a >1 0<a <1图 象性质(1)定义域:R (2)值域:(0,+∞) (3)过点(0,1),即x =0时,y =1(4)在 R 上是增函数 (4)在R 上是减函数※ 典型例题例1函数()xf x a =(0,1a a >≠且)的图象过点(2,)π,求(0)f ,(1)f -,(1)f 的值.小结:①确定指数函数重要要素是 ; ② 待定系数法. 例2比较下列各组中两个值的大小: (1)0.60.52,2; (2)2 1.50.9,0.9-- ;(3)0.5 2.12.1,0.5 ; (4)231-与.小结:利用单调性比大小;或间接利用中间数.※ 动手试试练1. 已知下列不等式,试比较m 、n 的大小:(1)22()()33m n >; (2) 1.1 1.1m n <.练2. 比较大小:(1)0.70.90.80.8,0.8, 1.2a b c ===;(2)01, 2.50.4,-0.22-, 1.62.5.三、总结提升※ 学习小结①指数函数模型应用思想;②指数函数概念;③指数函数的图象与性质;③单调法.※ 知识拓展因为(01)x y a a a =>≠,且的定义域是R , 所以()(01)f x y a a a =>≠,且的定义域与()f x 的定义域相同. 而()(01)x y a a a ϕ=>≠,且的定义域,由()y t ϕ=的定义域确定.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 函数2(33)x y a a a =-+是指数函数,则a 的值为( ).A. 1B. 2C. 1或2D. 任意值 2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1)B. (0,2)C. (2,1)D. (2,2)3. 指数函数①()x f x m =,②()x g x n =满足不等式01m n <<<,则它们的图象是( ).4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 .课后作业1. 求函数y =1151x x--的定义域.2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)学习目标1. 熟练掌握指数函数概念、图象、性质;2. 掌握指数型函数的定义域、值域,会判断其单调性;3. 培养数学应用意识. 学习过程一、课前准备(预习教材P 57~ P 60,找出疑惑之处)复习1:指数函数的形式是 , 其图象与性质如下a >1 0<a <1复习2:在同一坐标系中,作出函数图象的草图:2xy=,1()2xy=,5xy=,1()5xy=,10x y=,1()10xy=.思考:指数函数的图象具有怎样的分布规律?二、新课导学※典型例题例1我国人口问题非常突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.(1)按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?(2)从2000年起到2020年我国人口将达到多少?小结:学会读题摘要;掌握从特殊到一般的归纳法. 试试:2007年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x年后的总产值为原来的多少倍?多少年后产值能达到120亿?小结:指数函数增长模型.设原有量N,每次的增长率为p,则经过x次增长后的总量y= . 我们把形如xy ka= (,0,1)k R a a∈>≠且的函数称为指数型函数.例2 求下列函数的定义域、值域:(1)21xy=+; (2)y=(3)110.4xy-=. 变式:单调性如何?小结:单调法、基本函数法、图象法、观察法.试试:求函数y=论其单调性.※ 动手试试练 1. 求指数函数212x y +=的定义域和值域,并讨论其单调性.练2. 已知下列不等式,比较,m n 的大小. (1)33m n <; (2)0.60.6m n >; (3)(1)m n a a a >> ;(4) (01)m n a a a <<<.练3. 一片树林中现有木材30000 m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 3.三、总结提升※ 学习小结1. 指数函数应用模型(,01)x y ka k R a a =∈>≠且;2. 定义域与值域; 2. 单调性应用(比大小).※ 知识拓展形如()(01)f x y a a a =>≠,且的函数值域的研究,先求得()f x 的值域,再根据t a 的单调性,列出简单的指数不等式,得出所求值域,注意不能忽视()0f x y a =>. 而形如()(01)x y a a a ϕ=>≠,且的函数值域的研究,易知0x a >,再结合函数()t ϕ进行研究. 在求值域的过程中,配合一些常用求值域的方法,例如观察法、单调性法、图象法等.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 如果函数y =a x(a >0,a ≠1)的图象与函数y =bx(b >0,b ≠1)的图象关于y 轴对称,则有( ). A. a >b B. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x-1的定义域、值域分别是( ). A. R , RB. R , (0,)+∞C. R ,(1,)-+∞D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x的图象关于y 轴对称 B. 函数f (x )=a 1-x(a >1)在R 上递减C. 若a2>a21-,则a >1D. 若2x >1,则1x > 4. 比较下列各组数的大小: 122()5- 320.4-();0.7633()0.753-(). 5. 在同一坐标系下,函数y =a x , y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 .课后作业1. 已知函数f (x )=a -221x +(a ∈R ),求证:对任何a R ∈, f (x )为增函数.2. 求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)学习目标1. 理解对数的概念;2. 能够说明对数与指数的关系;3. 掌握对数式与指数式的相互转化.学习过程一、课前准备(预习教材P 62~ P 64,找出疑惑之处)复习1:庄子:一尺之棰,日取其半,万世不竭. (1)取4次,还有多长? (2)取多少次,还有0.125尺?复习2:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产 是2002年的2倍? (只列式)二、新课导学※ 学习探究探究任务:对数的概念问题:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,30亿?讨论:(1)问题具有怎样的共性?(2)已知底数和幂的值,求指数 怎样求呢?例如:由1.01x m =,求x .新知:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数试试:将复习2及问题中的指数式化为对数式.