合成孔径雷达图像特征
- 格式:ppt
- 大小:2.80 MB
- 文档页数:32
第四章 合成孔径雷达合成孔径雷达(Synthetic Aperture Radar ,简称SAR )是成像雷达中应用最多,也是本书讨论的重点。
在前几章对雷达如何获取高的距离分辨率和横向分辨的基础上,从本章开始用三章的篇幅对合成孔径雷达作较详细的讨论。
首先,结合工程实际介绍合成孔径雷达的原理。
在前面的讨论中已经提到,根据不同的要求,成像算法(特别是横向成像算法)有许多种,本章只介绍最简单的距离-多普勒算法的原理,目的是由此联系到对合成孔径雷达系统的要求以及工程实现方面的问题。
合成孔径雷达通常以场景作为观测对象,它与一般雷达有较大不同,我们将在本章讨论合成孔径雷达有别于一般雷达的一些技术性能和参数。
4.1 条带式合成孔径雷达成像算法的基本原理4.1所示,设X 轴为场景的中心线,Q 为线上的某一点目标,载机以高度H 平行于中心线飞行,离中心线的最近距离B R 为B R = (4.1)当载机位于A 点时,它与Q 点的斜距为R = (4.2) 式中t X 为点目标Q 的横坐标。
当分析中心线上各个点目标的回波状况及成像算法时,可以在包括场景中心线(即X 轴)和载机航线的平面里进行。
至于场景里中心线外的情况将在后面说明,这里暂不讨论。
一般合成孔径雷达发射线性调频(LFM )脉冲,由于载机运动使其到目标的距离发生变化,任一点目标回波在慢时间域也近似为线性调频,而且包络时延也几何示意图随距离变化,即所谓距离徙动。
合成孔径雷达成像算法的任务是从载机运动录取得到的快、慢时间域的回波数据,重建场景图像,它是二维匹配滤波问题。
严格考虑距离徙动的成像算法比较复杂,在实际应用中,一般均根据情况采用一些较简单的算法,这些将在第五章里系统介绍。
在这里我们主要讨论分辨率较低,距离徙动影响可以忽略的最简单的情况,这时可采用简易的距离-多普勒基本算法。
所谓距离徙动的影响可以忽略不计是指雷达波束扫过某点目标的相干处理时间里,目标斜距变化引起的距离徙动值小于距离分辨单元长度的1/4~1/8,即场景中心线上所有点目标的回波(距离压缩后的)在慢时间域里均位于同一个距离单元。
合成孔径雷达图像目标识别技术研究合成孔径雷达图像目标识别技术研究摘要:合成孔径雷达(Synthetic Aperture Radar,SAR)是一种通过感知目标反射或散射的雷达技术。
在航天、军事、环境监测等领域都有着重要的应用价值。
本文旨在对合成孔径雷达图像目标识别技术进行研究,包括图像预处理、特征提取和分类方法。
通过实验验证了这些方法的有效性和可行性,为进一步的相关研究提供了参考。
1. 引言合成孔径雷达(SAR)是一种能够获取高分辨率地面目标信息的雷达技术。
由于其具有无视天候、全天候工作和穿透隐蔽物等优势,因此在军事侦察、环境监测、资源勘探等领域得到了广泛应用。
目标识别作为SAR图像处理的重要环节之一,对于提取目标特征、辨识目标类别具有重要意义。
2. 合成孔径雷达图像预处理合成孔径雷达图像在获取过程中会受到多种干扰因素的影响,如地物散射、方向模糊等。
因此,为了提高目标识别的准确性,需要对SAR图像进行预处理。
预处理主要包括去噪、图像增强和几何校正等步骤。
2.1 去噪由于SAR图像在采集过程中会受到天气等因素的干扰,导致图像中出现噪声。
噪声对目标识别造成很大的困扰,因此需要进行去噪处理。
常用的去噪方法包括中值滤波、小波去噪等。
