自动控制系统最主要的性能指标
- 格式:doc
- 大小:16.00 KB
- 文档页数:1
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制系统的控制方式及性能指标自动控制系统是一种通过传感器、执行器和控制器等组成的复杂系统,可以对特定过程或设备进行自动化控制。
控制方式和性能指标是评价一个自动控制系统优劣的重要标准。
本文将介绍常见的自动控制系统的控制方式及其相关的性能指标。
一、开环控制开环控制是最简单的控制方式之一,它是指控制器对被控对象进行控制,但没有反馈信号参与。
开环控制系统主要通过既定的控制算法对被控对象输出信号进行调节。
这种控制方式无法对系统的实际状态进行准确的监测和调节,因此容易受到外界干扰的影响,导致输出信号与期望值之间存在偏差。
二、闭环控制闭环控制是一种基于反馈信号的控制方式,它通过传感器获取系统的实际状态信息,并将该信息传递给控制器进行实时调节。
闭环控制可以确保被控对象的输出信号与期望值之间的误差最小化。
这种控制方式具有较好的稳定性和鲁棒性,能够在系统出现扰动或参数变化时自动调整输出信号,使系统保持稳定运行。
闭环控制的性能指标主要包括以下几个方面:1. 响应时间:响应时间是指系统从受到输入信号到输出信号达到稳定状态所需的时间。
响应时间越短,系统的动态性能越好。
2. 稳定性:稳定性是指系统在受到扰动或参数变化时,能够保持输出信号在允许范围内波动较小的特性。
稳定性越好,系统的控制效果越优秀。
3. 误差指标:误差指标是评价闭环控制系统控制精度的重要指标。
常用的误差指标有稳态误差、峰值误差和超调量等,这些指标可以量化地反映系统输出信号与期望值之间的偏差程度。
4. 鲁棒性:鲁棒性是指系统对参数变化和外界干扰的适应能力。
一个鲁棒性较强的控制系统能够在参数变化或干扰较大的情况下仍能保持较好的控制效果。
5. 控制精度:控制精度是指系统输出信号与期望值之间的精度程度。
控制精度越高,系统的控制能力越强。
综上所述,自动控制系统的控制方式及性能指标是评价系统优劣的重要指标。
开环控制和闭环控制是常见的控制方式,而响应时间、稳定性、误差指标、鲁棒性和控制精度等性能指标可以客观评价系统的控制效果。
自动控制原理二阶系统动态指标在自动控制原理中,二阶系统的动态特性对整个控制系统的性能至关重要。
以下是对二阶系统动态指标的详细阐述,主要包含稳定性、快速性、准确性、鲁棒性、抗干扰性、调节时间、超调量、阻尼比和频率响应等方面。
一、系统的稳定性稳定性是评估控制系统性能的重要指标。
对于二阶系统,稳定性通常通过观察系统的极点位置来判断。
如果系统的极点位于复平面的左半部分,则系统是稳定的。
此外,系统的稳定性还与阻尼比有关,阻尼比在0到1之间时,系统是稳定的。
二、系统的快速性快速性表示系统响应速度的快慢。
在二阶系统中,快速性通常通过极点的位置来决定。
极点越接近虚轴,系统的响应速度越快。
但需要注意的是,过快的响应速度可能导致系统超调量增大,因此需要综合考虑快速性和稳定性。
三、系统的准确性准确性表示系统输出与期望输出的接近程度。
对于二阶系统,可以通过调整系统的极点和零点位置来提高准确性。
一般来说,增加阻尼比可以提高准确性。
四、系统的鲁棒性鲁棒性表示系统在参数变化或干扰下保持稳定的能力。
对于二阶系统,鲁棒性可以通过调整系统的极点和零点位置来改善。
一般来说,使极点和零点距离越远,系统的鲁棒性越好。
五、系统的抗干扰性抗干扰性表示系统抵抗外部干扰的能力。
对于二阶系统,可以通过增加阻尼比来提高抗干扰性。
阻尼比增大时,系统对外部干扰的抑制能力增强。
六、系统的调节时间调节时间表示系统从受到干扰到恢复稳态所需的时间。