新知:我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N试试:分别说说lg5 、lg3.5、ln10、ln3的意义.反思:(1)指数与对数间的关系?0,1a a >≠时,x a N =⇔ .(2)负数与零是否有对数?为什么? (3)log 1a = , log a a = .※ 典型例题例1下列指数式化为对数式,对数式化为指数式. (1)35125= ;(2)712128-=;(3)327a =; (4) 2100.01-=; (5)12log 325=-;(6)lg0.001=3-; (7)ln100=4.606.变式:12log 32?= lg0.001=?小结:注意对数符号的书写,与真数才能构成整体. 例2求下列各式中x 的值: (1)642log 3x =; (2)log 86x =-; (3)lg 4x =; (4)3ln e x =.小结:应用指对互化求x .※ 动手试试练1. 求下列各式的值. (1)5log 25 ; (2)21log 16 ; (3)lg 10000.练2. 探究log ?n a a = log ?a N a =三、总结提升※ 学习小结①对数概念;②lg N 与ln N ;③指对互化;④如何求对数值※ 知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier ,1550-1617年)男爵. 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科. 可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间. 纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若2log 3x =,则x =( ).A. 4B. 6C. 8D. 92. log = ( ).A. 1B. -1C. 2D. -23. 对数式2log (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5)4.计算:1(3+= .5. 若log 1)1x =-,则x =________,若y =,则y =___________.1. 将下列指数式化成对数式,对数式化成指数式. (1)53243=; (2)51232-=; (3)430a = (4)1() 1.032m =; (5)12log 164=-;(6)2log 1287=; (7)3log 27a =.2. 计算:(1)9log 27; (2)3log 243; (3); (3)(2log (2; (4)625.§§2.2.1 对数与对数运算(2)1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题..一、课前准备(预习教材P 64~ P 66,找出疑惑之处) 复习1:(1)对数定义:如果x a N =(0,1)a a >≠,那么数x 叫做 ,记作 .(2)指数式与对数式的互化:x a N =⇔ .复习2:幂的运算性质.(1)m n a a = ;(2)()m n a = ; (3)()n ab = .复习3:根据对数的定义及对数与指数的关系解答: (1)设log 2a m =,log 3a n =,求m n a +; (2)设log a M m =,log a N n =,试利用m 、n 表示log (a M ·)N .二、新课导学※ 学习探究探究任务:对数运算性质及推导问题:由p q p q a a a +=,如何探讨log a MN 和log a M 、log a N 之间的关系?问题:设log a M p =, log a N q =, 由对数的定义可得:M =p a ,N =a∴MN =p a q a =p q a +,∴log a MN =p +q ,即得log a MN =log a M + log a N 根据上面的证明,能否得出以下式子? 如果 a > 0,a ≠ 1,M > 0, N > 0 ,则 (1)log ()log log a a a MN M N =+; (2)log log log aa a MM N N=-; (3) log log ()n a a M n M n R =∈.反思:自然语言如何叙述三条性质? 性质的证明思路?(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)※ 典型例题例1用log a x , log a y , log a z 表示下列各式: (1)2log a xyz ; (2)log a .例2计算:(1)5log 25; (2)0.4log 1; (3)852log (42)⨯; (4)探究:根据对数的定义推导换底公式log log log c a c bb a=(0a >,且1a ≠;0c >,且1c ≠;0b >).试试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?※ 动手试试练1. 设lg2a =,lg3b =,试用a 、b 表示5log 12.变式:已知lg2=0.3010,lg3=0.4771,求lg6、.练2. 运用换底公式推导下列结论. (1)log log m n a a nb b m=;(2)1log log a b b a =.练 3. 计算:(1)7lg142lg lg7lg183-+-;(2)lg 243lg9.三、总结提升※ 学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log b a b NN a=; ② 对数的倒数公式1log log a b b a=.③ 对数恒等式:log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=- B .222log (10)2log (10)-=- C .222log (35)log 3log 5+= D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35abx c =C .35ab x c= D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ). A .y x = B .2y x =C .3y x =D .4y x =4. 计算:(1)99log 3log 27+= ; (2)2121log log 22+= . 5.计算:15lg 23= .1. 计算: (1;(2)2lg 2lg 2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证:1112c a b -=.§2.2.1 对数与对数运算(3)1. 能较熟练地运用对数运算性质解决实践问题;2. 加强数学应用意识的训练,提高解决应用问题的能力.一、课前准备(预习教材P 66~ P 69,找出疑惑之处) 复习1:对数的运算性质及换底公式. 如果 a > 0,a ≠ 1,M > 0, N > 0 ,则 (1)log ()a MN = ; (2)log aMN= ; (3) log na M = .换底公式log a b = .复习2:已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.