2.2 图像增强图像增强的目标是提高图像的对比度和清晰度,使得目标在图像中更加鲜明。
在SAR图像中,由于环境等因素的限制,图像质量较差。
常用的图像增强方法包括直方图均衡化、自适应直方图均衡化等。
2.3 几何校正由于SAR图像在获取过程中会有不同的几何失配问题,如斜视几何失配、散焦几何失配等。
为了进行精确的目标识别,需要对图像进行几何校正。
几何校正方法包括校正变换、几何失配校正等。
3. 合成孔径雷达图像特征提取特征提取是目标识别的关键步骤之一。
通过提取图像的特征信息,可以判断目标的类别以及与其他目标的差异。
常用的特征提取方法包括空间域特征、频率域特征和小波域特征等。
3.1 空间域特征空间域特征是通过对图像的像素进行分析提取的,包括灰度特征、形状特征等。
合成孔径雷达的图像判读要点分析发布时间:2022-06-16T01:14:54.658Z 来源:《科学与技术》2022年2月4期作者:杨彬彬[导读] 合成孔径雷达的具有强大的监测功能,杨彬彬( 河北邢台 ) 054000 摘要:合成孔径雷达的具有强大的监测功能,在工业领域、国防领域被广泛应用。
该技术应用具有高分辨率,对气候环境的适应性比较强,在应用过程中将尺寸比较小的天线孔径进行合成,实现合成孔径雷达的制作与应用。
本文对合成孔径雷达应用过程中的图像特点分析,发现其在图像判读应用上仍具有广泛的进步空间,因此,本文提出提高合成孔径雷达图像判读的对策,分析其具体的应用范围。
关键词:合成孔径雷达;雷达图像;工作原理;目标识别引言:雷达通过发射和接收电磁波的方式对物体信息进行检测,在目标行为、形态勘察上被广泛应用,且具有高效优势。
合成孔径雷达的应用具有强大的成像功能,其主要分辨率较高、穿透性较强的雷达实现对目标的识别与成像,目前,该类雷达通常被搭载在卫星或者飞机上,可以实现大范围的覆盖应用,通过搭载物体的移动合成孔径,并成像。
一、合成孔径雷达的工作原理与普通的雷达工作原理相同,通过对电磁波信号的发射与回收,测定与被检测对象之间的距离,并根据脉宽窄实现对检测对象形体的成像。
合成孔径雷达采用相对运动的方式将信号相位进行重叠,将接收信号的空间扩大。
经过数据处理之后,其尺寸与天线雷达相似。
合成孔径雷达主要通过搭载飞机或者卫星等时刻处于移动状态的物体,通过估计运行进行距离测量和成像,根据光学系统应用原理,通过透镜或者反射镜的方式形成图像[1]。
合成孔径雷达在成像的过程中,采用真实孔径侧视雷达的分辨率检测方式。
距离分辨率形成根据电磁波的传播速度、雷达的脉冲宽度、持续时间等进行计算。
合成孔径雷达会因多普勒效应产生方位分辨率,主要根据雷达的孔径长度、探测点距离、电磁波波长等参数,对方位分辨率进行确定和计算。
多普勒效应由雷达的相对运动产生,接收频率与波源频率存在差别,从而产生多普勒效应。
合成孔径雷达特点
1. 合成孔径雷达的分辨率高得惊人啊!就像你能清晰地看到蚂蚁身上的细节一样,它可以把目标看得清清楚楚!比如说在监测地质灾害的时候,它能精准地发现细微的地形变化。
2. 它的全天候工作能力简直太棒了呀!管它是白天黑夜,还是狂风暴雨,合成孔径雷达都照样工作!这就好比一个不知疲倦的战士,随时都在坚守岗位!像在恶劣天气下对海洋的监测就离不开它。
3. 合成孔径雷达还有很强的穿透力呢!就如同能穿透层层迷雾看到真相一样,它能对一些物体进行深入探测!比如探测冰层的厚度和结构。
4. 它的测量精度非常高哇!能精确到让人惊叹的程度!这不就像一位精确无比的大师在工作嘛!在绘制地图时,这高精准度可太重要啦。
