样本量计算
- 格式:ppt
- 大小:143.00 KB
- 文档页数:12
1.估计样本量的决定因素1.1资料性质计量资料如果设计均衡,误差控制得好,样本可以小于30例;计数资料即使误差控制严格,设计均衡,样本需要大一些,需要30-100例。
1.2研究事件的发生率研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。
1.31.41.5度为1.61.71.8双侧检验与单侧检验采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时,应该选择双侧检验,所需样本量就大;当研究结果仅高于或低于效应指标的界限有意义时,应该选择单侧检验,所需样本量就小。
当进行双侧检验或单侧检验时,其α或β的Ua?界值通过查标准正态分布的分位数表即可得到。
2.样本量的估算由于对变量或资料采用的检验方法不同,具体设计方案的样本量计算方法各异,只有通过查阅资料,借鉴他人的经验或进行预实验确定估计样本量决定因素的参数,便可进行估算。
护理中的量性研究可以分为3种类型:①描述性研究:如横断面调查,目的是描述疾病的分布情况或现况调查;②分析性研究:其目的是分析比较发病的相关因素或影响因素;③实验性研究:即队列研究或干预实验。
研究的类型不同,则样本量也有所不同。
2.1描述性研究护理研究中的描述性研究多为横断面研究,横断面研究的抽样方法主要包括单纯随机抽样、系统抽样、分层抽样和整群抽样。
分层抽样的样本量大小取决于作者选用的对象是用均数还是率进行抽样调查。
例.要做一项有关北京城区护士参与继续教育的学习动机和学习障碍的现状调查,采用分层多级抽样,选用的是均数抽样的公式,Uα为检验水准α对应的υ值,σ为总体标准差,δ为容许误差,根据预实验得出标准差σ=1.09,取α=0.05,δ=0.1,样本量算得520例,考虑到10%-15%的失访率和抽样误差,样本扩展到690例。
2.2分析性研究2.2.1探索有关变量的影响因素研究有关变量影响因素研究的样本量大多是根据统计学变量分析的要求,样本数至少是变量数的5-10倍。
临床研究中的样本量计算方法在临床研究中,样本量的确定是非常重要的,它直接关系到研究结果的可靠性和统计分析的效力。
本文将介绍临床研究中常用的样本量计算方法及其应用。
一、简介临床研究中的样本量计算是为了确定需要研究的患者或实验对象的数量。
样本量的大小与研究统计学效力和研究结果的可靠性密切相关。
样本量过小会导致研究结果的可靠性不高,样本量过大则浪费了研究资源。
因此,合理计算样本量是临床研究设计中必不可少的一环。
二、常用的样本量计算方法1. 简单随机抽样方法(Simple Random Sampling)简单随机抽样是最常用的样本量计算方法之一,它假设样本来自总体的随机选择,每个样本被选中的概率相等。
这样可以避免因为对样本的选择方式引入系统性的偏差。
2. 分层抽样方法(Stratified Sampling)分层抽样是在样本量计算中常使用的方法之一,它将总体按照一定的特征进行分层,然后在每个分层中采用简单随机抽样的方法。
这种方法可以确保每个子总体都有足够的样本,从而提高了样本的代表性。
3. 系统抽样方法(Systematic Sampling)系统抽样是一种有规律的抽样方法,它通过设定一个固定的抽样间隔来选择样本。
例如,从总体中选择每隔10个个体抽取一个样本。
这种方法可以简化样本的选择过程,并保持一定的随机性。
4. 整群抽样方法(Cluster Sampling)整群抽样是一种将总体划分为若干个群组,然后在某些群组中进行全面抽取的方法。
通过选择一部分群组进行研究,可以减少样本调查的成本和工作量。
5. 方便抽样方法(Convenience Sampling)方便抽样是一种选择最容易得到的样本进行研究的方法。
尽管这种方法的样本选择过程简便,但样本可能无法代表总体,因此需谨慎使用。
三、样本量计算的步骤1. 确定研究目的和研究问题在进行样本量计算之前,需要明确研究目的和研究问题。
研究目的决定了需要估计的参数,研究问题决定了统计方法和分析需求。
样本量的确定方法及公式
样本量的确定是研究中的一个重要的环节,其确定方法和公式可以为研究者提供参考。
样本量的确定是根据具体研究的需要,考虑到调查对象及其调查环境等因素来决定的。