复习3:1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿? (用式子表示)二、新课导学※ 典型例题例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1);(2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)小结:读题摘要→寻找数量关系→利用对数计算.例2当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P 与生物死亡年数t 之间的关系.回答下列问题:(1)求生物死亡t 年后它机体内的碳14的含量P ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(2)已知一生物体内碳14的残留量为P ,试求该生物死亡的年数t ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(3)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代?反思:① P 和t 之间的对应关系是一一对应;② P 关于t的指数函数(x P =,则t 关于P的函数为 .※ 动手试试练1. 计算:(1)0.21log 35-; (2)4912log 3log 2log ⋅-练2. 我国的GDP 年平均增长率保持为7.3%,约多少年后我国的GDP 在2007年的基础上翻两番?三、总结提升※ 学习小结1. 应用建模思想(审题→设未知数→建立x 与y之间的关系→求解→验证); 2. 用数学结果解释现象.※ 知识拓展在给定区间内,若函数()f x 的图象向上凸出,则函数()f x 在该区间上为凸函数,结合图象易得到1212()()()22x x f x f x f ++≥; 在给定区间内,若函数()f x 的图象向下凹进,则函数()f x 在该区间上为凹函数,结合图象易得到1212()()()22x x f x f x f ++≤.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:25()a-(a≠0)化简得结果是().A.-a B.a2C.|a|D.a2. 若 log7[log3(log2x)]=0,则12x=().A. 3B.3. 已知35a b m==,且112a b+=,则m之值为().A.15 B.2254. 若3a=2,则log38-2log36用a表示为 .5. 已知lg20.3010=,lg1.07180.0301=,则lg2.5=;1102=.1. 化简:(1)222lg5lg8lg5lg20(lg2)3+++;(2)()()24525log5+log0.2log2+log0.5.2. 若()()lg lg2lg2lg lgx y x y x y-++=++,求xy的值.§2.2.2 对数函数及其性质(1)1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.一、课前准备(预习教材P70~ P72,找出疑惑之处)复习1:画出2xy=、1()2xy=的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.(列式)二、新课导学※ 学习探究探究任务一:对数函数的概念问题:根据上题,用计算器可以完成下表:讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系logt P =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数)新知:一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 (0a >,且1)a ≠.探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试试:同一坐标系中画出下列对数函数的图象.2log y x =;0.5log y x =.反思:(1)根据图象,你能归纳出对数函数的哪些性质?(2)图象具有怎样的分布规律?※ 典型例题例1求下列函数的定义域:(1)2log a y x =;(2)log (3)a y x =-;变式:求函数y =.例2比较大小:(1)ln3.4,ln8.5; (2)0.30.3log 2.8,log 2.7; (3)log 5.1,log 5.9a a .小结:利用单调性比大小;注意格式规范.※ 动手试试练1. 求下列函数的定义域.(1)0.2log (6)y x =--; (2)32log 1y x =-.练2. 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.2log 4log 0.7和; (3)0.70.7log 1.6log 1.8和; (4)23log 3log 2和.三、总结提升※ 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.※ 知识拓展对数函数凹凸性:函数()log ,(0,1)a f x x a a =>≠,12,x x 是任意两个正实数.当1a >时,1212()()()22f x f x x xf ++≤;当01a <<时,1212()()()22f x f x x xf ++≥.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小:(1)log 67 log 76 ; (2)log 31.5 log20.8.5. 函数(-1)log (3-)x y x =的定义域是 .1. 已知下列不等式,比较正数m 、n 的大小: (1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域:(1)y =(2)y =§2.2.2 对数函数及其性质(2)1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.一、课前准备(预习教材P 72~ P 73,找出疑惑之处)复习1:对数函数log (0,1)a y x a a =>≠且图象和性质.复习2:比较两个对数的大小.(1)10log 7与10log 12 ;(2)0.5log 0.7与0.5log 0.8.复习3:求函数的定义域. (1)311log 2y x=- ; (2)log (28)a y x =+.二、新课导学※ 学习探究探究任务:反函数问题:如何由2x y =求出x ?反思:函数2log x y =由2x y =解出,是把指数函数2x y =中的自变量与因变量对调位置而得出的. 习惯上我们通常用x 表示自变量,y 表示函数,即写为2log y x =.新知:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function )例如:指数函数2x y =与对数函数2log y x =互为反函数.试试:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什么性质?反思:(1)如果000(,)P x y 在函数2xy =的图象上,那么P 0关于直线y x =的对称点在函数2log y x =的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称.※ 典型例题例1求下列函数的反函数:(1) 3x y =; (2)log (1)a y x =-.小结:求反函数的步骤(解x →习惯表示→定义域)变式:点(2,3)在函数log (1)a y x =-的反函数图象上,求实数a 的值.例2溶液酸碱度的测量问题:溶液酸碱度pH 的计算公式lg[]pH H +=-,其中[]H +表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?(2)纯净水7[]10H +-=摩尔/升,计算其酸碱度.小结:抽象出对数函数模型,然后应用对数函数模型解决问题,这就是数学应用建模思想.※ 动手试试练 1. 己知函数()x f x a k =-的图象过点(1,3)。