对于二阶系统,调节时间与阻尼比和系统增益有关。
适当增加阻尼比和系统增益可以缩短调节时间。
七、系统的超调量超调量表示系统响应超过稳态值的最大偏差量。
对于二阶系统,超调量与阻尼比有关。
阻尼比越小,超调量越大。
为了减小超调量,可以适当增加阻尼比。
八、系统的阻尼比阻尼比是衡量系统阻尼程度的参数,其值介于0和1之间。
适当的阻尼比可以保证系统具有良好的稳定性和快速性。
对于二阶系统,阻尼比与调节时间和超调量密切相关。
根据实际需求选择合适的阻尼比是关键。
控制系统的动态性能指标自动控制系统的动态性能指标包括: ⒈跟随性能指标 ⒉抗扰性能指标下面分别介绍这两项性能指标。
O ±5%(或±2%))(t C ∞C ∞-C C max maxC ∞C 0tt r t s图1 典型阶跃响应曲线和跟随性能指标1. 跟随性能指标:在给定信号或参考输入信号的作用下,系统输出量的变化情况可用跟随性能指标来描述。
常用的阶跃响应跟随性能指标有— 上升时间tr从系统图加阶跃给定信号开始到响应第一次达到稳态值所经过的时间,它表征动态响应的快速性。
— 超调量与峰值时间p t在阶跃响应过程中,时间超过r t 以后,输出量有可能继续升高,到达最大值m ax C 以后回落。
m ax C 和稳态值∞C 之间的差与稳态值的比称为超调量,常用百分数表示,即%100max ⨯-=∞∞C C C σ超调量反映系统的相对稳定性。
超调量越小,相对稳定性越好。
系统阶跃响应从零开始,到达最大值m ax C 所经历的时间p t ,称为峰值时间p t 。
— 调节时间ts调节时间又称为过渡过程时间,它衡量整个输出量调节过程的快慢。
理论上线性系统的输出过渡过程要到∞=t 时才结束,但实际上由于存在各种非线性因素,过渡过程到一定时间就终止了。
为了在线性系统阶跃响应曲线上表示调节时间,认为响应进入稳态值附近一个小的误差带内(可取%5±或%2±)并不再出来时,系统的过渡过程就结束了。
将响应进入并不再超出该误差带所需要的时间定义为调节时间。
调节时间既反映了系统响应的快速性,也能反映系统的稳定性。
maxC ∆1∞C 2∞C ±5%(或±2%)CNNOtt mt vC b图2 突加扰动的动态过程和抗扰性能指标2. 突加阶跃扰动时抗扰性能指标控制系统稳定运行中,突然施加一个使输出量降低的阶跃扰动量以后,输出量由降低到恢复到新的稳态的过渡过程是系统典型的抗扰动过程,如图2所示。
1.自动控制系统最主要的性能指标?
答:1、稳定性:稳定性是一切的根本,系统不稳定,便不具备讨论其他性能的条件,以闭环极点的位置判断系统的稳定性
2、快速性:指系统能否快速跟随给定值,给出期望的响应,一般以阶跃下的ts,即调节时
间作为指标.此外还有延迟时间td、上升时间tr等
3、准确性:即系统的静差亦即稳态误差,指系统能否精确地跟随给定
2.经典控制常用的数学模型,其中传递函数的描述是什么?
答
3.闭环系统稳定的充分必要条件?
答:闭环系统特征方程的所有根均具有负实部,或者说闭环函数的极点均严格位于左半S 平面。
4.典型函数的拉氏变换与输入信号的关系?
答:
5.线性定常系统的起点?
6.异谐系统单位响应是什么样的特性?
7.二阶系统超调量与系统参数的关系,响应形式与阻尼比的关系?
8.系统中是否存在稳态误差,与什么有关系,如何
9.更轨迹的意义
10.正弦输入下,线性定常输出特性,稳态
11.波特图各波数与系统特性之间的关系
12.校正的目的
13.最小相位系统的概念
14.劳斯特稳定性
1.已知响应阶跃表达求传递函数?
2.方框图化解
3.已知最小相位系统的对数抚平特性,问阶跃特性曲线,求开环传递函数?
4.分析闭环自动系统特点,举应用实例?
5.。