根据实际情况,确定样本量应与研究的范围及内容有关,以保证研究结果的可靠性。
样本量的确定一般需要根据样本量计算公式来确定,其公式为:n=N/(1+Ne²),其中n为样本量,N为总体数量,e为允许的误差。
此计算公式适用于调查对象的数量和分布都已知的情况,研究者可以根据自身研究的具体情况,填写相应的数值,以确定样本量。
研究者在确定样本量的过程中,应考虑到样本量的充分性和合理性,以保证研究结果的可靠性和准确性。
如果样本量过大,将增加研究成本,而样本量过小,则可能影响研究结果的准确性。
因此,研究者应根据自身研究的内容和需要,合理确定样本量,以保证研究的可靠性。
样本量的确定是研究中的一个重要环节,其确定方法和公式可以为研究者提供参考。
研究者在确定样本量时应考虑到调查对象及其调查环境,并参照样本量计算公式确定,以保证研究结果的可靠性和准确性。
样本量计算公式探索样本量计算的数学公式样本量计算是统计学中重要的步骤,它用于确定研究中所需要的样本数量。
在研究过程中,样本量的大小影响了结果的准确性和可靠性。
因此,正确地计算样本量至关重要。
样本量计算是基于数学公式进行的,这些公式可以根据研究的目的和设计特点来选择。
本文将探索一些常用的样本量计算公式,并从理论和实际应用的角度进行讨论。
一、样本量计算的背景在研究中,我们希望通过对样本进行观察和测量来推断总体的某些特征。
样本量的大小与研究的可信度和推断的准确性息息相关。
如果样本量太小,那么结果的可靠性将受到影响;而如果样本量太大,不仅费时费力,还可能浪费资源。
因此,为了确定一个合理且适当的样本量,我们需要使用样本量计算公式。
这些公式基于统计学原理和参数估计方法,旨在提供样本量计算的科学依据。
二、样本量计算的数学公式常见的样本量计算公式包括均值比较、比例比较、相关分析和回归分析等。
下面将介绍一些常用的样本量计算公式及其应用。
1. 均值比较在两个独立样本均值比较的情况下,我们可以使用以下公式计算所需的样本量:\[ n = (\frac{Z_{1-\frac{\alpha}{2}} + Z_{1-\beta}}{|d|{\sigma}})^2 \]其中,n表示样本量,Z表示标准正态分布的分位数,α表示显著性水平,β表示统计功效,d表示两个均值的差异,σ表示总体标准差。
这个公式是根据两个独立样本的t检验原理推导而来。
2. 比例比较在比较两个比例的情况下,我们可以使用以下公式计算所需的样本量:\[ n = (\frac{Z_{1-\frac{\alpha}{2}} + Z_{1-\beta}}{p(1-p)}(\frac{1}{d_p})^2)^2 \]其中,n表示样本量,Z表示标准正态分布的分位数,α表示显著性水平,β表示统计功效,p表示比例差异的猜测值,dp表示两个比例之间的最小差异。
3. 相关分析在相关分析中,我们可以根据以下公式计算所需的样本量:\[ n = (\frac{Z_{1-\frac{\alpha}{2}} + Z_{1-\beta}}{arctanh(r)}^2 \)其中,n表示样本量,Z表示标准正态分布的分位数,α表示显著性水平,β表示统计功效,r表示总体相关系数。
临床试验中的样本量计算在临床试验的设计中,样本量计算是一个关键的环节,它对试验结果的可靠性和推广性起着至关重要的作用。
本文将介绍一些常用的样本量计算方法和相关的原理,以帮助研究人员正确、准确地进行样本量估计。
一、概述样本量计算是在进行临床试验之前进行的一项基础性工作,它通过科学合理的统计方法来确定所需的参与试验的患者数量。
样本量的大小直接影响到试验结果的可靠性,过小的样本量可能导致结果不具有统计学意义,而过大的样本量则会造成资源的浪费。
二、常用的样本量计算方法1. 总体比例样本量计算总体比例样本量计算常用于有两个互补结果的试验,比如药物治疗与安慰剂治疗的对比试验。
通过确定所需的显著性水平、统计功效和预期的疗效差异,可以利用二项分布来计算样本量。
2. 总体均数样本量计算总体均数样本量计算常用于比较两个治疗组的平均值,比如药物治疗组和对照组的平均生存时间。
在这种情况下,需要确定所需的显著性水平、统计功效、疗效差异和总体的标准差,利用正态分布来计算样本量。