(人教版)高中数学必修一(全册)精品导学案汇总第一章§1.1.1 任意角【学习目标】1.理解任意角的概念,学会在平面内建立适当的坐标系讨论任意角.2.能在0º到360º范围内,找出一个与已知角终边相同的角,并判定其为第几象限角.3.能写出与任一已知角终边相同的角的集合.【学习重点】任意角的概念,终边相同的角的表示.【知识链接】问题1:在初中我们是如何定义一个角的?角的范围是什么?问题2:(1)手表慢了5分钟,如何校准,校准后,分针转了几度?(2)手表快了10分钟,如何校准,校准后,分针转了几度?【基础知识】一、任意角的概念1.任意角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边. 说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30,390,330-都是第一象限角;300,60-是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90,180,270等等.说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”.因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线. 二、终边相同的角的集合由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同. 从而得出一般规律:所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈,即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 说明:终边相同的角不一定相等,相等的角终边一定相同.三、等分角若α是第三象限角,那么2α是第几象限角?你能用作图表示吗?规律是什么?【例题讲解】例1 在0与360范围内,找出与/12950-终边相同的角,并判断它们是第几象限角?例2 写出终边在y 轴上的角的集合.例3 写出终边在直线x y =上的角的集合S ,并把S 中适合不等式0720360-<≤β的元素β写出来.例4如图所示,试分别表示出终边落在阴影区域内的角.说明:区间角是指终边落在坐标系的某个区域的角,其写法可分三步:(1)先按逆时针的方向找到区域的起始和终止边界;(2)按由小到大分别标出起始、终止边界对应的0°到360°范围内的角α,β,写出最简区间{x |α<x <β};(3)再加上起始、终止边界对应角α,β出现的k 倍的周期,即得区间角的集合. 【达标检测】1. 若时针走过2小时40分,则分针走过的角是多少?2. 下列命题正确的是: ( )(A )终边相同的角一定相等。
函数与方程一、基础知识:1.函数零点(1)对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)如果函数y=f(x)在区间[a ,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a ,b)内有零点,即存在c∈(a ,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二分法(1)对于在区间[a ,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(2)给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:①确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;②求区间(a,b)的中点c;③计算f(c);(ⅰ)若f(c)=0,则c就是函数的零点;(ⅱ)若f(a)·f(c)<0,则令b=c(此时零点x0∈(a ,c));(ⅲ)若f(c)·f(b)<0,则令a=c(此时零点x0∈(c ,b)).④判断是否达到精确度ε.即:若|a-b|<ε,则得到零点近似值a(或b);否则重复②③④.二、典型例题1.求函数的零点例1.求下列函数的零点(方程思想):(1)f(x)=x3-3x+2 (2)223()1x xf xx-+=-(3)32()22f x x x x=--+例2.(数形结合思想)求方程lg260x x-+=的根的个数.2.利用函数零点求参数例3 (2020·山东)若函数()xf x a x a=-- (a>0,且a≠1)有两个零点,求实数a的取值范围.3.二分法及其应用例4 在用二分法求方程3210x x--=的近似解时,现已经把根锁定在区间(1,2)内,则下一步可以断定该根所在的区间为_______________.三、基础自测1.方程322xx-=的解所在的区间为()A. (0,1)B. (1,2)C. (2,3)D. (3,4)2.函数3()xf x e x-=-的零点的个数为()A. 0B. 1C.2D.33.二次函数2y ax bx c=++中,ac<0,则函数的零点个数为__________.4.若函数2()f x x ax b=--的两个零点是2和3,则不等式210bx ax-->的解集为___________.5.已知函数()24f x mx=+,若在[-2,1]上存在x0 ,使()0f x=,则实数m的取值范围为________.(拓展题1)已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点右侧,求实数m的取值范围是( )A.(0,1] B.(0,1) C.(-∞,1) D.(-∞,1](拓展题2)已知函数f(x)=22,0,0xx bx c x->⎧⎨-++≤⎩,若f(0)=-2,f(-1)=1,则函数g(x)=f(x)+x的零点的个数为( )A.1 B.2 C.3 D.4(拓展题3)(2020·广东茂名调研)设方程2x+x =4的根为x 0,若x 0∈11(,)22k k -+,则整数k =_____.变化率与导数、导数的计算一、基础知识:1.已知函数3()16f x x x =+-,(1)求曲线()y f x =在点(2,-6)处的切线方程;(2)直线m 为曲线()y f x =的切线,且经过原点,求直线m 的方程及切点坐标; (3)若曲线()y f x =的某一切线与直线134y x =-+垂直,求切点坐标与切线的方程. 拓展1.若曲线3222y x ax ax =-+拓展2.(09福建高考)若曲线()f x ___________已知函数()y f x =的图象在点(1,(1))M f 处的切线方程是22y x =+,则(1)(1)f f '+=_______ 已知二次函数()y f x =的图象如图所示,则其导函数的图象大致形状是( )A B C D 曲线313y x x =+在点4(1,)3已知函数32()f x ax bx cx d =+++求()f x 的解析式.y 'y 'y 'y '22510-11。
