离子键和离子晶体
- 格式:ppt
- 大小:572.00 KB
- 文档页数:33
离子键构成物质类型
离子键是一种化学键,它是由金属和非金属元素之间的电子转移而形成的。
这种电子转移导致金属原子失去电子形成正离子,而非金属原子获得这些电子形成负离子。
离子之间的电静力吸引力将它们结合在一起,形成离子晶体的结构。
由于离子之间的强烈电荷相互作用,离子晶体通常具有高熔点和良好的溶解性。
离子键构成的物质类型包括许多常见的化合物,例如氯化钠(NaCl)、氯化钾(KCl)、氧化镁(MgO)和氧化铝(Al2O3)。
这些化合物通常是由金属和非金属元素组成的,并且它们在固态时形成离子晶体结构。
除了这些常见的离子晶体外,许多其他化合物,如碳酸钙(CaCO3)和硫酸铜(CuSO4),也是由离子键构成的。
在日常生活中,许多离子化合物被广泛应用。
比如氯化钠被用作食盐,氯化钾被用作肥料,氧化铝被用于制造陶瓷和研磨材料。
此外,许多离子化合物也被用作药物、化妆品和工业原料。
总的来说,离子键构成的物质类型涵盖了许多化合物,它们在化学、工业和日常生活中都扮演着重要的角色。
通过理解离子键的性质和特点,我们可以更好地理解和应用这些物质。
第二单元离子键离子晶体[核心素养发展目标] 1.理解离子键的本质,能结合离子键的本质和晶格能解释离子晶体的性质,促进宏观辨识与微观探析学科核心素养的发展。
2.认识常见离子晶体的结构模型,理解离子晶体的结构特点,预测其性质,强化证据推理与模型认知的学科核心素养。
一、离子键的形成1.形成过程2.特征阴、阳离子球形对称,电荷分布也是球形对称,它们在空间各个方向上的静电作用相同,在各个方向上一个离子可同时吸引多个带相反电荷的离子,故离子键无方向性和饱和性。
(1)离子键的实质是“静电作用”。
这种静电作用不仅是静电引力,而是指阴、阳离子之间静电吸引力与电子与电子之间、原子核与原子核之间的排斥力处于平衡时的总效应。
(2)成键条件:成键元素的原子得、失电子的能力差别很大,电负性差值大于1.7。
(3)离子键的存在只存在于离子化合物中:大多数盐、强碱、活泼金属氧化物(过氧化物如Na2O2)、氢化物(如NaH和NH4H)等。
例1具有下列电子排布的原子中最难形成离子键的是( )A.1s22s22p2B.1s22s22p5C.1s22s22p63s2D.1s22s22p63s1答案 A解析形成离子键的元素为活泼金属元素与活泼非金属元素,A为C元素,B为F元素,C为Mg元素,D为Na元素,则只有A项碳元素既难失电子,又难得电子,不易形成离子键。
例2下列关于离子键的说法中错误的是( )A.离子键没有方向性和饱和性B.非金属元素组成的物质也可以含离子键C.形成离子键时离子间的静电作用包括静电吸引和静电排斥D.因为离子键无饱和性,故一种离子周围可以吸引任意多个带异性电荷的离子解析活泼金属和活泼非金属元素原子间易形成离子键,但由非金属元素组成的物质也可含离子键,如铵盐,B项正确;离子键无饱和性,体现在一种离子周围可以尽可能多地吸引带异性电荷的离子,但也不是任意的,因为这个数目还要受两种离子的半径比(即空间条件是否允许)和个数比的影响,D项错误。
如何判断离子晶体原子晶体分子晶体的熔沸点高低?如何判断离子晶体原子晶体分子晶体的熔沸点高低?1.离子晶体:阴阳离子半径越小,电荷数越多,离子键越强,熔沸点越高,反之越低.离子键与离子带电荷、离子半径之和有关,离子带电荷多,离子半径小,则离子键强,熔沸点越高.离子晶体由离子键决定.与晶体的堆积方式,离子的电荷量,离子的半径决定.可以用静电力公式记忆.与电荷量成正比,与半径成反比. 如: CsCl < NaCl 因前者半径大CaBr2 > KBr 前者电荷多怎么判断离子键的强弱离子键与离子带电荷、离子半径之和有关,离子带电荷多,离子半径小,则离子键强。
有些类似于物理的库仑定律: F = k?Q1*Q2/r平方如NaCl与KCl,离子带电荷相同,Na+半径更小,所以NaCl的离子键更强,熔沸点更高。
2.原子晶体:原子间键长越短,共价键越稳定,物质熔沸点越高,反之越低.共价键的键能与键长,即原子半径之和有关,原子半径小,共价键短,共价键强,熔沸点越高.如金刚石比晶体硅的熔沸点高,是因为C比Si元素非金属性强,原子半径小,所以 C-C 键强于C-Si 键强于 Si-Si 键.原子晶体仅由共价键决定.与键的强弱有关与键长无关.非金属性相差大不大.可见,离子键比共价键多了个电荷量的比较.3.分子晶体:分子晶体在熔化或汽化时,破坏的是"分子间作用力",而不是破坏"化学键",所以分子晶体的熔沸点一般都较低.分子晶体熔化破坏分子间作用力----范德华力{取向力,诱导力,色散力} 其中,色散力与分子量有关.分子量越大,色散力越大.分子晶体中分子间作用力越大,物质熔沸点越高,反之越低.其中组成和结构相似的分子,相对分子质量越大,分子间作用力越大.