3. 非劣效性与超劣效性试验样本量计算非劣效性与超劣效性试验样本量计算常用于评估新药物或治疗方法的非劣效性或超劣效性。
在这种情况下,需要确定所需的非劣效或超劣效边界、显著性水平和统计功效,利用二项分布或正态分布来计算样本量。
4. 多组样本量计算多组样本量计算常用于比较两个以上治疗组的平均值或比例。
在这种情况下,需要确定所需的显著性水平、统计功效、疗效差异和总体标准差,利用方差分析或多项式分布来计算样本量。
三、样本量计算原理样本量计算的原理基于统计学中的假设检验理论和置信区间理论。
在假设检验中,通过设定显著性水平和统计功效,可以估计出所需的样本量。
而在置信区间中,通过设定置信水平和效应量,可以估计出所需的样本量。
样本量的计算是基于对试验对象总体的假设和对试验结果的预期,并且要求样本具有代表性和随机性。
四、注意事项在进行样本量计算时,需要注意以下几点:1. 合理选择显著性水平和统计功效,一般显著性水平取0.05,统计功效取0.8,但也需根据具体研究的目的和研究领域的惯例进行选择。
师资培训两组样本量计算公式
样本量的计算公式是n=z²σ²/d²。
样本量是指总体中抽取的样本元素的总个数,应用于统计学、数学、物理学等学科。
样本量大小是选择检验统计量的一个要素。
由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
例如:一百个人的体重数据称为一个样本,其中样本量为1,样本容量为100。
一个是effect size(例如两组均值差),一个是sample size(样本量),还有一个显著性水平。
以t检验来说,两组的均值差多少,差的越大,就不需要太多样本去证明这个差别的显著性;反过来,均值差越小,就越需要更多的样本去证明这个差别是存在的。
显著性水平就比较好理解了,显著性水平数值越低,意味着这个检验更严格,那么就要求你的均值差和样本量都要更大,反之亦然。
1.估计样本量的决定因素1.1资料性质计量资料如果设计均衡,误差控制得好,样本可以小于30例;计数资料即使误差控制严格,设计均衡,样本需要大一些,需要30-100例。
1.2研究事件的发生率研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。
1.31.41.5度为1.61.71.8双侧检验与单侧检验采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时,应该选择双侧检验,所需样本量就大;当研究结果仅高于或低于效应指标的界限有意义时,应该选择单侧检验,所需样本量就小。
当进行双侧检验或单侧检验时,其α或β的Ua?界值通过查标准正态分布的分位数表即可得到。
2.样本量的估算由于对变量或资料采用的检验方法不同,具体设计方案的样本量计算方法各异,只有通过查阅资料,借鉴他人的经验或进行预实验确定估计样本量决定因素的参数,便可进行估算。
护理中的量性研究可以分为3种类型:①描述性研究:如横断面调查,目的是描述疾病的分布情况或现况调查;②分析性研究:其目的是分析比较发病的相关因素或影响因素;③实验性研究:即队列研究或干预实验。
研究的类型不同,则样本量也有所不同。
2.1描述性研究护理研究中的描述性研究多为横断面研究,横断面研究的抽样方法主要包括单纯随机抽样、系统抽样、分层抽样和整群抽样。
分层抽样的样本量大小取决于作者选用的对象是用均数还是率进行抽样调查。
例.要做一项有关北京城区护士参与继续教育的学习动机和学习障碍的现状调查,采用分层多级抽样,选用的是均数抽样的公式,Uα为检验水准α对应的υ值,σ为总体标准差,δ为容许误差,根据预实验得出标准差σ=1.09,取α=0.05,δ=0.1,样本量算得520例,考虑到10%-15%的失访率和抽样误差,样本扩展到690例。
2.2分析性研究2.2.1探索有关变量的影响因素研究有关变量影响因素研究的样本量大多是根据统计学变量分析的要求,样本数至少是变量数的5-10倍。
样本量计算方法在进行各种研究和调查时,样本量的计算是一个至关重要的环节。
样本量的大小直接影响到研究结果的准确性和可靠性。
如果样本量过小,可能无法准确反映总体的特征;而样本量过大,则会造成资源的浪费。
那么,如何科学合理地计算样本量呢?首先,我们需要明确样本量计算的一些基本概念。
样本量,简单来说,就是从总体中抽取的用于研究的个体数量。