人教版高中数学必修一全册导学案尊敬的读者:在这篇文章中,我将为您提供人教版高中数学必修一全册导学案。
这是一份由数学教师编写的全面指导学生学习高中数学课程的材料。
以下是每个单元的导学案,旨在帮助您更好地理解和掌握相关的数学概念和技巧。
第一单元:函数的概念与基本性质本单元导学案旨在帮助学生们理解函数的基本概念和性质。
在这个单元中,学生将掌握如何用映射、关系、对应等方式描述函数的概念,并了解函数的定义域、值域和图像等基本性质。
第二单元:一次函数与二次函数在这个单元的导学案中,学生将学习一次函数和二次函数的图像、性质和应用。
学生将学会如何识别一次函数和二次函数的特点,并学习如何利用函数的图像解决实际问题。
第三单元:指数与对数函数这一单元的导学案将帮助学生们理解指数函数和对数函数的概念和性质。
学生们将学习指数函数和对数函数的性质、图像以及它们的运算法则,并能够应用指数和对数函数解决实际问题。
第四单元:三角函数本单元的导学案将介绍三角函数的基本概念和性质。
学生将学习正弦函数、余弦函数和正切函数的性质和图像,并掌握化简三角函数表达式的方法。
第五单元:数列与数学归纳法这个单元的导学案旨在帮助学生理解数列的概念和性质,并学习数列的求和公式和通项公式。
学生们将学习如何应用数学归纳法解决数列相关的问题。
第六单元:排列与组合在这个单元的导学案中,学生将学习排列和组合的基本概念和性质。
通过学习排列和组合的问题,学生可以培养解决实际问题的能力。
第七单元:概率与统计在概率与统计的导学案中,学生将学习如何计算事件的概率和统计数据,并了解一些常见的概率分布和统计方法。
第八单元:二次函数的图像与性质在这个单元的导学案中,学生将深入学习二次函数的图像和性质。
学生将学习如何识别二次函数的图像特点,并学习如何应用二次函数解决实际问题。
第九单元:三角函数的图像与性质这个单元的导学案将介绍更多关于三角函数的图像和性质。
学生将学习如何识别三角函数的图像特点,并学会通过图像推导三角函数的性质和公式。
§1.1.1 集合的含义与表示(1)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.23讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.二、新课导学 ※ 探索新知探究1:考察几组对象: ① 1~20以内所有的质数;② 到定点的距离等于定长的所有点; ③ 所有的锐角三角形;④ 2x , 32x +, 35y x -, 22x y +; ⑤ 东升高中高一级全体学生; ⑥ 方程230x x +=的所有实数根;⑦ 隆成日用品厂20XX 年8月生产的所有童车; ⑧ 20XX 年8月,广东所有出生婴儿. 试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).试试1:探究1中①~⑧都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征.确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素. 无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合 .试试2:分析下列对象,能否构成集合,并指出元素:① 不等式30x ->的解; ② 3的倍数;③ 方程2210x x -+=的解; ④ a ,b ,c ,x ,y ,z ; ⑤ 最小的整数;⑥ 周长为10 cm 的三角形; ⑦ 中国古代四大发明; ⑧ 全班每个学生的年龄; ⑨ 地球上的四大洋; ⑩ 地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示.如果a 是集合A 的元素,就说a 属于(belong to)集合A ,记作:a ∈A ;如果a 不是集合A 的元素,就说a 不属于(not belong to)集合A ,记作:a ∉A .试试3: 设B 表示“5以内的自然数”组成的集合,则5 B ,0.5 B , 0 B , -1 B .探究4:常见的数集有哪些,又如何表示呢?新知4:常见数集的表示 非负整数集(自然数集):全体非负整数组成的集合,记作N ;正整数集:所有正整数的集合,记作N *或N +; 整数集:全体整数的集合,记作Z ; 有理数集:全体有理数的集合,记作Q ; 实数集:全体实数的集合,记作R .试试4:填∈或∉:0 N,0 R,3.7 N,3.7 Z,.探究5:探究1中①~⑧分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a与{a}不同.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示.※典型例题例1 用列举法表示下列集合:① 15以内质数的集合;②方程2(1)0x x-=的所有实数根组成的集合;③一次函数y x=与21y x=-的图象的交点组成的集合.变式:用列举法表示“一次函数y x=的图象与二次函数2y x=的图象的交点”组成的集合.三、总结提升※学习小结①概念:集合与元素;属于与不属于;②集合中元素三特征;③常见数集及表示;④列举法.※知识拓展集合论是德国著名数学家康托尔于19世纪末创立的. 1874年康托尔提出“集合”的概念:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素. 人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列说法正确的是().A.某个村子里的高个子组成一个集合B.所有小正数组成一个集合C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D.1361,0.5,,,2242. 给出下列关系:①12R=;②Q;③3N+-∉;④.Q 其中正确的个数为().A.1个B.2个 C.3个D.4个3. 直线21y x=+与y轴的交点所组成的集合为().A. {0,1}B. {(0,1)}C.1{,0}2- D.1{(,0)}2-4. 设A表示“中国所有省会城市”组成的集合,则:深圳A;广州A. (填∈或∉)5. “方程230x x-=的所有实数根”组成的集合用列举法表示为____________.1. 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程2100x x-=的所有实数根组成的集合.2. 设x∈R,集合2{3,,2}A x x x=-.(1)求元素x所应满足的条件;(2)若2A-∈,求实数x.§1.1.1 集合的含义与表示(2)1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.45复习1:一般地,指定的某些对象的全体称为 .