(但这不包括具有氢键的分子晶体其熔沸点出现反常得高的现象,如H2O、HF等)熔沸点大小为: 原子晶体>离子晶体>分子晶体也有些特殊例子,如氧化镁(MgO)是离子晶体,但熔沸点与原子晶体差不多,熔点达到2800+摄氏度.金属晶体的熔沸点,变化范围大,没有太明显的规律,有的熔沸点很低,如汞在常温时就是液态.钨熔点高达3000+摄氏度等.金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子的静电作用越强,金属键越强,熔沸点越高,反之越低.但需注意某些金属晶体的熔沸点差别很大.如W的熔沸点甚至高于有些原子晶体,而Hg的熔点则很低,常温下呈液体状态.键能的大小,一般是由键长决定的.键长越大,键能越小,键长越小,键能就越大.键长的大小,一般由成键的原子的半径决定.比如氯化钠与氯化钾: NaCl与KCl中,氯离子半径一样大,但钠离子半径比钾离子半径要小,所以氯化钠的键长比氯化钾要小,键能就来得大,所以要破坏氯化钠的离子键比破坏氯化钾的离子键,需要的能量就要多,表现为氯化钠的熔点比氯化钾高.(氯化钠熔点810,氯化钾熔点773)。
第四节离子晶体[学习目标定位] 1.熟知离子键、离子晶体的概念,知道离子晶体类型与性质的联系。
2.认识晶格能的概念和意义,能根据晶格能的大小,分析晶体的性质。
一离子晶体1.结合已学知识和教材内容,填写下表:离子晶体的概念是阴、阳离子通过离子键而形成的晶体。
构成离子晶体的微粒是阴离子和阳离子,微粒间的作用力是离子键。
(2)由于离子间存在着无方向性的静电作用,每个离子周围会尽可能多地吸引带相反电荷的离子以达到降低体系能量的目的。
所以,离子晶体中不存在单独的分子,其化学式表示的是离子的个数比,而不是分子组成。
2.离子晶体的结构(1)离子晶体中,阴离子呈等径圆球密堆积,阳离子有序地填在阴离子的空隙中,每个离子周围等距离地排列着异电性离子,被异电性离子包围。
一个离子周围最邻近的异电性离子的数目,叫做离子晶体中离子的配位数。
(2)观察分析表中离子晶体的结构模型,填写下表:Cl-和Na+配位数都为6 Cl-和Cs+配位数都为8 配位数:F-为4,Ca2+为812个,的Cl-也有12个。
在CsCl晶体中,每个Cs+周围最近且等距离的Cs+有6个,每个Cl-周围最近且等距离的Cl-也有6个。
3.问题讨论(1)在NaCl和CsCl两种晶体中,阴阳离子的个数比都是1∶1,都属于AB型离子晶体,为什么二者的配位数不同、晶体结构不同?答案在NaCl晶体中,正负离子的半径比r+/r-=0.525,在CsCl晶体中,r+/r-=0.934,由于r+/r-值的不同,结果使晶体中离子的配位数不同,其晶体结构不同。
NaCl晶体中阴、阳离子的配位数都是6,CsCl晶体中阴、阳离子的配位数都是8。
r+/r-数值越大,离子的配位数越高。
(2)为什么在NaCl(或CsCl)晶体中,正负离子的配位数相同;而在CaF2晶体中,正负离子的配位数不相同?答案在NaCl、CsCl晶体中,正负离子的配位数相同,是由于正负离子电荷(绝对值)相同,因而正负离子的个数相同,结果导致正负离子的配位数相同;若正负离子的电荷数不相同,正负离子的个数必定不相同,结果正负离子的配位数就不会相同。
离子晶体的结构特点主要表现在正、负离子在空间排列上具有交替相间的结构特征。
这使得离子晶体具有一定的几何外形,例如氯化钠晶体是正立方体晶体,钠离子与氯离子相间排列,每个钠离子同时吸引6个氯离子,每个氯离子同时吸引6个钠离子。
离子键没有方向性和饱和性,离子在晶体中趋向于采取尽可能紧密的堆积。
因此,典型的离子晶体是由活泼金属和活泼非金属形成的化合物。
总的来说,由于离子键的强度较高,离子晶体一般具有较高的熔点、硬度、较难挥发。
但同时它们也较脆,这是由于离子键的强度高导致的。
此外,离子晶体的晶格结点上交替排列着正、负离子,以离子键相结合。
这种晶格结构使得离子在晶体中趋向于采取尽可能紧密的堆积,形成具有一定几何外形的晶体。
同时,由于离子键没有方向性和饱和性,离子在晶体中的排列方式较为灵活,可以适应不同的空间环境和电子环境。
另外,不同的离子晶体中离子的排列方式可能不同,形成的晶体类型也不一定相同。
例如,氯化钠晶体中钠离子与氯离子的排列方式是正立方体结构,而氯化钙晶体中钙离子与氯离子的排列方式则是面心立方结构。
第一章材料中的原子排列第一节原子的结合方式1原子结构2原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
图1-5特征:a 原子的理想排列;b 有14 种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷; b 可有无限多种。
2晶胞图1-6 (1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(3)形状和大小有三个棱边的长度a,b,c 及其夹角α,β,γ 表示。