而总体,则是我们所关注的研究对象的全部集合。
在计算样本量之前,有几个关键的因素需要考虑。
一是研究的目的和问题。
不同的研究目的和问题对样本量的要求是不同的。
例如,如果是要进行精确的参数估计,通常需要较大的样本量;而如果只是进行初步的探索性研究,较小的样本量可能也能满足需求。
二是总体的特征。
包括总体的大小、变异程度等。
总体越大,变异程度越高,通常需要的样本量也就越大。
三是可接受的误差范围。
这是指我们能够容忍的样本估计值与总体真实值之间的偏差。
误差范围越小,需要的样本量就越大。
四是置信水平。
置信水平表示我们对估计结果的可信度要求。
常见的置信水平有 90%、95%和 99%等。
置信水平越高,需要的样本量就越大。
接下来,介绍几种常见的样本量计算方法。
一种是简单随机抽样的样本量计算方法。
对于这种方法,如果我们已知总体的标准差σ,可接受的误差范围 E,以及置信水平对应的 Z 值(例如,置信水平为 95%时,Z 值约为 196),那么样本量 n 可以通过以下公式计算:n =(Z² × σ²) / E²。
例如,如果总体标准差为 10,我们希望误差范围在 2 以内,置信水平为 95%,那么代入公式计算:Z = 196,E = 2,σ = 10,可得 n =(196² × 10²) /2² ≈ 9604,通常向上取整为 97 。
再来说说分层抽样的样本量计算方法。
分层抽样是先将总体按照某些特征分成不同的层,然后从每一层中分别抽取样本。
重复抽样的样本量计算公式重复抽样是指从总体中有放回地抽取样本,即在每次抽样后,将被抽取的个体重新放回总体中,再进行下一次抽样。
在进行重复抽样时,我们需要确定合适的样本量,以确保样本具有代表性且能够得到准确的估计。
下面将介绍几种常见的重复抽样的样本量计算公式。
在进行简单随机重复抽样时,可以使用以下公式计算样本量:n=(Zα/2)²*P*(1-P)/E²其中,n为样本量,Z为给定置信水平下的Z值,P为总体中所关注变量的比例,E为可接受的误差。
该公式的前提是我们对总体比例P有一定的了解。
在进行系统抽样时,可以使用以下公式计算样本量:n=N/(1+N*e²/(N-1))其中,n为样本量,N为总体大小,e为可接受的误差。
系统抽样是指将总体按照一定的顺序进行编号,然后从中随机选取一个起始点,然后每隔一定的间隔选取一个样本。
在进行分层抽样时n=∑(Nh/N)*(Zα/2)²*σh²/E²其中,n为样本量,Nh为第h层的总体大小,N为总体大小,Z为给定置信水平下的Z值,σh为第h层的总体方差,E为可接受的误差。
分层抽样是将总体划分为若干层,然后从每层中抽取样本。
在进行整群抽样时,可以使用以下公式计算样本量:n=(Nh)/(1+d*(Nh/N)*(Zα/2)²)其中,n为样本量,Nh为第h个群体的总体大小,N为总体大小,d 为群体内个体变异的比例,Z为给定置信水平下的Z值。
整群抽样是将总体划分为若干群体,然后从每个群体中抽取一个样本。
以上是常见的几种重复抽样的样本量计算公式,根据实际问题和抽样方法的不同,可能会有一些修改。
在实际应用中,我们需要根据总体特点和抽样目的,选择合适的抽样方法和样本量计算公式,以确保得到可靠和有意义的抽样结果。
样本量计算:
1、根据现况调查样本量计算公式2⎪⎪⎭⎫ ⎝⎛=αz d pq
n
α:检验的显著性水平,取0.05。
αz =1.96≈2;
d 为容许误差,一般采用d=0.1⨯p ;
p 为预期的现患率;
q=1-p 则上述公式可写成p
q n ⨯=400, 查文献可得北京市儿童肥胖率约为10%,样本量大约为3600
若d=20%,n=100* p/q ,样本量大约为900
2、以母乳喂养为保护性因素,根据非匹配且病例数与对照相等的病例对照研究
样本量计算公式为:[]2212
2211)()1()1()1(2p p p p p p z p p z n --+-+-=∂β
α:检验的显著性水平,取0.05。
αz =1.96(双侧)。
β:为犯二类错误的概率,取0.05,即检验功效1-β=0.95。
βz =1.64(双侧)。
P 1:为肥胖组的母乳喂养率:估计60%
P 2:为肥胖组的母乳喂养率:估计80%
2
21p p p +==70% 每组研究对象数约为135,即总样本量约为405。