其中的每个对象叫作 .集合中的元素具备、、特征. 集合与元素的关系有、 .复习2:集合2{21}A x x=++的元素是,若1∈A,则x= .复习3:集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个集合有何关系?二、新课导学※学习探究思考:①你能用自然语言描述集合{2,4,6,8}吗?②你能用列举法表示不等式13x-<的解集吗?探究:比较如下表示法① {方程210x-=的根};②{1,1}-;③2{|10}x R x∈-=.新知:用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为{|}x A P∈,其中x代表元素,P是确定条件.试试:方程230x-=的所有实数根组成的集合,用描述法表示为 .※典型例题例1 试分别用列举法和描述法表示下列集合:(1)方程2(1)0x x-=的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.练习:用描述法表示下列集合.(1)方程340x x+=的所有实数根组成的集合;(2)所有奇数组成的集合.小结:用描述法表示集合时,如果从上下文关系来看,x R∈、x Z∈明确时可省略,例如{|21,}x x k k Z=-∈,{|0}x x>.例2 试分别用列举法和描述法表示下列集合:(1)抛物线21y x=-上的所有点组成的集合;(2)方程组3222327x yx y+=⎧⎨+=⎩解集.变式:以下三个集合有什么区别.(1)2{(,)|1}x y y x=-;(2)2{|1}y y x=-;(3)2{|1}x y x=-.反思与小结:①描述法表示集合时,应特别注意集合的代表元素,如2{(,)|1}x y y x=-与2{|1}y y x=-不同.②只要不引起误解,集合的代表元素也可省略,例如{|1}x x>,{|3,}x x k k Z=∈.③集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z,所以不必写{全体整数}.下列写法{实数集},{R}也是错误的.④列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.※动手试试练1. 用适当的方法表示集合:大于0的所有奇数. 练 2. 已知集合{|33,}A x x x Z=-<<∈,集合2{(,)|1,}B x y y x x A==+∈. 试用列举法分别表示集合A、B. 三、总结提升※学习小结1. 集合的三种表示方法(自然语言、列举法、描述法);2. 会用适当的方法表示集合;※知识拓展1. 描述法表示时代表元素十分重要. 例如:(1)所有直角三角形的集合可以表示为:{|}x x是直角三角形,也可以写成:{直角三角形};(2)集合2{(,)|1}x y y x=+与集合2{|1}y y x=+是同一个集合吗?2. 我们还可以用一条封闭的曲线的内部来表示一个集合,即:文氏图,或称Venn图.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 设{|16}A x N x=∈≤<,则下列正确的是().A. 6A∈ B. 0A∈C. 3A∉ D. 3.5A∉2. 下列说法正确的是().A.不等式253x-<的解集表示为{4}x<B.所有偶数的集合表示为{|2}x x k=C.全体自然数的集合可表示为{自然数}D. 方程240x-=实数根的集合表示为{(2,2)}-3. 一次函数3y x=-与2y x=-的图象的交点组成的集合是().A. {1,2}- B. {1,2}x y==-C. {(2,1)}- D.3{(,)|}2y xx yy x=-⎧⎨=-⎩4. 用列举法表示集合{|510}A x Z x=∈≤<为.5.集合A={x|x=2n且n∈N},2{|650}B x x x=-+=,用∈或∉填空:4 A,4 B,5 A,5 B.1. (1)设集合{(,)|6,,}A x y x y x N y N=+=∈∈,试用列举法表示集合A.(2)设A={x|x=2n,n∈N,且n<10},B={3的倍数},求属于A且属于B的元素所组成的集合.2. 若集合{1,3}A =-,集合2{|0}B x x ax b =++=,且A B =,求实数a 、b .§1.1.2 集合间的基本关系学习目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集;2. 理解子集、真子集的概念;3. 能利用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用;4. 了解空集的含义. 学习过程一、课前准备67复习1:集合的表示方法有 、 、 . 请用适当的方法表示下列集合. (1)10以内3的倍数;(2)1000以内3的倍数.复习2:用适当的符号填空.(1) 0 N ;2 Q ; -1.5 R .(2)设集合2{|(1)(3)0}A x x x =--=,{}B b =,则1 A ;b B ;{1,3} A .思考:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?二、新课导学 ※ 学习探究探究:比较下面几个例子,试发现两个集合之间的关系:{3,6,9}A =与*{|3,333}B x x k k N k ==∈≤且; {}C =东升高中学生与{}D =东升高中高一学生; {|(1)(2)0}E x x x x =--=与{0,1,2}F =.新知:子集、相等、真子集、空集的概念.① 如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset ),记作:()A B B A ⊆⊇或,读作:A 包含于(is contained in )B ,或B 包含(contains)A .当集合A 不包含于集合B 时,记作A B .② 在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 用Venn 图表示两个集合间的“包含”关系为: ()A B B A ⊆⊇或.③ 集合相等:若A B B A ⊆⊆且,则A B =中的元素是一样的,因此A B =.④ 真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset ),记作:A B (或B A ),读作:A 真包含于B (或B 真包含A ).⑤ 空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.试试:用适当的符号填空.(1){,}a b {,,}a b c ,a {,,}a b c ;(2)∅ 2{|30}x x +=,∅ R ; (3)N {0,1},Q N ; (4){0} 2{|0}x x x -=.B A反思:思考下列问题.(1)符号“a A∈”与“{}a A⊆”有什么区别?试举例说明.(2)任何一个集合是它本身的子集吗?任何一个集合是它本身的真子集吗?试用符号表示结论.(3)类比下列实数中的结论,你能在集合中得出什么结论?①若,,a b b a a b≥≥=且则;②若,,a b b c a c≥≥≥且则.