5. 合成孔径雷达的适应性那是杠杠的!不管放到哪种环境中,它都能快速适应并发挥作用!这跟那些能快速适应新环境的人一样厉害呀!在各种复杂地形的探测中都表现出色呢。
6. 你知道吗,合成孔径雷达的稳定性可强啦!就像稳稳扎根的大树,不会轻易晃动!比如在长时间的卫星运行中,它能始终稳定工作。
7. 合成孔径雷达的工作范围超广的呀!仿佛能覆盖整个世界一样!从陆地到海洋,从近地到太空,都有它的用武之地!就像一个无所不能的超级英雄。
8. 它的信息获取能力太牛了吧!迅速又准确地获取大量信息,就像有一双敏锐的眼睛快速捕捉一切!在军事侦察中可是大显身手呢。
9. 合成孔径雷达能够多模式工作呀,太神奇了!这就像是一个拥有多种技能的高手,根据不同需求切换模式!在不同领域的应用中都展现了独特的魅力。
总之,合成孔径雷达的特点让它成为了现代科技中不可或缺的重要部分,简直太厉害啦!。
合成孔径雷达(SAR)合成孔径雷达(SAR)数据拥有独特的技术魅力和优势,渐成为国际上的讨论热点之一,其应用领域越来越广泛。
SAR数据可以全天候对讨论区域进行量测、分析以及猎取目标信息。
高级雷达图像处理工具SARscape,能让您轻松将原始SAR数据进行处理和分析,输出SAR图像产品、数字高程模型(DEM)和地表形变图等信息,应用永久散射体PS、短基线处理SBAS 等方法快速精确地猎取大范围形变信息,并可以将提取的信息与光学遥感数据、地理信息集成在一起,全面提升SAR数据应用价值。
基本概念合成孔径雷达就是采用雷达与目标的相对运动把尺寸较小的真实天线孔径用数据处理的方法合成一较大的等效天线孔径的雷达,也称综合孔径雷达。
合成孔径雷达的特点是辨别率高,能全天候工作,能有效地识别伪装和穿透掩盖物。
所得到的高方位辨别力相当于一个大孔径天线所能供应的方位辨别力。
分类合成孔径雷达可分为聚焦型和非聚焦型两类。
用在飞机上或空间飞行器上可有几种不同的工作模式,最常见的是正侧视模式,称为合成孔径侧视雷达;此外还有斜视模式、多普勒波束锐化模式和定点照耀模式等。
假如雷达保持相对静止,使目标运动成像,则成为逆合成孔径雷达,也称距离-多普勒成像系统。
合成孔径雷达在军事侦察、测绘、火控、制导,以及环境遥感和资源勘探等方面有广泛用途。
进展概况合成孔径的概念始于50年月初期。
当时,美国有些科学家想突破经典辨别力的限制,提出了一些新的设想:采用目标与雷达的相对运动所产生的多普勒频移现象来提高辨别力;用线阵天线概念证明运动着的小天线可获得高辨别力。
50年月末,美国研制成第一批可供军事侦察用的机载高辨别力合成孔径雷达。
60年月中期,随着遥感技术的进展,军用合成孔径雷达技术推广到民用方面,成为环境遥感的有力工具。
70年月后期,卫星载合成孔径雷达和数字成像技术取得进展。
美国于1978年放射的〃海洋卫星〃A号和80年月初放射的航天飞机都试验了合成孔径雷达的效果,证明白雷达图像的优越性。
SAR图像高精度定位技术研究合成孔径雷达(SAR)图像是一种通过合成孔径雷达系统获取的遥感图像,具有全天候、全天时、高分辨率等特点。
在军事、民用等领域,SAR图像广泛应用于目标检测、跟踪、识别等应用中。
然而,由于SAR 图像的成像机制和处理过程的复杂性,其定位精度往往受到多种因素的影响,如雷达系统参数、目标特性、图像处理方法等。
因此,研究SAR图像高精度定位技术具有重要的理论和应用价值。