※典型例题例 1 写出集合{,,}a b c的所有的子集,并指出其中哪些是它的真子集.变式:写出集合{0,1,2}的所有真子集组成的集合.例2 判断下列集合间的关系:(1){|32}A x x=->与{|250}B x x=-≥;(2)设集合A={0,1},集合{|}B x x A=⊆,则A 与B的关系如何?变式:若集合{|}A x x a=>,{|250}B x x=-≥,且满足A B⊆,求实数a的取值范围.※动手试试练1. 已知集合2{|320}A x x x=-+=,B={1,2},{|8,}C x x x N=<∈,用适当符号填空:A B,A C,{2} C,2 C.练2. 已知集合{|5}A x a x=<<,{|2}B x x=≥,且满足A B⊆,则实数a的取值范围为 .三、总结提升※学习小结1. 子集、真子集、空集、相等的概念及符号;Venn 图图示;一些结论.2. 两个集合间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,特别要注意区别“属于”与“包含”两种关系及其表示方法.※知识拓展如果一个集合含有n个元素,那么它的子集有2nn-个.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列结论正确的是().A. ∅AB. {0}∅∈C. {1,2}Z⊆ D. {0}{0,1}∈2. 设{}{}1,A x xB x x a=>=>,且A B⊆,则实数a的取值范围为().A. 1a< B. 1a≤C. 1a> D. 1a≥3. 若2{1,2}{|0}x x bx c=++=,则().A. 3,2b c=-= B. 3,2b c==-C. 2,3b c=-= D. 2,3b c==-4. 满足},,,{},{dcbaAba⊂⊆的集合A有个.5. 设集合{},{},{}A B C===四边形平行四边形矩形,{}D=正方形,则它们之间的关系是,并用Venn图表示.1. 某工厂生产的产品在质量和长度上都合格时,该产品才合格. 若用A表示合格产品的集合,B表示质量合格的产品的集合,C表示长度合格的产品的集合.则下列包含关系哪些成立?,,,A B B A A C C A⊆⊆⊆⊆试用Venn图表示这三个集合的关系.2. 已知2{|0}A x x px q=++=,2{|320}B x x x=-+=且A B⊆,求实数p、q所满足的条件.§1.1.3 集合的基本运算(1)1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.89复习1:用适当符号填空.0 {0}; 0 ∅;∅ {x|x2+1=0,x∈R};{0} {x|x<3且x>5};{x|x>-3} {x|x>2};{x|x>6} {x|x<-2或x>5}.复习2:已知A={1,2,3}, S={1,2,3,4,5},则A S, {x|x∈S且x∉A}= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学※学习探究探究:设集合{4,5,6,8}A=,{3,5,7,8}B=.(1)试用Venn图表示集合A、B后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.①一般地,由所有属于集合A且属于集合B的元素所组成的集合,叫作A、B的交集(intersection set),记作A∩B,读“A交B”,即:{|,}.A B x x A x B=∈∈且Venn图如右表示②类比说出并集的定义.由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集(union set),记作:A B,读作:A并B,用描述法表示是:{|,}A B x x A x B=∈∈或.Venn图如右表示.试试:(1)A={3,5,6,8},B={4,5,7,8},则A∪B =;(2)设A={等腰三角形},B={直角三角形},则A∩B=;(3)A={x|x>3},B={x|x<6},则A∪B=,A∩B= .(4)分别指出A、B两个集合下列五种情况的交集部分、并集部分.反思:(1)A ∩B 与A 、B 、B ∩A 有什么关系?(2)A ∪B 与集合A 、B 、B ∪A 有什么关系?(3)A ∩A = ;A ∪A = . A ∩∅= ;A ∪∅= .※ 典型例题例1 设{|18}A x x =-<<,{|45}B x x x =><-或,求A ∩B 、A ∪B .变式:若A ={x |-5≤x ≤8},{|45}B x x x =><-或,则A ∩B = ;A ∪B = .小结:有关不等式解集的运算可以借助数轴来研究.例2 设{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,求A ∩B .变式:(1)若{(,)|46}A x y x y =+=,{(,)|43}B x y x y =+=,则A B = ; (2)若{(,)|46}A x y x y =+=,{(,)|8212}B x y x y =+=,则A B = .反思:例2及变式的结论说明了什么几何意义?※ 动手试试练 1. 设集合{|23},{|12}A x x B x x =-<<=<<.求A ∩B 、A ∪B .练2. 学校里开运动会,设A ={x |x 是参加跳高的同学},B ={x |x 是参加跳远的同学},C ={x |x 是参加投掷的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释A B 与B C 的含义.三、总结提升 ※ 学习小结1. 交集与并集的概念、符号、图示、性质;2. 求交集、并集的两种方法:数轴、Venn 图.※ 知识拓展A B C A B A C =()()(), A B C A B A C =()()(), A B C A B C =()(), A B C A B C =()(), A A B A A A B A ==(),().你能结合Venn 图,分析出上述集合运算的性质吗?学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于( ). A .{1,2,3,4,5} B .{2,3,4,5} C .{2,3,4}D .{}15x x <≤2. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ).A. x =3, y =-1B. (3,-1)A B B A A(B) A B B AC.{3,-1}D.{(3,-1)}3. 设{}0,1,2,3,4,5,{1,3,6,9},{3,7,8}A B C ===,则()A B C 等于( ).A. {0,1,2,6}B. {3,7,8,}C. {1,3,7,8}D. {1,3,6,7,8}4. 设{|}A x x a =>,{|03}B x x =<<,若A B =∅,求实数a 的取值范围是 .5. 设{}{}22230,560A x x x B x x x =--==-+=,则A B = .课后作业1. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系? (1)12{}L L P =点; (2)12L L =∅;(3)1212L L L L ==.2. 