当前SAR图像高精度定位技术的研究主要集中在以下几个方面:基于成像模型的定位技术:该方法通过建立SAR图像的成像模型,推导定位公式,实现高精度定位。
例如,Richards-Rabbitts定位算法是一种常用的基于成像模型的SAR图像定位算法,可实现高精度的距离和方位角估计。
基于特征提取的定位技术:该方法通过提取SAR图像中的纹理、边缘、相位等特征,利用计算机视觉和图像处理技术实现高精度定位。
例如,基于深度学习的特征提取方法可有效提高SAR图像的定位精度。
基于模型的定位技术:该方法通过建立SAR系统的数学模型,利用模型拟合和参数估计方法实现高精度定位。
例如,基于压缩感知技术的SAR图像重建方法可提高定位精度,同时降低计算复杂度。
虽然上述方法在某些情况下能够实现较高的定位精度,但仍然存在一些问题。
基于成像模型的定位技术往往需要精确的系统参数和复杂的计算过程,实时性较差。
基于特征提取的定位技术容易受到图像质量、噪声等因素的影响,稳定性较差。
基于模型的定位技术需要准确的模型和足够的训练数据,对于复杂场景和不同目标类型的适应性有待进一步提高。
SAR图像高精度定位技术的核心是通过对SAR图像中目标特征的提取和识别,确定目标在图像中的精确位置。
具体实现过程如下:SAR图像预处理:由于SAR图像的成像机制和处理过程的复杂性,往往需要进行预处理操作,如滤波、去噪、平移校正等,以提高图像质量和定位精度。
目标特征提取:利用SAR图像中的纹理、边缘、相位等特征,提取出目标在图像中的特征表现,如多尺度边缘检测、相位梯度等。
合成孔径雷达影像特征分析作者:曾浩炜来源:《科教导刊·电子版》2014年第23期摘要合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种全天候、全天时的现代高分辨率微波成像雷达。
SAR具有与光学遥感不同的集合特性和辐射特性,现已广泛地应用于各个领域。
本文利用Erdas和Matlab对SAR影像几何特征进行分析,具体分析SAR影像方向位、斜距向分辨率,分析SAR影像几何变形(叠掩、阴影、透视收缩),认识影像斑点噪声及其对影像分析的影响。
关键词合成孔径雷达 SAR影像几何特征噪声影响。
中图分类号:P237 文献标识码:A合成孔径雷达是二十世纪高新科技的产物,是利用合成孔径原理、脉冲压缩技术和信号处理方法,以真实的小孔径天线获得距离向和方位向双向高分辨率遥感成像的雷达系统,在成像雷达中占有绝对重要的地位。
近年来由于超大规模数字集成电路的发展、高速数字芯片的出现以及先进的数字信号处理算法的发展,使SAR具备全天候、全天时工作和实时处理信号的能力。
它在不同频段、不同极化下可得到目标的高分辨率雷达图像,为人们提供非常有用的目标信息,已经被广泛应用于军事、经济和科技等众多领域,有着广泛的应用前景和发展潜力。
1SAR影像分析1.1分辨率用erdas视窗打开img文件,浏览该SAR影像,从SAR影像头文件中可以得到该影像方位向分辨率为5米,斜距向分辨率为10米。
从影像上也可以看山体在上下方向上被拉伸了,如图1。
图1:转换img格式显示1.2显示在Matlab中将影像进行10:2的多视处理后,得到比例正常的影像,图2为放大部分区域影像。
图2:截图区域多视处理后1.3SAR影像几何变形(叠掩、阴影、透视收缩)(1)叠掩。
多个目标由于斜距相同,它们在影像上具有相同的位置,使这点的灰度值很大,这种现象叫做叠掩。
影像中有许多处山体左侧坡面几乎只有一条直线,影像右上角还有许多亮斑,这些都是叠掩。