若关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B ,且A ∩B ={13-},求A B .§1.1.3 集合的基本运算(2)学习目标1. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;2. 能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.学习过程一、课前准备1011 复习1:集合相关概念及运算.① 如果集合A 的任意一个元素都是集合B 的元素,则称集合A 是集合B 的 ,记作 . 若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的 ,记作 . 若A B B A ⊆⊆且,则 .② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为: A B = ; A B = .复习2:已知A ={x |x +3>0},B ={x |x ≤-3},则A 、B 、R 有何关系?二、新课导学 ※ 学习探究探究:设U ={全班同学}、A ={全班参加足球队的同学}、B ={全班没有参加足球队的同学},则U 、A 、B 有何关系?新知:全集、补集.① 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U .② 补集:已知集合U , 集合A ⊆U ,由U 中所有不属于A 的元素组成的集合,叫作A 相对于U 的补集(complementary set ),记作:U C A ,读作:“A 在U 中补集”,即{|,}U C A x x U x A =∈∉且. 补集的Venn 图表示如右:说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制. 试试:(1)U ={2,3,4},A ={4,3},B =∅,则U C A = ,U C B = ;(2)设U ={x |x <8,且x ∈N },A ={x |(x -2)(x -4)(x -5)=0},则U C A = ;(3)设集合{|38}A x x =≤<,则R A= ;(4)设U ={三角形},A ={锐角三角形},则U C A = .反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集? (2)Q 的补集如何表示?意为什么?※ 典型例题例1 设U ={x |x <13,且x ∈N },A ={8的正约数},B ={12的正约数},求U C A 、U C B .例2 设U =R ,A ={x |-1<x <2},B ={x |1<x <3},求A ∩B 、A ∪B 、U C A 、U C B .变式:分别求()U C A B 、()()U U C A C B .※ 动手试试练1. 已知全集I ={小于10的正整数},其子集A 、B 满足()(){1,9}I IC A C B =,(){4,6,8}I C A B =,{2}A B =. 求集合A 、B .练2. 分别用集合A 、B 、C 表示下图的阴影部分.(1) ; (2) ;(3) ; (4) .反思:结合Venn 图分析,如何得到性质:(1)()U A C A = ,()U A C A = ; (2)()U U C C A = .三、总结提升 ※ 学习小结1. 补集、全集的概念;补集、全集的符号.2. 集合运算的两种方法:数轴、Venn 图.※ 知识拓展试结合Venn 图分析,探索如下等式是否成立? (1)()()()U U U C A B C A C B =; (2)()()()U U U C A B C A C B =.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 设全集U =R ,集合2{|1}A x x =≠,则U C A =( ) A. 1 B. -1,1 C. {1} D. {1,1}-2. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A =( ).A. {|02}x x x ≤≥或B. {|02}x x x <>或C. {|2}x x ≥D. {|2}x x >3. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--, {}0,3,4N =--,则()I M N =( ).A .{0}B .{}3,4--C .{}1,2--D .∅4. 已知U ={x ∈N |x ≤10},A ={小于11的质数},则U C A = .5. 定义A —B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,4,8},则N —M = .1. 已知全集I =2{2,3,23}a a +-,若{,2}A b =,{5}I C A =,求实数,a b .2. 已知全集U =R ,集合A ={}220x x px ++=,{}250,B x x x q =-+= 若{}()2U C A B =,试用列举法表示集合A§1.1 集合(复习)1. 掌握集合的交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2. 能使用数轴分析、Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.214复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言?A B = ; A B = ; U C A = .复习2:交、并、补有如下性质. A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;()U A C A = ;()U A C A = ; ()U U C C A = . 你还能写出一些吗?二、新课导学※ 典型例题例1 设U =R ,{|55}A x x =-<<,{|07}B x x =≤<.求A ∩B 、A ∪B 、C U A 、C U B 、(C U A )∩(C U B )、(C U A )∪(C U B )、C U (A ∪B )、C U (A ∩B ).小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点;(2)由以上结果,你能得出什么结论吗?例2已知全集{1,2,3,4,5}U =,若A B U =,A B ≠∅,(){1,2}U A C B =,求集合A 、B .小结:列举法表示的数集问题用Venn 图示法、观察法.例3 若{}{}22430,10A x x x B x x ax a =-+==-+-=,{}210C x x mx =-+=,A B A A C C ==且,求实数a 、m 的值或取值范围.变式:设2{|8150}A x x x =-+=,{|10}B x ax =-=,若B ⊆A ,求实数a 组成的集合、.※ 动手试试 练 1. 设2{|60}A x x ax =-+=,2{|0}B x x x c =-+=,且A ∩B ={2},求A ∪B .练2. 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围。